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Abstract

The persistence of short term weather states is a well known phenomenon: A warm day is
more likely to be followed by a warm day than by a cold one and vice versa. Using advanced
methods from statistical physics that are able to distinguish between trends and persistence we
have shown recently that this rule may well extend to months, years and decades, and on these
scales the decay of the persistence seems to follow a universal power law. Here we review
these studies and discuss, how the law can be used as an (uncomfortable) test bed for the
state-of-the-art climate models. It turns out that the models considered display wide performance
di3erences and actually fail to reproduce the universal power law behavior of the persistence. It
seems that the models tend to underestimate persistence while overestimating trends, and this fact
may imply that the models exaggerate the expected global warming of the atmosphere. c© 2001
Elsevier Science B.V. All rights reserved.

1. Introduction

Characterizing the complex atmospheric variability at all pertinent temporal and spa-
tial scales remains one of the most important challenges to scienti7c research today
[1–5]. The main issues are to quantify, within reasonably narrow limits, the potential
extent of global warming, and to downscale the global results in order to describe and
quantify the regional implications of global change.
To face these challenges, atmospheric and oceanographic research usually proceeds

along two main paths that we are going to describe next: (i) Analysis of available
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meteorological records by appropriate time series analysis techniques, and (ii) genera-
tion of and analysis of observation-based, interpolated or model simulated weather and
climate records, respectively, through the use of a hierarchy of simulation models.

1.1. Analysis of meteorological methods

Among the standard mathematical techniques that have been used are calculations
of means, variations and power spectra, decomposition into empirical orthogonal func-
tions and=or principle components. Very recently, more advanced techniques such as
detrended Buctuation analysis and wavelet analysis have been used which are able to
systematically separate trends from Buctuations at di3erent time scales.
A considerable amount of e3ort has been devoted to analyzing temporal correlations

that characterize the persistence of weather and climate regimes. The persistence of
short term weather states is a well-known phenomenon: there is a strong tendency for
subsequent days to remain similar, a warm day is more likely to be followed by a warm
day than by a cold day and vice versa. The typical time scale for weather changes is
about one week, a time period which corresponds to the average duration of so-called
“general weather regimes” or “Grosswetterlagen”. This property of persistence is often
used as a “minimum skill” forecast for assessing the usefulness of short to medium
range numerical weather forecasts. Longer term persistence of synoptic regimes up to
time scales of several weeks is often related to circulation patterns associated with
blocking [6]. A blocking situation occurs when a very stable high pressure system is
established over a particular region and remains in place for several weeks, as opposed
to the usual time scale of 3–5 days for synoptic systems. As a result the weather
in the region of the high remains fairly persistent throughout the period. Furthermore,
transient low pressure systems are deBected around the blocking high so that the region
downstream of the high experiences a larger than usual number of storms.
There have been also indications that weather persistence exists over many months

or seasons [7], between successive years, and even over several decades [8,9]. Such
persistence is usually associated with slowly varying external (boundary) forcing such
as sea surface temperatures and anomaly patterns. On the scale of months to seasons,
one of the most pronounced phenomenon is the El Nino Southern Oscillation (ENSO)
event which occurs every 3–5 years and which strongly a3ects the weather over the
tropical Paci7c as well as over North America [10]. It has also been recently suggested
that El Nino years are associated with increased rainfall over Eastern Mediterenean
[11]. Although the link between extratropical weather=climate and sea surface tem-
perature has been more diJcult to establish, several recent studies have successfully
proven that a connection exists on multiyear to decadal time scales between (i) the
climate of North America and the North Paci7c Ocean [12], and (ii) the climate over
Europe and the North Atlantic Ocean as expressed by the North Atlantic Oscillation
(NAO) index [8,9,13]. On the even longer multidecadal to century time scales, exter-
nal forcing associated with anthropogenic e3ects (e.g. increasing greenhouse gases and
changing land use) also appear to play an important role in addition to the natural
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variability of the climate system [14]. Clearly separating the anthropogenic forcing
from the natural variability of the atmosphere may prove to be a major challenge since
the anthropogenic signal may project onto and therefore be hidden in the modes of
natural climate variability [15].
To avoid detection of spurious correlations arising from nonstationarities, new

statistical-physics tools (wavelet techniques (WT) and detrended Buctuation analysis
(DFA)) have been developed recently (see, e.g. [16–22]). DFA and WT can systemat-
ically eliminate trends in the data and thus reveal intrinsic dynamical properties such as
distributions, scaling and long-range correlations very often masked by nonstationarities.
In a recent series of studies [23–25] we have used DFA and WT to study temperature
correlations in di3erent climatic zones on the globe. The results indicate that a univer-
sal long range power law correlation may exist which governs atmospheric variability
at all spatiotemporal scales: The persistence, characterized by the auto-correlation C(s)
of temperature variations separated by s days, approximately decays as

C(s)∼s−� ; (1)

with roughly the same exponent � � 0:7 for all stations considered. The range of this
universal persistence law exceeds one decade, and is possibly even longer than the
range of the temperature series considered. There are two major consequences:

• Conventional methods based on moving averages can no longer be used to separate
trends from Buctuations.

