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Abstract

We discuss the localization behavior of quanturn particles in a one-dimensional An-
derson model with correlated and uncorrelated random potentials. We are interested
in the question if a localization-delocalization transition in these systems can oc-
cur and what the conditions are that allow for such a transition between localized
and extended states. For the particular case of self-affine potential landscapes we
show that a localization-delocalization transition reported recently only occurs, if
the variance of the potential fluctuations is kept fixed for all system sizes. If no
constraints on the variance are imposed, a new type of "strong” localization occurs
in self-affine systems. All states are strongly localized in a way different from the
usual Anderson localized states. © 2000 Elsevier Science B.V. All rights reserved.

1 Introduction

In the past decades, the question of localization in disordered systems has attracted
much interest, (for reviews see, e.g. [1,2]). In this work, we discuss, how localization is
changed, when the disorder is spatially correlated. We focus on one-dimensional systems
and consider single-particle electronic wave functions in the tight-binding approximation.
In this approximation, the Schrédinger equation becomes

Etp, = €qtPn — Z V1|.,n+j'l/)u+j- (1)
2

Here, E is the energy eigenvalue, |t,|? is the probability to find an electron at site n,
€, are the site potentials and Vj, n+j = Vatjn the hopping terms. The sum runs over all
nearest neighbors j. There are several different models, described by Eq. (1).
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(i) In the Anderson model with diagonal disorder, the site potentials €, are random num-
bers with zero mean, chosen randomly from an interval of width w, i. e. ¢, € [~w/2,w/2].
Here, w is a positive constant determining the degree of the disorder. The hopping terms
Van+j are set equal to unity. In the most common form of the Anderson model, the site
energies ¢, are uncorrelated. This model has been thoroughly investigated both analyti-
cally [3-9] and numerically [10-14]. The wave functions are all spatially localized in one
and two dimensions for any degree of disorder. Apart from the regions near the band
edges, the localization length X scales as

AMw) ~ 1/w? . (2)

for small w [1]. Accordingly, A(w) diverges for w — 0, but for sufficiently large systems
the eigenfunctions are always localized, if w > 0.

(ii) In the Anderson model with off-diagonal disorder, the site potentials €, are zero,
while the hopping terms are chosen randomly, Vi nij € {1 — 5,1+ %}. Here, all states are
localized in d = 1 and 2, except at the band center £ = 0 in two-dimensional systems,
where a singular critical state occurs [15,16].

(iii) Similar to (ii) is the quantum percolation model, where all site potentials ¢, are zero
and the hopping terms V, »4; are randomly chosen as 1 with probability p and as 0 with
probability 1 — p [17-20].

(iv) A problem similar to (i) is the vibrational problem, where the wave-function ¥, is
substituted by the vibrational amplitudes w, of particles with masses m, coupled by
harmonic springs knn4; between them [21]:

Wi, = Z(kn,n+j/mn)un - Z(kn,n+j/mn)un+j- (3)

This time-independent vibrational equation is an eigenvalue equation with the eigenvec-
tOrS Un o and the eigenvalues E, = w?. The time-dependent solution for a particle at site
n can be constructed as z,(t) = Y, Unq €xXp[—iw,t] with the sum over all eigenvalues of
Eq. (3). Equation (3) is formally identical to (1), if the ¢, are replaced by ¥; knntj/Mn.
In ordered systenis, (1) and (3) become equivalent, while in disordered systems, vibrating
particles can have different values of €, = ¥_; kn n4j/Mn-

The common feature of (i)-(iv) with uncorrelated disorder is that all states in d = 1 and
2 (except possible singular states at E = 0) are localized. In d = 3, a critical line of
localization-delocalization transitions separates localized states from extended states.
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2 The Correlated Anderson Model

In the following, we concentrate on the Anderson model with diagonal disorder (case(i)).
There is a growing interest in the special conditions, that allow for extended states in these
systems. We like to mention the following systems with correlated disordered potentials.
Some general discussion can be found in [22].

