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Surface roughening with quenched disorder in high dimensions:
Exact results for the Cayley tree
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Discrete models describing pinning of a growing self-affine interface due to geometrical hindrances
can be mapped to the diode-resistor percolation problem in all dimensions. We present the solution
of this percolation problem on the Cayley tree. We find that the order parameter P, varies near
the critical point p. as exp(—A/+/Pc — p), where p is the fraction of bonds occupied by diodes. This
result suggests that the critical exponent 8, of P diverges for d — oo, and that there is no finite
upper critical dimension. The exponent v characterizing the parallel correlation length changes
its value from v = % below p. to v = % above p.. Other critical exponents of the diode-resistor
problem on the Cayley tree are v = 0 and v, = 0, suggesting that v, /vy — 0 when d — oco.
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Simulation results in finite dimensions 2 < d < 5 are also presented.
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I. INTRODUCTION

Kinetic roughening during growth of interfaces has
attracted considerable recent interest [1]. One of the
most challenging problems in this context is the role of
quenched disorder. Several experiments have been car-
ried out [2—4], and the roughness was found to be anoma-
lous in the sense that the measured roughness exponent o
differed from that predicted by the Kardar-Parisi-Zhang
(KPZ) equation [5]. Several theoretical attempts have
been undertaken to explain this discrepancy based ei-
ther on continuum equations of surface growth including
quenched randomness [6] or on a simple geometrical pic-
ture where pinning is attributed to percolative blockades
[3,4,7]. The relation between these two approaches was
discussed by Amaral et al. [8].

For simplicity, we first discuss the case of 1+1 dimen-
sions. The initially flat fluid surface is hindered in its
motion by randomly distributed quenched obstacles. In
order to maintain the experimentally observed absence
of overhangs in the model, the fluid is supposed to flow
back very fast if it manages to overcome an obstacle.
Therefore the motion of the interface is stopped only if a
(directed) percolation path of obstacles spans the sample.
The roughness exponent « of the resulting pinned inter-
face can be calculated by using the well known numerical
values of the directed percolation correlation length expo-
nents and the resulting value of the roughness exponent is
in good agreement with experimental observations [2-4].

Recently it was shown [4] that a three-dimensional gen-
eralization of the model is able to describe experimental
results in 2+1 dimensions as well. This result, together
with theoretical interest about the high-dimensional be-
havior of kinetic roughening, motivate the present inves-
tigation [6]. First we show that the (d + 1)-dimensional
generalization of the model of pinning by geometric
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blockades becomes a percolation model of d-dimensional
hypersurfaces with no overhangs. This model is dual to
the random network of resistors and diodes [9]. After
showing this duality, we give the solution of the diode-
resistor percolation (DRP) problem on the Cayley tree
[10], which is expected to exhibit the infinite-dimensional
behavior.

II. DIODE-RESISTOR PERCOLATION MODEL

Let us first recall the directed percolation depinning
(DPD) model in its simplest form in 141 dimensions.
We start from the single step model [11], where growth
proceeds on a square lattice tilted by 45° and fluid pen-
etrates from the bottom to the top (Fig. 1). The surface
height h is a single-valued function of the coordinate x
and it is initially flat. The surface width

w = /(R%) — (R)? (1a)

grows in time, where here the angular brackets denote
an average over space and/or realizations of quenched
noise. The fluid occupies the cells and spreads by break-
ing through the walls separating the cells.

In the present model (which differs from the original
definition of the single step model [11]), all cells at the
interface between occupied and unoccupied regions are
simultaneously updated. Without disorder, our model is
a trivial system where the interface moves with a con-
stant velocity and remains parallel to its initial position.
The disorder is introduced on the walls of the cells in
the following way: all walls are permeable from above
but there is a certain fraction of walls chosen at random
with probability p that are blocking flow from below (see
Fig. 1). Due to this randomness the interface roughens
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FIG. 1. Diode-resistor network as a model of fluid propa-
gation. Solid lines represent blocking obstacles that stop fluid
from below. Dotted lines are cell walls permeable from be-
low. Squares with numbers inside represent wet cells together
with the time step they become wet. Initially only one cell,
marked by “1,” was wet. Note that solid lines do not stop
the fluid propagation from above in the direction pointed by
diodes. The wetting process is stopped by a spanning path of
directed percolation that starts at the bottom left and ends
at the bottom right corner of the lattice. In a multidimen-
sional space this path becomes a spanning directed surface
that comnsists of blocking facets, perpendicular to the diodes.

while propagating upwards. In the stationary regime, the
surface can be characterized by a roughness exponent a:

w ~ L, (1b)

where L is the system size.

At sufficiently high density of obstacles the surface be-
comes completely pinned. Denoting the blocking walls
by directed bonds (say, from left to right), the motion of
the fluid is stopped whenever a spanning directed (bond)
percolation path across the sample occurs. The direct-
edness of the pinning path is a consequence of the sup-
pression of overhangs achieved in the model. We always
allow penetration of the fluid from above, even if there
is an obstacle hindering the flow upward. This model of
pinning represents a class of models of growth in disor-
dered media, all belonging to the same universality class
[3,7]. In the above version the parameter p controls the
model and critical behavior is obtained at a special value
of p = p.. Versions of the model where the criticality
is built up in a self-organized way have been constructed
by applying ideas of invasion directed percolation [3,7] or
gradient percolation [8].

The generalization of the model to d + 1 dimensions
is straightforward. At ¢ = 0 the d-dimensional interface
is flat and coincides with the “horizon” hyperplane x; +
Ty + -+ + x4 = 0. The fluid now occupies the cells of
a hypercubic lattice and flows through the facets of the
cells, which are permeable from above but blocked from
below with probability p. The object blocking the motion
of the interface is now a single-valued simply connected d-
dimensional surface consisting of the blocked facets and
does not have overhangs with respect to the direction
of growth given by the vector (1,1,...,1). We call this
surface a directed percolating surface.