• Conventional methods for the evaluation of the frequency of extreme low or extreme
high temperatures are based on the hypothesis that the temperature Buctuations are
essentially uncorrelated. The appearance of long range correlations sheds doubts on
these methods.

1.2. The modeling approach

Regarding the modeling approach towards simulating and explaining atmospheric
variability on various time scales, major progress has been made during the last two
decades. Today, the research community routinely and extensively makes use of at-
mospheric, oceanic and coupled ocean-atmosphere circulation models where the ma-
jor physical processes are included. Moreover, these models include representations
of land-surface processes, sea-ice related processes and many other complex forcing
mechanisms within the climate system. All processes are represented by mathematical
equations which are solved numerically using a three-dimensional grid with a domain,
resolution, and complexity determined by the topic of interest. For very long time inte-
grations of thousands of years it is impossible to apply full general circulation models
(GCM) due to their extremely high computational demand. Consequently, intermediate
complexity models are used in these cases.
For global climate simulations on time scales ranging from months to decades or

centuries, GCMs are used with typical resolutions of 200–300 km in the horizontal
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and 1 km in the vertical [26,27]. For regional climate simulations, similar models are
used but the domain is limited to a few thousand km and the horizontal resolution is
typically increased to 50 km or less [28,29]. In any case the grid resolution can never
explicitly simulate all relevant scales of motion. This necessitates the parameterization
of the smaller, subgrid scale processes such as cloud physics, radiative transfer, and
macroscale turbulent mixing. Recently, it has also been found that previously neglected
processes such as dust induced heating may also be important [30].
The state-of-the-art coupled ocean-atmosphere general circulation models are able

to simulate many of the important large-scale features of the climate system rather
well. This includes seasonal, horizontal, and vertical variations. They also explain the
response to greenhouse gases and aerosols in terms of physical processes. In addition
to this, other less pronounced variations in climate are reproduced with reasonable
accuracy (e.g., the relationship between El Nino and rainfall in Central America and
the northern part of South America).
The systematic evaluation and intercomparison of climate model results has proven

to be a useful and e3ective mechanism for identifying common model weaknesses.
In general evaluations have been conducted for the atmospheric, oceanic, land-surface
and sea-ice components of the models, and for the sensitivity of the links among these
components. Until now these validations have not addressed the question of whether
such models can reproduce the long-term climate memory in an appropriate way. If
the simulations of the model are valid, then the patterns and relationships discovered
by analyzing real observations and data must also be identi7able in the virtual world
as represented by the model outputs.
This article is organized as follows: In Sections 2 and 3 we describe the detrending

methods and its application to temperature records of several meteorological stations
around the globe. In Section 4 we show how the current GCMs can be tested by
applying the detrending techniques of Section 2 to the model data. We show that we
can judge the models by their ability of reproducing the proper type of trends and
long-range correlations inherent in the real data.

2. Record analysis

Consider, e.g., a record Ti of maximum daily temperatures measured at a cer-
tain meteorological station. The index i counts the days in the record, i=1; 2; : : : ; N .
For eliminating the periodic seasonal trends, we concentrate on the departures of the
Ti; PTi=Ti − QT i, from the mean maximum daily temperature QT i for each calendar
date i, say 1st of April, which has been obtained by averaging over all years in the
temperature series.
There exist two powerful detrending analysis methods: (a) the detrended Buctuation

analysis (DFA) and (b) the wavelets methods (WT). The DFA was originally devel-
oped by Peng et al. [18–20] to investigate long-range correlations in DNA sequences
and heart beat intervals, where nonstationarities similar to the nonstationarities in the
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temperature records [23–25] can occur. The wavelet methods in general are very conve-
nient techniques to investigate Buctuating signals [31]. In this article we shall focus on
the DFA. A very useful introduction to the wavelet technique with several applications
is given in Ref. [32].
Both DFA and wavelets techniques have been used to analyze the correlation func-

tion C(s) of temperature records. The correlation function describes, how the persis-
tence decays in time. C(s) is de7ned by C(s)= 〈PTiPTi+s〉. The average 〈· · ·〉 is over
all pairs with same time lag s. For reducing the level of noise present in the 7nite
temperature series, we consider the “temperature pro7le”