(1) The random-dimer model is perhaps the simplest example of a short-range correlated
system. The site energies have a binary distribution e, € {4, €3} and €4 is always assigned
to two sites in succession, giving e.g. chains with series of site energies

€A,€4,€B,€4,€4,€4,€4,€B,€B,€4,€4,€B,-. .- (4)

It has been theoretically predicted that a small subset of the eigenstates are extended [23].
This has been proven by transfer-matrix methods (see Appendix) for the Anderson model
with diagonal disorder [24] and for off-diagonal disorder {25,26]. Experimental evidence
for these extended states has recently been gained by transmission measurements on
random-dimer semiconductor superlattices [27].

(ii) Extended states occur also in certain one dimensional incommensurate or quasiperiodic
systems [28,29]. The site energies are described by a periodic function

en = V(w), )

whose period 27 /w is incommensurate with the lattice periodicity, i.e. w is an irrational
number. Most common is the Harper model [30], where V' (nw) = ¥ cos(27nw). In this
model a localization-delocalization transition occurs. All states are extended for w < 4
and localized for w > 4. At w, = 4, the states are critical.

(iii) Recently, de Moura and Lyra [31,32] considered quantum particles in a self-affine
potential landscape, where the local potentials ¢, are given by the trace of a fractional
Brownian particle with Hurst exponent H > 0 [33,34]. They reported, that the states
near the center of the band become extended for H > 1/2. In this paper, we discuss in
detail the origin of this intriguing localization-delocalization transition.

3 Self-affine potential landscapes in d = 1

In a self-affine potential landscape the potential at site 7 + 1 depends on the potential at
site n by

€nt1 = €7 + O, (6)



154

uncm:related' - - j B AN ; | :
{18 ULk A * /A'”;Mﬁ ‘\' H= 3,4’
0 ;‘ A E'; ‘ ‘ “; ¥ ; LI ‘; 0 T‘H'A I",-,“_ rescaled [
e Wi ’ L=910’ ‘\{ potential
s -5 | . e x\'ﬁ"\/‘ ‘
W " 20F [L=310" ™) ]
He1n R
L S
410 ] =10" |
H=73/4 L=l 1
-40+ WM
y (a) (b) Yo/

0 100 200 . 300 400 500 0 20000 40600n60600 80000

Fig. 1. Hlustration of several normalized potential landscapes. In (a) three types of local poten-
tials €, are shown: Uncorrelated random potential (top line) and self-affine potential landscapes
with H = 1/2 and 3/4. The correlated potential landscapes are shifted by integer multiples of 6.
The curves in (b) show the same potential landscape with H = 3/4, but rescaled such that the
variance o2 is kept fixed (o = 1) for all system sizes considered (L = 9- 103, 3-10*, and 10%).
It is obvious that for increasing system sizes the potential landscape becomes smoother due to
the rescaling.

N1

where &, is a random number in an interval of width A: —£ <6, <

(i) If the &, are uncorrelated, the ¢, are essentiélly constructed by the trace of a random
walk (e, corresponds to the displacement of a random walker after n steps). Since the
mean-square displacement (r?(¢)) obeys Ficks law, (r?(¢)) ~ t, we have

{(ense — €n)") ~ L. (7)

(ii) If the 6, are long-range correlated with a correlation function (5,,+,5,;) that decays by
a power-law, (0,1¢0,) ~ £77, 0 < 7 < 1, the ¢, correspond to the trace of a fractional
random walk, where (r?(t)) ~ t*¥ with H = 1 — /2. In this case, we have

((en+e — 6n)z) ~H (8)

Figure 1 shows, for illustration, potential landscapes for uncorrelated systems (Anderson
model) and self-affine systems with H =  and H = 3.

In order to decide if a state 9 in this self-affine landscape is localized or extended, one has
to determine the localization length A as a function of the system size L. Practically, one
can do this by studying a large system, calculating the localization length and then going
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Fig. 2. Analysis of the effect of rescaling of the potentials on an uncorrelated Anderson model in
d = 1. The relative localization length A/L is shown as a function of the energy F for chains of
different lengths L = 2!3 (circles), 2'° (boxes), 217 (diamonds) and 21° (triangles). We show three
sets of chains, corresponding to different rescaling exponents H = 1/2 (open symbols), H = 3/4
(black symbols), and H = 1/4 (grey symbols) for the disorder parameter w = 0.3(L/213)~H.
The (logarithmic) average of A was always taken over 1000 systems.

to smaller and smaller sub-systems by cutting the large system into pieces. One usually
finds

A~ Lo (9)