Let us define the dual lattice in the usual way. The
centers of the cells are connected by bonds normal to the
facets. The structure created this way is again a hyper-

cubic lattice. The dual problem of the directed surface
percolation model is defined by the following rule: A dual
bond is occupied by a diode pointing downward if the facet
is blocked and it is occupied by a resistor if the facet is
permeable in both directions. As long as there is a simply
connected directed hypersurface in the directed problem,
percolation upward—above this hypersurface—is impos-
sible on the dual lattice. Equivalently, if percolation up-
ward is possible, there must be holes on any directed
spanning surface. Thus the model of diode-resistor per-
colation [12] is dual to the model of the surface pinned
by geometrical hindrances, and the motion of the fluid
can be thought of as taking place on the dual lattice.

From the theoretical point of view, it is important to
study the dependence of the exponents on the dimension-
ality and to find the upper critical dimension above which
the behavior becomes trivial (mean-field-like). Several
controversial suggestions have been put forward to an-
swer these questions for the problem of interface pinning
by quenched disorder [6]. From the discussion above it
follows that this problem is equivalent to DRP. Therefore
it would be of interest to see how the exponents of DRP
behave as a function of the dimensionality.

The equivalence between the directed percolation and
the DRP was first established by Dhar et al. [9] in 1+1 di-
mensions. In d+ 1 dimension, the directed surface can be
considered a d-dimensional generalization of the path of
directed percolation. The equivalence between directed
surface percolation and DRP can also be considered as
the directed analog of the duality between conventional
bond percolation and percolation of simply connected hy-
persurfaces [13]. In the latter problem, the correlation
length characterizing the clusters of isotropic percolation
is the same as correlation length characterizing their sur-
faces, both diverging at the same critical threshold. We
develop this analogy in the directed case.

To proceed we first define the clusters of the DRP. This
is nontrivial since—as one can always move downward
in this system—the number of sites that can be reached
from a chosen site is always infinite. Thus a cluster at any
given site cannot be identified with the set of sites made
wet by a fluid pumped at that site. Instead, we define
the cluster with respect to a site (the origin) as the set of
points which can be reached from it without using bonds
below the horizon, the hyperplane z; + 2 +---+z4 = 0.
As long as p > p. the clusters defined this way remain
finite. They are hill shaped and they have a characteristic
height £, and a characteristic width . Such a hill will
just fit into a “cupola” of the percolating hypersurface.
Therefore the characteristic lengths of the hypersurface
should be equal to those of the DRP clusters:

€L~ |p—pc|™, (2)

&~ [p—pe| 7M. (3)

These equations lead to the following expression for the
roughness of the pinned interface:

a:VL/V”. (4)
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TABLE I. Critical exponents of the diode-resistor problem in finite dimensions.

d 1+1 241 3+1 441 Cayley tree
a 0.63 £+ 0.01 0.48 + 0.03 0.38 +0.04 0.27 £ 0.05 0
Bo 0.7+ 0.1 1.65 +0.2 2.0+0.3 2.2+0.3 oo
Yp 2.00 + 0.05 1.31 £ 0.05 0.88 +0.1 0.65 +0.10 0
T 1.28 4 0.02 1.52 £ 0.03 1.65 £+ 0.05 1.70 +0.20 2
vy 1.09 +0.01 0.58 +0.06 0.3+0.1 0.2+0.1 0
v 1.73 £ 0.01 1.18 £ 0.05 0.86 + 0.1 0.6 0.2 1/4
How the exponents depend on the dimension and what Se ~ 51‘15” P. 9)

the upper critical dimension is (above which the behavior
becomes mean-field-like) are questions of great theoreti-
cal interest.

In kinetic surface roughening these questions have been
rather controversial. Also, for the pinning problem sev-
eral suggestions have been put forward [6] implying dif-
ferent high-dimensionality behavior. Therefore it would
be of interest to see how the pinning model equivalent of
DRP behaves as a function of dimensionality.

We have carried out extensive numerical simulations
and calculated the dimension-dependent exponents. The
results are summarized in Table I. The exponents do not
seem to have reached asymptotic values even in dimen-
sions as high as 4 + 1. Thus it is not yet clear what the
upper critical dimension for the DRP problem is. The
general way to answer this question is to construct a
mean-field theory and to consider the importance of the
fluctuations in the Ginzburg sense. Such a consideration
leads to upper critical dimension 6 for bond percolation
[14] (the dual to hypersurface percolation) or to 4 + 1
for directed percolation [15]. Another, usually equiva-
lent way is to identify the upper critical dimension with
the dimension where the hyperscaling relation is fulfilled
with the mean-field exponents [12]. For the directed per-
colation problem the hyperscaling law is

1/o+Bp = (d— v +y, (5)

where 1/0 is the exponent of the singularity of a typical
cluster size s, near the critical point

Sec ~ |p *pc'—l/ay (6)

and (3, describes the behavior of the probability P, of a
randomly taken point to belong to a percolating cluster

Poo ~ Ip_pclﬁ‘ (7)

Hyperscaling relation has simple geometrical meaning.
The characteristic volume v, encapsulating the cluster is
proportional to the product of the correlation lengths

ve ~ €371 (8)

On the other hand, the ramified cluster of directed per-
colation occupies only s, cells of the total number of cells
v. of the characteristic volume. The geometrical proba-
bility s./v. is the probability Py, of a point to belong to
a typical cluster, percolating the volume v.. Thus

Using Eq. (9) together with Egs. (2), (3), (6), and (7)
we get Eq. (5). In our case, however, a cluster is the
compact object, confined between an initial horizontal
plain and a directed surface that stops its growth. Thus
sc = v, and the hyperscaling relation acquires a simpler
form

1/0’=(d—1)V||+V_L (10)

without an extra term 3, and v|| and v, exchanging their
places.