Yn=
n∑

i=1

PTi; n=1; 2; : : : ; N : (2)

We can consider the pro7le Yn as the position of a random walker on a linear chain
after n steps. The random walker starts at the origin and performs, in the ith step, a
jump of length PTi to the right, if PTi is positive, and to the left, if PTi is negative.
According to random walk theory, the Buctuations F2(s) of the pro7le, in a given time
window of size s, are related to the correlation function C(s). For the relevant case (1)
of long-range power-law correlations, C(s)∼s−�; 0¡�¡1; the mean-square Buctuations
F2(s), obtained by averaging over many time windows of size s (see below) increase
by a power law [33],

F2(s)∼s2�; �=1− �=2 : (3)

For uncorrelated data (as well as for correlations decaying faster than 1=s), we have
�= 1

2 .
To 7nd how the square-Buctuations of the pro7le scale with s, we 7rst divide each

record of N elements into Ks= [N=s] nonoverlapping subsequences of size s starting
from the beginning and Ks nonoverlapping subsequences of size s starting from the
end of the considered temperature series. We determine the square-Buctuations F2

� (s)
in each segment � and obtain F2(s) by averaging over all segments. When plotted in
a double logarithmic way, the Buctuation function

F(s)≡ [F2(s)]1=2∼s� (4)

is a straight line at large s values, with a slope �¿ 1
2 in the case of long range

correlations.
The various methods di3er in the way, the Buctuation function is calculated.

2.1. Fluctuation analysis (FA)

In the simplest type of analysis (where trends are not going to be eliminated), we
obtain the Buctuation functions just from the values of the pro7le at both endpoints of
the �th segment,

F2
� (s)= [Y�s − Y(�−1)s]2 ; (5)
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and average F2
� (s) over the 2Ks subsequences

F2(s)= (1=Ks)
Ks∑

�=1

F2
� (s) : (6)

Here, F2(s) can be viewed as mean square displacement of the random walker on
the chain, after s steps. We obtain Ficks di3usion law F2(s)∼s for uncorrelated PTi
values.
We like to note that this Buctuation analysis corresponds to the R=S method intro-

duced by Hurst (for a review, see e.g. [34]). Since both methods do not eliminate
trends, they do not give a clear picture when used alone. In many cases they cannot
distinguish between trends and long-range correlations when applied to a time records
without supplementary calculations.

2.2. Detrending 4uctuation analysis (DFA)

There are di3erent orders of DFA that are distinguished by the way the trends in
the data are eliminated. In lowest order (DFA1) we determine, for each subsequence �,
the best linear 7t of the pro7le, and identify the Buctuations by the standard deviation
F2
� (s) of the pro7le from this straight line. This way, we eliminate the inBuence of

possible linear trends on scales larger than the segment sizes. Note that linear trends
in the pro7le correspond to patch-like trends in the original record. DFA1 has been
proposed originally by Peng et al. [18–20] when analyzing correlations in DNA.
DFA1 can be generalized straightforwardly to eliminate higher order trends: In sec-

ond order DFA (DFA2) one calculates the standard deviations F2
� (s) of the pro7le

from best quadratic 7ts of the pro7le, this way eliminating the inBuence of possible
linear and parabolic trends on scales larger than the segment considered. In general,
in the nth-order DFA technique, we calculate the deviations of the pro7le from the
best nth-order polynomial 7t and can eliminate this way the inBuence of possible
(n− 1)th-order trends on scales larger than the segment size.
It is essential in the DFA-analysis that the results of several orders of DFA (e.g.

DFA1-DFA5) are compared with each other. The results are only reliable when above
a certain order of DFA they yield the same type of behavior [35]. When compared
with FA one can get additional insight into possible nonstationarities in the data.

3. Analysis of temperature records

Figs. 1 and 2 show the results of the FA and DFA analysis of the maximum daily
temperatures Ti of the following weather stations (the length of the records is written
within the parentheses): Luling (USA, 90 yr), and Kasan (Russia, 96 yr) (Fig. 1a and
c), Tuscon (USA, 97 yr), Melbourne (136 yr), Seoul (86 yr), Prague (218 yr) (Fig.
2a–d). The results are typical for a large number of records that we have analyzed so
far (see [23–25]).
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Fig. 1. Analysis of daily maximum temperature records of Luling and Kasan. The analysis of the real data
shown in (a) and (c) is compared with the analysis of the corresponding shuRed data shown in (b) and
(d). The 4 7gures show the Buctuation functions obtained by FA, DFA1, DFA2, DFA3, DFA4, and DFA5
(from top to bottom) for the 4 sets of data. The scale of the Buctuation functions is arbitrary.