If @ < 1, then \/L decreases with increasing system size and the state is localized, while
for & > 1, the state is extended. Since for self-affine potential landscapes the fluctuations
of the potential increase with increasing length scale ¢ according to (8), the variance o2
increases with increasing system size L as

o? ~ L . (10)

In order to achieve a constant variance of the potential fluctuations, de Moura and Lyra
[31,32] rescaled the potential landscapes such that

)2 =1 1)

n=1

2 2 2 1 L 2 1 L
A=@- =1 rd- ([T
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Fig. 3. Plot of the localization lengths A versus energy E for potential landscapes with (a)
H=1/2,A=0.04and (b) H = 3/2, A = 2-1075. The symbols indicate the system sizes L = 2!
(boxes), 2'? (discs), 2!% (triangles up), 21* (triangles down), 2! (diamonds), 2'¢ (pluses), 217
(crosses), 2!8 (stars), 219 (squares), and 220 (circles). The (logarithmic) average of A was always
taken over 1000 configurations.

This normalization condition implies that the rescaled ¢, become size-dependent with

€n — ;—"H (12)

for a system of size L. The effect of rescaling can be best seen in the Anderson model with
diagonal disorder, where w = wy/L. Without rescaling it is well-known that all states
are localized. But, using Eq. (12), we obtain for the localization length of the rescaled
system:

A~ 1jw? ~ (1/wd) L, (13)

This equation implies (according to (9)) that extended states occur for 2H > 1,i.e. H > 1.
Numerical calculations by transfer-matrix techniques yield the same result as Eq. (13) and
give extended states for H > % This is shown in Fig. 2, where the relative localization
length A/L is plotted as a function of the energy F for chains of different lengths L and
three values of H. The set of data with H = 1/2 can be interpreted as the ”critical” case,
because A/L is independent of the system size L. For H > 1/2, ) increases faster than L,

while for H < 1/2, X increases slower than L.
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Fig. 4. Example of a strongly localized wave function with E = 0 in a potential landscape with
H = 1/2 and w = 0.1, where several on-site potentials ¢, (shaded) are larger than E + 2 or
smaller than E — 2. It can be seen that these potentials cause a sudden drop of the amplitude.

This means that from a pure numerical treatment (we obtained analogous results from
level statistics), we were led to postulate the existence of a localization-delocalization
transition in d = 1 for electrons in random potential landscapes. Of course, the occurence
of such a localization-delocalization transition is a pure artefact of the rescaling, which
implies that the potentials become locally smoother with increasing system size.

4 Results in self-affine potential landscapes

As we show in the following, the situation is similar for the self-affine potential landscapes.
When the normalization condition (11) is imposed, the local fluctuations of the potentials
decrease with increasing system size as illustrated in Fig. 1(b). This creates apparent
"extended” states for H > 1/2. Without rescaling, the local fluctuations remain the same
and the disorder width w increases with increasing system size L (see Egs. (10) and (11))
resulting in strongly localized states for all correlation exponents H.

Let us first consider non-rescaled self-affine potential landscapes. Figure 3 shows, for
H =1/2 ((a), generated by summing up random numbers) and H = 3/2 ((b), generated
by summing up potentials of (a)), the localization lengths A(E), calculated with the
transfer-matrix method for several system sizes L. For small L and E near the band center,
A(E) increases with L, but slower than linearly in L. This indicates weakly localized states.
For large L and at the band edges, however, this behavior is reversed: A(E) decreases
drastically with increasing L, indicating strongly localized states.

In order to determine the origin of these strongly localized states, let us consider the
eigenfunctions. Figure 4 shows a typical eigenfunction for E =~ 0 together with the cor-
responding potential landscape. It can be seen that the eigenfunction amplitude drops
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sharply at sites where the local potential ¢, exceeds a.value of 2 or —2. The drops in-
crease drastically with increasing size of the region where the potential is outside these
bounds (see Fig. 4). If the size of the system increases, the fraction of sites with potentials
that exceed the bound |e,| = 2 increases, and the wave function is even more strongly
localized. In an infinite system only strongly localized states can occur. For wave functions
with eigenenergy £ # 0 the bounds for strong localization are shifted by £ and become
|ex — E| > 2. These considerations are valid for all self-affine potential landscapes with
H > 0. But the ”critical” system size, where for the first time the potential of one site
exceeds the bound, depends on H.