Note that 1/0 = B, +~,, where ~y, describes the diver-
gence of the average cluster size

(s) ~ |p—pe| 7. (11)

Numerical data for the critical exponents in d > 2 pre-
sented in Table I (see also [16]) suggest that 5, is much
larger and +, is much smaller than the corresponding val-
ues for directed percolation. The values of v, for higher
dimensions become less than one, which contradicts a re-
cent conjecture [17] , according to which v, =1+ v, in
all dimensions. To determine the mean-field exponents
in the following section we suggest a DRP model on a
Cayley tree.

ITI. DIODE-RESISTOR PERCOLATION
ON THE CAYLEY TREE

It is widely accepted that the Cayley tree mimics the
infinite-dimensional behavior of the lattice systems be-
cause it cannot be embedded in any finite-dimensional
lattice [14]. In order to illustrate our method of solving
DRP on the Cayley tree, the analogous solutions of per-
colation and directed percolation problems on the Cayley
tree are presented in in Appendixes A and C, respectively.

The first step is that the directed nature of the problem
has to be implemented on the tree. This is an ambiguous
procedure and the results might depend on it. Figure
2 illustrates our choice. We assign an altitude ¢ > 0 to
each site on the Cayley tree that has coordination number
z. = 4. In this way, each site at level ¢ is connected via
two bonds to a higher level i + 1, and by two bonds to a
lower level —1 [10]. The sites at level 7 = 0 are connected
only to the sites at level 7 = 1.

The bonds of the Cayley tree are occupied by diodes
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FIG. 2. A finite diode-resistor cluster of size s = 9 on the
Cayley tree with coordination number 2. = 4. The initial site
is marked by a larger circle. Sites are arranged vertically ac-
cording to the number of the level they belong to. The lowest
level has the number equal to zero. In order to illustrate the
concept of a branch, we show several examples of branches of
various sizes s outgoing from sites at different levels 7. These
branches are indicated by arcs and probabilities F;(s), H;(s).
For example, the right branch that is connected to the site at
level 2 = 2 from below consists of s = 5 sites. Diodes that are
connected to the cluster by their lower end only represent a
surface that stops percolation. These diodes are considered
to be upper branches of zero mass, which always have prob-
ability F;(0) = p. Note that only three resistors (not five as
shown) are necessary to create this cluster.

pointing to a lower level with probability p and by resis-
tors with probability 1 — p. There exists a diode-resistor
percolation threshold, p = p., above which there is no
current between a site at level ¢ = 0 and a site at level
i = +4o0o. Below p. there is a finite probability that a
site at level ¢ = 0 will be connected to +oco by a path of
resistors and diodes on which current can flow from 7 = 0
to i = +00. We define a cluster with respect to a given
site at level ¢ as the set of sites that can be reached by
a current starting at this site. We also define a cluster
branch to be a set of sites that are connected to a given
site through one of the adjacent bonds.

To find p. and the critical behavior we define the fol-
lowing quantities. F;(s) is the probability that a site at
level i is connected via an upper bond to a branch of size
s, and H;(s) is the probability that a site at level 7 is
connected via a lower bond to a branch of size s. As a
boundary condition, we have

Ho(s) =0 if s>0,
(12)

We define the probability of an infinite branch at zero
level as Fo(00) = Po. This is the probability that one
can go infinitely far from the bottom line, i.e., Fo(o0) is
the order parameter of the problem. The exponent 3, is
then defined by

Fo(oo) ~ (pe — p)°r. (13)

The probability of occurrence of an upper branch of size
zero, F;(0), is equal to p for all <. This happens when the
bond under consideration is blocked by a diode. Simple
probabilistic reasoning leads to the following equations:

Fi(s)=(1-p) Y

81+82+83=8—1

Fit1(s1)Fit1(s2)Hiva(s3),

(14)

H;(s) = >

81+82+83=s—1

H;_1(s1)Hi-1(s2)Fi—1(s3). (15)

With the help of the generating functions for F;(s) and
H;(s) [18],

fi(z) =) 'Fi(s)a", (16)

oo

hi(z) = Z'Hi(s):c", (17)

8=0

Egs. (14) and (15) can be written in a more compact
form:

fi(z) = p+ 2(1 = p)his(2) f21 (2), (18)

hiv1 = zfi(x)hi(z). (19)

The use of generating functions in the simple case of clas-
sical percolation is illustrated in Appendix A. The value
of f;(1) [or h;(1)] is the probability that a site is not con-
nected to the infinite cluster through an upper (or lower)
bond. Every site on the infinitely high level i — oo is
connected to the infinite cluster via a lower bond

Am (1) =0, (20)

and the only chance that this site is not connected to
the infinite cluster via an upper bond is that this bond
is diode. This happens with probability p, that is,

Jim (1) =p. (21)

These two limiting conditions together with the fact that
H;(s) and F;(s) cannot be negative imply that, for i —
oo, Hi(s) — 0 for all s > 0, F;(s) = 0 for all s > 0, and
F;(0) = p. This in turn leads to

m fi(@) =p, (22)
lim h;(z) =0, 0<z<1. (23)

1—00

Let us define the function g;(z) = zh;(z). From the ini-
tial conditions (12) for ho(z) we have go(z) = z. Hence
the function go(z) is equivalent to the independent vari-
able z. The recurrence relations for the pair (f;(z), g:(z))
are

fiz) =p+ (1 - p)git1(z) f21 (), (24a)

gi+1(z) = fi(z)g? (). (24b)
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For any given value of p and = Egs. (24) have unique
solution fo(z) determined by initial condition go(z) = «
and limits (22) and (23). Equations (24) do not contain
z explicitly. Thus any pair (f;(x), g:(z)) can be regarded
as the initial pair (fo(z'),go(z')) for a new value of in-
dependent variable =/, which must be equal to go(z') as
mentioned above, i.e., ' = go(z') = g:(z). Any two suc-
cessive iterations f;(z) and f;1;(z) are equal to the values
of the function fo(x;1) and fo(x2) at some new values of
independent variable z; = g;(z) and z2 = gi+1(z). Due
to Eq. (24b) zz = z2f(z1) and thus Eqs. (24) can be
written down as a single functional equation for function

fo(z),
fo(z) = p+ (1 = p)z*fo(z) f3 (2? fo())- (25)