In the log–log plots, all curves are (except at small s-values) approximately straight
lines, with a slope � ∼= 0:65. There exists a natural crossover (above the DFA-crossover)
that can be best estimated from FA and DFA1. As can be veri7ed easily, the crossover
occurs roughly at tc=10d, which is the order of magnitude for a typical Grosswetter-
lage. Above tc, there exists long-range persistence expressed by the power-law decay
of the correlation function with an exponent �=2 − 2� ∼= 0:7. The results seem to
indicate that the exponent is universal, i.e., does not depend on the location and the
climatic zone of the weather station. Below tc, the Buctuation functions do not show
universal behavior and reBect the di3erent climatic zones.
To test our claim that the slope � ∼= 0:65 is due to long-range correlations, and

does not result from a singular behavior of the probability distribution function of the
PTi we have eliminated the correlations by randomly shuRing the PTi. By de7nition
this shuRing has no e3ect on the probability distribution function of the PTi, which
we found to be approximately Gaussian at large temperature variations. The right hand
side of Fig. 1 (Figs. 1b and d) show the e3ect of shuRing on the Buctuation functions.
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Fig. 2. Analysis of the daily maximum temperature records of (a) Tucson, (b) Melbourne, (c) Seoul, and
(d) Prague (as Fig. 1).

By comparing the left hand sides of the 7gures with the right hand sides we see the
e3ect of correlations. The exponent � characterizing the Buctuations in the shuRed
uncorrelated sequence is 1

2 , as expected.
Since the exponent does not depend on the location of the meteorological station and

its local environment, the power law behavior can serve as an ideal test for climate
models where regional details cannot be incorporated and therefore regional phenomena
like urban warming cannot be accounted for. The power law behavior seems to be a
global phenomenon and therefore should also show up in the simulated data of the
GMCS. As mentioned earlier, the presence of long range correlations has far-reaching
consequences on the possible detection of trends directly from the record and on the
evaluation of extreme events.

4. Analysis of simulated temperature records

Next we turn to the analysis of simulated data that were obtained by four general
circulation models around Prague. We have chosen Prague, since the Prague record is
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the longest record we could get. The models are:
1. GFDL-R15-a
This is the latest version of a coupled atmosphere-ocean model (AOGCM) that

has been developed over many years [36,37]. The atmospheric sub-model is a spectral
model with a horizontal truncation of rhomboidal 15 (R15), a transform grid of 48×40
longitude-latitude points (7:5◦×4:5◦), and nine vertical levels. The ocean sub-model is
a grid point model with a latitude-longitude grid spacing of 4:5◦×3:75◦ and twelve
vertical layers. To reduce model drift, Bux corrections are applied to the heat and water
Buxes at the surface. In the control run, the CO2 concentration is kept 7xed at the 1958
value while for the climate change greenhouse gases are represented by equivalent CO2

concentrations which increase at a rate of roughly 1% per year according to the IPCC
IS92a scenario [38].
2. CSIRO-Mk2
The CSIRO model is a coupled AOGCM which contains atmospheric, oceanic,

sea-ice and biospheric sub-models. The atmospheric sub-model is a spectral model with
R21 truncation, a transform grid of 64×56 longitude-latitude points (5:6◦×3:2◦), and
nine vertical layers. The ocean sub-model is a grid point model that uses the same hor-
izontal grid as the atmosphere and has 21 vertical levels. Flux correction at is applied
to the heat, fresh water, and momentum Buxes at the surface. All greenhouse gases are
combined into an equivalent CO2 concentration which follows observations from 1880
to 1989 and are then projected into the future according to the IS92a scenario [38].
This model was developed during the years 1994–1995 [39,40].
3. ECHAM4=OPYC3
The coupled AOGCM ECHAM4=OPYC3 was developed as a cooperative e3ort

between the Max-Planck-Institut fUur Meteorologie (MPI) and Deutsches Klimarechen-
zentrum (DKRZ) in Hamburg. The atmospheric model was derived from the Euro-
pean Centre for Medium Range Weather Forecasts (ECMWF) model. It is a spectral
model with triangular truncation T42, a longitude-latitude transform grid of 128×64
points (2.8 degrees), and 19 vertical levels. The ocean model (OPYC3) is a grid
point model with 11 isopycnal layers and it is run on the same grid as the atmo-
sphere. Flux correction is applied to the heat, fresh water, and momentum Buxes
at the surface [41–43]. Historic greenhouse gas concentrations are used from 1860
to 1989 and from 1990 onward they are projected according to the IS92a
scenario.
4. HADCM3
HADCM3 is the latest version of the coupled AOGCM developed at the Hadley