The strong localization behavior for self-affine potentials that we observe here has to be
distinguished from the usual Anderson localization for uncorrelated potentials. In the
case of Anderson localization, the wave functions have an irregular structure and their
amplitudes decay roughly exponentially. In contrast, in the case of strong localization, the
wave functions have a patchy structure, regions of strong and weak localization alternate.
and the wave functions decay in a non-exponential manner.

Finally, let us consider the rescaled potential landscapes where the variance o® (see
Eq. (11) is kept constant, independent of system size L. It is obvious from the discus-
sions above, that for sufficiently large values of o all states are strongly localized. For
sufficiently small values of o (and sufficiently large values of H), on the other hand, the
fluctuations on small length scales of the rescaled potentials decrease drastically, and we
can expect apparent "extended” states. Figure 5 shows the resulting phase diagram in
the E-H plane for several values of the variance o. The critical lines have been obtained
by transfer-matrix calculations, investigating the fluctuations of the localization length
as described by Deych et al. in [35]. While all states are localized for H < 1/2, they
become apparently extended for H > 1/2 near the band center. The critical lines are
axial symmetric to £ = 0 and the width of the regime of ”"extended” states decreases
with increasing variance o. '

The critical lines can be estimated in the following way: The self-affine potential landscape
can be considered as the trace of a one-dimensional random walk with the step length
0n = €, — €1, see Eq. (6). According to random walk theory, the number of ”steps”
required for reaching a given ”distance” ¢ scales as

U(E) = A(¢/A)H, (14)

where A is the mean step length and A is a non-universal constant [34]. We know that
the wave functions become strongly localized, when |e, — E| exceeds 2 within the system
size L. According to Eq. (14) the number of steps required for reaching this bound scales
as {(E) = A[(2+ E)/A]YH . If ¢(E) is smaller than the system size, the states are strongly
localized, otherwise they may be extended or weakly localized. For a given system size L,
we have therefore a critical energy E., where ¢(E;) = L, that separates a regime of strong
localization from a regime of weak localization or extended states. When the potentials are
rescaled, the mean step length A depends on L and the variance o, A = Bo/L¥, where
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Fig. 5. Phase diagram for the Anderson model with rescaled self-affine potentials generated by
Fourier transform (similar to [31]). The transition from apparently extended states to localized
states is shown in the H-E plane for six disorder strengths, o = 0.05 (crosses), 0.1 (boxes), 0.2
(circles), 0.3 (triangles up) 0.5 (triangles down), 1.0 (diamonds). The theoretical curves, Eq. (15)
with A = 1.15 and B = 2, are included in the figure for each 0. For H < 1/2, apparently extended
states do not appear.

B is a constant that may depend on the way the correlated potentials are generated
numerically. Inserting A = Bo/L¥ into the relation £(E,) = A[(2 £ E.)/A]Y? = L, we
obtain for the critical energy E,

E. = +(2 — 0 B/AH). (15)

Figure 5 shows, that this simple relationship describes surprisingly well the dependence
of E, both on the variance o and the Hurst exponent H. Below H = 1/2, the localization
lengths increase slower than the system size L, which is characteristic for weakly local-
ized states. In addition to the localization-delocalization transition for H > 1/2, further
transitions between weakly localized states may occur at small H values.

5 Appendix: Transfer-Matrix Technique

For determining *he localization behavior of the eigenstates of Eq. (1), we employed the
transfer-matrix method [36,37]. In the transfer-matrix algorithm, one writes Eq. (1) as
recursion equation in matrix form:

~ Un Pns1 : Y E—e —1
. = th Mu = 3 16
Mo (¢n—1) - ( Ya )’ s 1 0 19
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The inverse localization length is defined by

ME)™ = lim ilnl-d)—N
N-—oo

~ 2l (17)

It can be shown [37] that in the limit of N — co the ratio 1y /vy is 1dentxcal to one of
both eigenvalues of the product matrix

N
M®™ = [ M.. (18)

n=1

Hence, by diagonalizing the matrix M™), we obtain the localization length A. In our
numerical studies, we determined the localization lengths A®) for 1000 configurations,
v =1,..,,1000. For obtaining the typical value A, we averaged the A®) Jogrithmically,

N
Atyp = €xp [% > In /\(")] . (19)
v=1
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