IV. RESULTS

The solution of Egs. (22)—(24) provides the full descrip-
tion of the problem. First we present the numerical result
shown in Fig. 3. We obtain Fig. 3 by taking fixed val-
ues of p and z and iterating Egs. (24) from some initial
values ( fos Jo) to higher and higher successive iterations
(fi,g,-). If fo is larger than the true value fo(z), then
(for some i) f; becomes larger than 1, which does not
make sense. Conversely, if fo < fo(z), then (for some
1) ﬁ becomes less than p, which leads to ff+1 < 0 and
makes further iterations impossible. Thus, using this di-
chotomy, it is easy to make fo close to fo(z) with any
arbitrarily prescribed accuracy.

The curves in Fig. 3 are parametrized by p. For p larger

than a critical value p., i.e., when the concentration of -

1.0

o8+ 00— g

0.2 i

0.0 , " . L
0.0 0.2 0.4 0.6 0.8 1.0

X

FIG. 3. Function fo(z) for different values of p computed
numerically by the method explained in the article. The value
of p for each graph can be seen from the value of the function
at zero: fo(0) = p. We see that the curves above the line
p = p. = 8/9 enter the point (1,1). Those with p < p.
intersect the line £ = 1 below 1, which means that the order
parameter po(0o) = 1 — fo(1) differs from zero. Every line
enters £ = 1 with a finite derivative, which means that the
average cluster size always remains finite.

diodes is high enough, the probability that a site at level 0
is not connected to infinity is 1. Thus the lines for p > p.
are intersecting at the fixed point fo(1) = 1, for which
the order parameter Ps, = Fg(oo) = 1 — fo(1) is zero.
However, for p < p. the lines are not intersecting each
other and are crossing the straight line z = 1 at values
fo(1) that are less than 1. This indicates that for p < p.
the order parameter P, is greater than 0. Geometrically,
any sequence of successive iterations (g;, f;) for fixed z
corresponds to a sequence of points (z;, fo(z;)) moving
along the curve corresponding to the given value of p
from right to left and approaching limiting values (0, p).

The behavior of the curves near x = 1 defines the crit-
ical behavior of the system. The average size of a branch
connected to a site at level 0 can be defined from the
slope of the curves at z =1, '

oo had [ﬂ:‘zﬂ]zzl
50 = ;Fo(s)s/gf“o@) TR

= [fi_ln_d’:(w)] R (26)

The critical exponents of the problem can be obtained
from the behavior of the function fo(xz) near its fixed
point £ = 1. According to Tauberian theorems [19], this
behavior defines the asymptotic form of the branch size
distribution

Fo(s) ~ 577 d(s/sc), (27)

where ¢(x) is a cutoff function that exponentially goes
to zero when £ — oo, and s. is the characteristic branch
size: s, ~ |p — p.|"1/°.

Linearization of Egs. (24) near the point (1,1) allows
us to solve the problem analytically. First we obtain the
critical probability p. = 8/9 [20]. Next we find that the
order parameter approaches 0 when p — p_ as

Fo(0) ~ exp(—A1/vPe —P)y A1 = @ (28)
The analytical and numerical data are shown in Fig. 4.
The rather unusual form of Eq. (28) has serious conse-
quences. It is a much weaker singularity (an essential
singularity) than those occurring at usual critical points
[see Eq. (13)]. If we interpret Eq. (28) in terms of critical

exponents we have
Bp = 0 (29)

for the exponent of the order parameter.
Linearization also gives expressions for the average
cluster size (see Fig. 5),

IR Y/ T k) B
(30)
(s0) = (1‘-‘2—‘1% +1-— s) /fo(l) (»<pe), (31)
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0.0

-20.0
i.§ -40.0
B

° numerical data
——— fity=-1.631x+1.482
-60.0 -
-80.0 . : . .
0.0 10.0 20.0 30.0 40.0 50.0

(@/9p)%°

FIG. 4. Dependence of the logarithm of the order param-
eter In Fo(oco) = In[l — fo(1)] on 1/4/pc — p. The data are
obtained by the same procedure as in Fig. 3. If Eq. (28) is
correct, the data should follow a straight line with the slope
—A;. Fitted value A; = 1.631 coincides with the analytically
computed one: A; = (mv/21n3)/2. Data span almost two
orders of magnitude of p. — p.

where ¢ = 1/01 —p), ¢ = (9 - q/4 ¢

= ]I9-9(g—-1)|/4 = +/|2¢e—¢2?|, and 6 =
arcsin(y/,/q). Equation (30) can be derived directly
from (25) if one linearizes it near (1,1) [see also
Eq. (B13)]. Equations (30) and (31) imply that the aver-
age cluster size is finite below and above p. but has a first

5.0 T

p>p,, analytical solution

4.0 - p<p,, iterations R
---- p<p, analytical approximation
O simulations

FIG. 5. Average size of the branches connected to level
0. The data for p < p. are obtained by iterating recurrent
equations for average branch sizes uo; and do; [see Egs. (C31),
(C45), (C46), and (C49) of Appendix C]. For p > p. the
exact prediction of Eq. (30) is shown by bold solid line. For
p < pc the prediction of Eq. (31) with fo(1) replaced by 1 is
shown by dashed line. The results of computer simulations
on the random diode-resistor Cayley tree are shown by circles
and the results produced by Eq. (C49) by a solid line. The
graph approaches p = p. with infinite derivative from above
and with finite derivative from below and has a first order
discontinuity at pc.

discontinuity at p = p., and consequently ~y, = 0.