Centre [44]. Unlike the other models described above, here the atmospheric model
is a grid point model with a longitude–latitude grid of 96×73 points (3:75◦×2:5◦)
and it has 19 vertical levels. The ocean model has a horizontal resolution of 1:25◦ in
both latitude and longitude and 20 vertical levels. No Bux correction is applied at the
surface. Historic greenhouse gas concentrations are used during the period 1860–1989.
From 1990 and onward they are increased according to the IS95a scenario (a slightly
modi7ed version of IS92a).
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Fig. 3. FA- and DFA-analysis of (a) the monthly mean temperature record of Prague and (b) simulated
interpolated monthly mean temperature records at the geographical position of Prague, for three general
circulation models: (b) CSIRO, (c) ECHAM4, and (d) HADCM3. The 4 7gures show the Buctuations
functions obtained by FA, DFA1, DFA2, DFA3, DFA4, and DFA5 (from top to bottom) for the 4 sets of
data. The scale of the Buctuations is arbitrary (after Govindan et al) (Ref. 46).

For each model, we obtained the temperature records (mean monthly data) of the
4 grid points closest to Prague from the internet [45]. We interpolated the data at the
location of Prague.
Fig. 3a shows the results of the FA- and DFA-analysis for the real temperature

record of Prague that starts in 1775 and ends in 1992. Fig. 3 b,c,d show the results
obtained from ECHAM4, CSIRO and HADCM, that end up at the same year as the
real record. The available data of GFDL cover only 40 yr, so we do not present them
here.
We are interested in the way the models can reproduce the actual data regarding

(a) trends and (b) long-range correlations. Of course, we cannot expect the models
to reproduce local trends like urban warming or short-term correlation structures. But
the long-range correlations we discussed in the previous section show characteristic
universal features that are actually independent of the local environment around a
station. So we can expect that successful models with good prognostic features will be
able to reproduce them.
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Fig. 4. FA- and DFA-Analysis of the simulated interpolated monthly mean temperature records of the
geographical position of Prague, for four general circulation models: (a) GFDL, (b) CSIRO, (c) ECHAM4,
and (d) HADCM3. While Fig. 3 considered only data in the past, Fig. 4 considers the whole set of data
(past and future). The data is available in the internet (Ref. [45]) and, the analysis is after Govindan et al.
(Ref. [46]).

As discussed already above (for the daily data), the FA- and DFA Buctuation func-
tions for the real temperature record of Prague have approximately the same slope
of � � 0:65 in the double-logarithmic plot (shown as straight line in the 7gure). At
large time scales there is a slight increase of the FA-function (which clearly indicates
a weak trend). In contrast, the FA-results for the HADLEY and ECHAM4 data show
a pronounced trend above 100 months represented by a large slope. For CSIRO, the
FA-result is not so conclusive since they scatter considerably at large scales. It seems
that two of the three models overestimate the trend in the past. Regarding scaling,
the DFA curves for CSIRO show good straight lines in a double logarithmic presen-
tation. The exponents are close to the exponents from the Prague record. In contrast,
ECHAM4 and HADLEY show a crossover to an exponent �=0:5 after about 3 yr.
The exponent �=0:5 indicates loss of persistence. Hence ECHAM4 and HADLEY
reproduce data sets that show a linear trend at large time scales and simultaneously
the lack of correlations exceeding 3 yr, in contrast to the reality.
The scaling features remain very similar when the data sets from the models are

extended into the 21st century (see Fig. 4) [46]. We consider this an important issue,
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since it shows an internal consistency of the models. However, the trends, which show
up in FA and DFA1, are much more pronounced compared to the data from Fig. 3.
We have obtained similar qualitative behavior also for other simulated temperature

record. From the trends, one estimates the warming of the atmosphere in the future.
Since the trends are almost not visible in the real data and overestimated by the models
in the past, it seems possible that the trends are also overestimated by the models in
the future. From this point of view it cannot be excluded that the global warming in
the next 100 yr will be less pronounced than predicted by the models.
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