Finally, using Tauberian theorems, we find that the
exponents of the cluster size distribution are 7 = 2, 0 =
0. In fact, for p > p., there is no apparent exponential
cutoff in Eq. (27). Instead,

Fo(s)~ 7 (P>pe)s (32)
where
T(p) =1 izij, /\172:3—::|:<p, (33)
or
T(p) ~ 2+ %Ip—pcl”z, p— i (34)
Exactly at p = p.
Flo)~ 513,  (P=po), (35)

which is consistent with the fact that the average cluster
size at p = p. remains finite.

0.0 T T T T
10.0 g
—
@€ -5
) B=%s
= -20.0 + p=99/100 =8/9 |
—_— =9/10
p=11/12
-30.0 B
19/20
p=4/5
-40.0 .
0.0 2.0 4.0 6.0 8.0 10.0

Ins

FIG. 6. Cluster size distribution for different values of p
below and above p. = 8/9 obtained by exact enumeration.
We see that above p. the curves can be approximated by
power-law functions Fo(s) ~ s~ with exponent depending
on p. At p = p., 7 = 2 and logarithmic corrections appear:
Fo(s) = s72In"?s. (The data for p = p. are shown by bold
line.) For lines with p < p., a cutoff appears.
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The apparent cutoff of the distribution appears below
Dc:

Sc = %F\/‘f(t)no‘)] ~ eXP(Al/V Dc — P)- (36)

The numerical data, obtained directly from Egs. (14)—
(15), are in good agreement with the above analytical
results (see Fig. 6). Complete derivations of Egs. (27)—
(35) are given in Appendix B.

In order to find the exponents v, and V|, we must
compute correlation lengths of the problem. Using the
analogy with directed percolation on the Cayley tree, we
have done it in Appendix C. We show that £, remains
finite and that & diverges as |p — pe|~/* above p,,

_g—2-1/(s0)

A (37)

q
§==1
If 20

but below p., §| diverges as |p — pe|~3/%. Consequently,

vy =0,
v = 1/4, P > Pe (38)
Y) 23/4, P < Pec.

Hence the roughness exponent o defined by Eq. (1b) is
I/_L/V” =0.

V. DISCUSSION

Since o = 0 and v is finite, the hyperscaling relation
Eq. (10) can be satisfied only if d = co. Hence we suggest
that the critical dimension of the diode-resistor surface
roughening problem is d. = co. This means that for any
finite dimension the roughness exponent « is positive and
gradually approaches zero as d — oo.

This behavior is analogous to the behavior of the KPZ
equation, for which it was proposed [21] that « — 0 as
d — oo.

Other exponents measured numerically for higher di-
mensions seem to approach their values for the Cayley
tree. (See Table I and tables in Ref. [22].) For exam-
ple, v, gradually decreases and becomes less than one
for higher dimensions, which contradicts recent conjec-
ture [17] that 7, = 1 + v, in all dimensions. On the
other hand, 7 gradually increases but always remains less
than 2. An interesting observation is that the values of
v for the Cayley tree are different above and below p.
and this has to be tested for the model in higher finite
dimensions (the values of v in Table I are measured only
for p > p.). Also the results show discontinuities in the
average height and average size at p = p.. This may
shed light on controversies regarding the values of o and
v| below p. in low dimensions (see Makse and Amaral
[24]).

The recent conjecture of Havlin et al. [23] that the
upper critical dimension for the dynamical exponents of
the surface growth problem in quenched disorder might

be d. = 6 does not contradict the above results. This
is because the dynamical properties of the system which
characterize growth only in the horizontal direction may
be independent of geometrical properties of completely
pinned clusters, which we study here. These geometrical
properties describe only the completely stopped interface
and they do not depend on the way this final stage is
achieved.
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APPENDIX A: ILLUSTRATION OF THE
METHOD
FOR THE CLASSICAL CAYLEY TREE

First, let us show how the generating function ap-
proach works in the case of classical percolation on the
Cayley tree [14] with coordination number z, = 3, where
the bonds are randomly disconnected with probability
p. For each site we introduce a probability F(s) that
this site is connected to the branch of size s via a given
bond. Since all branches and sites on this Cayley tree
are equivalent, we can write

Fis)=(1-p) Y

81+82=8—1

F(s1)F(s2), F(0)=p. (A1)

This produces the generating function

f@@) =Y F(s)a* (A2)
8=0
that satisfies the quadratic equation
f(x) =p+ (1 - p)zfi(z), (A3)

with two real solutions. Taking into account that ifz < 1
then f(z) < 1, we select the smaller of the two solutions,

F(z) = 1—\/1——4p(1——p):t‘

2(1 — p)z

The order parameter is Poo =1 — f(1). At z = 1, the
positive value of the square root is equal to |2p — 1|. If
p > 1/2 then |2p — 1| = 2p — 1, which gives f(1) = 1.
For p below 1/2 we have f(1) = p/(1 — p) < 1 and order
parameter is different from zero. Hence p, = 1/2 and

(A4)

1—-2p
=12

(P — p)ﬁ ) (A5)

with 8 = 1. The function f(z) has a singularity at point
zo = 1/4p(1 — p) of the type
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f(z) = A+ Bl|z — zo|°, (A6)

with @ = 1/2. According to the Tauberian theorems
[19], Eq. (Ab) suggests that the Taylor expansion of the
function f(z) near z = 0 behaves as

F(s) = s77¢(s7|p — pel) ~ s77 exp (—s/sc), (A7)
where
T=1+a, sc = 1/In(=o). (A8)
Thus, in our case,
T=3/2 (A9)
and
sczxol_l = (1;(1_1)5)2, (A10)
which gives
o=1/2. (A11)

In this simple case the function F(s) can be computed
according to the binomial expansion of /1 — v,

F(s) =22~ Dp oy,

(25 +2)1! (A12)

where the ratio of factorials has the power-law asymp-
totic behavior s~3/2, and the term [4p(1 — p)]* gives an
exponential cutoff.

We can also compute the average cluster size as the
logarithmic derivative of f(z) at z = 1 and get

_ (-7 a
(S) - 2|p _pcl’ p > Pe (A13 )
_ p
(s) = 2‘]’ — Pc| ) P < pPec (A13b)

which means that v = 1 on both sides.

We can also consider a directed Cayley tree in which
each site is located at a chemical distance ¢ from the ori-
gin [10]. The chemical distance is defined as the number
of bonds connecting the site to the origin. The level on
this tree can be defined as a subset of sites with equal
values of chemical distances i. For each level i, we can
introduce the probabilities F;(s) that a site on this level is
connected to a branch of size s. Then for the generating
functions f;(z) we find

fiz) =p+ (1 - p)afi, (), (A14)
which is analogous to Eqgs. (24) in this simple case. In
analogy with Eq. (24), by iterating Eq. (A14) we move
fi away from the fixed point f(z) given in Eq. (A4).
In principle, the value f(z) can be defined by the same
dichotomy rule as we use for finding the solution of
Egs. (24). Here, however, due to equivalence of all the
levels, fi11 = fi, and we get the simple quadratic equa-
tion (A3) for the solution.

APPENDIX B: ANALYTICAL SOLUTION
OF DIODE-RESISTOR PERCOLATION
FOR CAYLEY TREE

As mentioned above, in the successive iterations of
Eags. (24) (gi, f;) are moving away from the fixed point
(1,1) towards their limiting point (0,p). In order to
study the vicinity of the fixed point, we must iterate
Egs. (24) backwards. Defining ¢ = g;11,y = f;41 and
z' = g;,y = fi, we consider Eqs. (24) as a nonlinear
transformation from unprimed quantities to primed,

¥ =p+ (1-p)zy’, (B1)
"= \er-per (B2)

Successive application of these transformations moves
the point (z,y) towards the fixed point (1,1). Defining
§ = 1—z,7 = 1—y, we linearize Eqs. (B1) and (B2) near
the fixed point

D)
with
A= % ((q —11)/2 —21> (B4)

Starting from any point with § > 0,7 > 0 the successive

iterations
Y n

move towards the fixed point (0,0). After finding the
eigenvalues of the matrix .4, which are

(B5)

3+q++/(a-9)(¢g—1)
A2 = B6
1,2 17 (B6)
:3—5:}:<p (B7)
q
for p > 8/9, and
3—ex:1
A2 = Eq ad (B8)

for p < 8/9, we can write down an explicit form of (fz: ).
The crucial point of our analysis is the fact that A2
which are positive and less than unity for p > 8/9 become
complex conjugate for p < 8/9. Thus the sequence (g:)
approaches zero above p = 8/9 and below p = 8/9 in
two different ways. Above p = 8/9, both §, and 7,
remain positive for all n and their vector (f,:) enters the
fixed point along the eigenvector o1 = ('7$7¥) which
corresponds to the largest eigenvalue \; = S_—Z’Lf. This
means that 2’ — 1 (and ¥ — 17) and consequently
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fo(1) = 1. Hence the order parameter Fg(co) = 1 —
fo(1) is zero, which implies the absence of percolation
above p..

Below p., the vector (f,:) rotates around 0. Thus §,
becomes negative for certain n, which is unphysical. The
point at which z’ becomes equal to 1 corresponds to y' =
fo(1) < 1. Thus for p < 8/9 we find a nonzero P,, and
percolation occurs.

Hence we conclude that

For p > p., after some algebra, we obtain
1 n n
bn = 5oV (E/50 =)+ X(n—ds0)l,  (B10)
1 n n
N = %[/\1 (6 — mso) + A3 (n/s0 — 6)], (B11)
where sp =1 — £ — ¢. Hence
NMn = 30671 + )\3(77 - 630)7 (B12)

in which A% is exponentially small compared to é,,. Thus
the average cluster size is

[gf_o] = lim On _ So-
z=1

dx n—o0 O,

(B13)

Note that Eq. (B13) can be derived directly from Eq. (25)
by linearizing it near (1,1). Neglecting exponentially
small terms, we find from Eq. (B10) that

20
n~ln |6, ———m— In A;.
( 5/50—77)/ '

From (B12) we derive

A2
= s00n 4 (60—2P ) (n—so5). (Bl4)
Mm = 800n n5/30_77 n 00).
Thus fo(z) = 1 — so(1 — z) + C(1 — z)*, where a =
InA2/InA; > 1is the exponent of the highest nonanalyt-

ical term of f(z) for £ — 1. Using Tauberian theorem
we find that

In Az

'r=7'(p)=1+m>2. (B15)

Exactly at p = p. the matrix A cannot be diagonalized
since both of its eigenvalues are equal to 1/3. Equations
(B10) and (B11) acquire Jordanian form

bn = (%)n5+n/3 (%)n(J—n),
N = (%)nn+n/3 (%)n(‘s—n),

(B16)

(B17)

or

M =0n + (n—08)/3" =6, + 36, /n+ 0o(5/n).

Inserting n from Eq. (B16), n =Ind,/In3 + o(Ind,), we

get
3In3 On
%‘%<Lﬂm%0+°ﬁm%0'

Thus at p = p. the average branch size remains finite,

(B18)

(so) = lim I =1, (B19)

n—r o0

Using Eq. (B18) and the Tauberian theorem we find that
T = 2. However, logarithmic corrections to Fy(s) now
appear,

1

Fo(s) ~ ———. B20
o(s) s2ln’s (B20)
Note that the second power of the logarithm in (B20)
guarantees that the average cluster size remains finite.

Below p. the equations for 4,,7, become more com-
plex:

on = Vg " (6 cos fn — 37______.(.;;.5)_6 sin0n> , (B21)

M =V q ™ (17 cos fn — Q;—E;—u sin 0n> . (B22)

It is clear that when initial values are positive (§ > 0 and
n > 0), 8, must become negative for a certain value of n.
Suppose now that we know the exact solution fo(1)
which corresponds to some = 1 — fo(1) and § = 0.
Iterating Eqs. (24) forward we find that as m — oo,
fm(1) = p and g,,(1) — 0. The linearized equations
(B1) and (B2) with n = —m produce a sequence (f,:)
which follows exact solutions 1 — fo(1), 1 — go(1) = 0
for small m. We will try to find an approximation for 7,
demanding that, for certain m, 6, = 1, 7,, =1 — p:

m = Vg™ L sinmf = 1, (B23)
1)

Tm = V@™ (ncosmﬂ +(1- s)ﬁ sinm@) =1-—p.
®

(B24)
After some algebra we get
m= % — %arctanpfg, (B25)
which leads to
n=+gm™ L (B26)

sin (a.rctan £ )
pP—€
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For p close to p. we find that m ~ & + O(1) and

n=Ce V55, (B27)
in which A = v/271n3/3. Although we made a linear
approximation to the recursion, the form of the result
seems to be correct as it is demonstrated in Fig. 4. The
agreement is perfect over 30 orders of magnitude in fo.
Of course we do not get the correct prefactor C, but our
result for A provides the correct asymptotic.

Using (B21) and (B22), we can find the average cluster
size

(s0) =

[M] _ ! [dn/dn]
dz =1  fo(1) [ d8/dn n=no,8(no)=0

~3ln3+1—Ci(p. —p), (B28)
where C; is some positive constant. This equation gives
the correct asymptotic behavior for (so) as we can test by
comparing (B28) with numerical data (see Fig. 5). Thus
the average cluster size has a first order discontinuity at
Pe, jumping at p, from 1 at p = pF to 1+3In3 at p = p.

For p < p. the function fo(z) is analytical for z < 1,
but has a singular derivative at z = x¢9 > 1. In the
vicinity of p. we can find zo from the linearized equations
(B21) and (B22) using n as a continuous parameter; thus
we write g = 1 + §(no) where ng is such that

dé
[%Lno =0

Note that §(n) approaches §(ng) as §(no)+(n—mno)? while
n(n) at n = no has nonzero derivative, n(n) — n(ne) ~
n — ng. This leads to a singularity of the type fo(z) =
fo(zo) + Cv/zo — z for fo(z), suggesting that the expo-
nent 7 of the cluster size distribution is 3/2. Equation
(B29) yields o = 1 4 Fo(o0)(2/e,/q1nq), which in turn
gives

(B29)

A )
Ssc~1/(xg—1) ~Cex —i—— B30
flzo=1)~Comp (=), (Ba0)
implying o = 0.
P

s 0
T 11451+ 82

Here, s; and s, are the sizes of the two branches con-
nected to the given site. For p > p., all the branches
are finite, and we can substitute Eq. (C5) by its average
value

(8) = (1 =p)(A + (s1) + (s2))- (C6)

if initial bond of branch is not occupied
if initial bond is occupied.

APPENDIX C: CALCULATION
OF CORRELATION LENGTH

Here we show how to compute correlation lengths &)
and &) for the diode-resistor cluster on a Cayley tree. We
use, as a starting point, the problem of directed percola-
tion on a Cayley tree [10].

Correlation lengths £, and £ can be defined as the
weighted averages of the corresponding components of
the radius of gyration

(R3s)
&= C1)
= (
and
2 (Ris)
= , C2
1 (S) ( )
where s is the number of sites in the cluster. For the

directed percolation problem, we assign to each site 7 on
a Cayley tree an integer ¢; that is equal to the number of
bonds by which this site is connected to the origin. We
will call this integer the chemical distance.

Assume that the Cayley tree is embedded in a d-
dimensional space (d — o0) in such a way that the d — 1
coordinates orthogonal to the direction of growth are ran-
domly incremented by 1 or by —1 for each bond of the
Cayley tree, and the coordinate parallel to the direction
of growth increases by 1 for each bond leading away from
the origin. Then the average square of any orthogonal co-
ordinate for any site is equal to its chemical distance to
the origin, while the square of a parallel coordinate is still
equal to the square of the chemical distance.

Thus for the correlation lengths of the Cayley tree we

have
()
R (C3)
and
()
& = =<;> = % (C4)

The size s of a finite branch of the Cayley tree that is
connected to any given site is equal to

(Cs)

f

Since all branches of a Cayley tree are equivaient, we
have (s) = (s1) = (s2) = Lo and we can write that
Lo = (1 —p)(1 + 2Lo), (CT7a)

from which we derive



52 SURFACE ROUGHENING WITH QUENCHED DISORDERIN . .. 383

1—p

L05<5>=§1‘)‘_—17

(C7b)
which is identical to (A13a) in Appendix A.

In order to gain a better understanding of what is hap-
pening in the diode-resistor Cayley tree, we introduce the
notations Lg;, L1;, and Lo;, which denote the quantities
Lo, Ly, and L, for the branches of the simple Cayley tree
that are a chemical distance i from the origin. Here the
chemical distance is analogous to the level of the diode-
resistor Cayley tree, but—in contrast to the actual diode-
resistor Cayley tree—these quantities depend on 7 in a
very simple way,

Lo; = Loo, Ly; = Ly + iLoo,
(C8)
La; = Lag + 2iL1o + i? Loo.
In analogy with (C6) and (C7), we can write
Loi = (1 —p)(1 4+ 2Loi41), (C9)
Li; = (1—-p)(¢+1+2L1p1), (C10)
Lai = (1 =p)[(i + 1) + 2L2i41], (C11)
or
LOn = ALgn_l — C, (Cl2)
Lln = AL]_n_l —cn, (013)
LG = ALG__l - an, (014)

where A = 1/(2 —2p) > 1 and ¢ = 1/2. Iterating these
equations, we find

n—1
Lon = A™ Lo — (Z Ai) c (C15)
=0
n—1 )
Lin = A"Lio — Y A(n —i)c, (C16)
1=0
n—1 ]
Lyn = A™Lyo — » _ A'(n —i)%c. (C17)
=0

After converting the geometrical progressions in the
right-hand sides, we arrive at the following form for L;,:

(C18a)

n A
‘A-nz
(C18b)

2
Ly, = A" (Lzo—CA +A)

(A-1)3

n? 2n A?+ A
(T am ) O

Now, because L, should not increase faster than the
kth power of n, we must assume that the terms that
contain A™ are equal to zero. This condition yields the
values of L;o:

c _(1-p)
LOO = A_1 2p 1 5 (Clga)
__cA _ (1-p
Ly = A-17 ~ 2p—1? (C19b)
_cA’+ A (1-p)+2(1-p)*
Ly = A—1)3 ~ 2p—1)° . (C19c¢)

So for Lgo we again derive the result of Eq. (C7b). This
construction will play a crucial role in our diode-resistor
calculation.

Another way of deriving (C19) is to use some identities
analogous to (C5) for the quantities L, and Lo. This can
be done if one considers a branch of s = 1 + s; + s
sites that has two daughter branches of sizes s; and s»
growing from the site with chemical distance 1 of the
parent branch

4= 1+2(£}+1)+Zz(£;+1)
j=1 i=1 j=1
=35+ Zlfg + ZZZ;
j=1 Jj=1

(C20)

and

ie§:1+2(£’ Z£’+1
i=1 j=1
s+2Zz' +2Ze’ +Zz'2+2e'2 (C21)

is the chemical distance in the daughter
Averaging these

Il

where £}

branches with respect to their origins.
two equations, we get

Lio = Loo + 2(1 - p)Llo, (C22a)
Lzo = Loo + 4(1 - p)ng + 2(1 — p)Lzo, (C22b)
which agree with the expressions of Egs. (C19).
From Egs. (C19) one concludes
&L = 1 (C23a)
VT
3—2p
=Y 3b
&) op— 1 (C23b)
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which gives v} =
[10].

In solving the problem for the diode-resistor Cayley
tree we will use both the ideas of Egs. (C9)—(Cl11) as
well as Eqgs. (C7) and (C22). Because of the difference be-
tween the branches growing up and those growing down,
we cannot compute the quantities Lg; for the branch on
level ¢. Instead, for the diode-resistor Cayley tree, we
compute the corresponding quantities dy; and ug; for the
branches growing down and up. Now we assume Liiisa
vector with the components (Z’"

Another difference of DRP and directed percolation
is that now the coordinate parallel to the direction of
growth is not equal to the chemical distance to the origin,
but just to level 7 of a site. Thus we denote

84 Su
d1i=<zfj>, u1i=<ij>,
i=1 j=1
84 Su
) ()
j=1 j=1

for the branches going down and up, with sizes s4 and s,,,
respectively. Here 7; is the level of the jth site and ¢; is its
chemical distance from the origin as before. Accordingly,
we will compute

1/2 and v = 1, the result obtained in

(C24)

d2i

Il
I

52 _ Y20 .fz _ Y10
L7 ugo’ ™ wgo”
00 00

(C25)

Another difference is that here we have a plane 7 = 0 that
stops the growth downwards. These considerations lead
to the important boundary conditions

dro = 0. (C26)

When percolation is absent (p > p.), we can use the
ideas of Eq. (C6) and Egs. (C8)—(C11) for each level of
the Cayley tree and write

Ug; = (]_ _..p)(l + 2'(1.0,‘..;_1 + d0i+1)a

doi+1 = 2do; + uoi + 1, (C27)
w1 = uoi + (1 — p)(2u1i41 + d1it1), (C28)
diiv1 = doit1 + 2dq; + v, (C29)
ugi = (1 —p)[(i + 1)® + 2uzi41 + daiy1),
dait1 = % + 2d2; + uzi, (C30)
or, in vector form,
E0i+1 = Azoi + Eo(), (C31)

Lyiv1 = ALy; + BLo; + &0, (C32)

Lyiv1 = ALg; + &2i% + E21i + a0, (C33)

in complete analogy with Eqgs. (CS) (C11).
difference is that now A =

The only
1

(_1 (q—1)/2) and B =
(2 _ (a+1) /2) are noncommuting matrices and ¢, are

vectors, not just numbers.

1. Solution above p.

Note that matrix A is the inverse of the matrix A of
Egs. (B4), and that Eq. (C27) can be obtained through
logarithmic derivatives of Egs. (18) and (19). First, in
analogy with (C15) and using matrix algebra, we obtain
the solution for Lg,,

L =A" [Loo + (A — 1) 1000] (A - 1)-1600. (034)
Note that for p > p., the matrix A has the eigenvalues
/\1_1 and /\2_1, one of which,

At=¢/B-ct+p)=3-c—¢,

is less than 3 = z. — 1; the other,

Al=g/B-e—p)=3-c+yp,

is greater than 3 = z.—1; note also that matrix (A—1)~
does not diverge at p = p..

The average size of a branch on the nth level cannot
grow faster than (z. — 1)”, which is the total number of
bonds of a Cayley tree of the nth order. This restriction is
analogous to the restriction that Lo, remains finite in the
dlrected percolation case. Here it leads to the condition
that Loo + (A — 1)7 &y is parallel to the eigenvector
v = (1 51+“’), which corresponds to the eigenvalue A;.
Taking into account that doo = 0, we find that (s) =
ugo = 1 — € — ¢ for the average cluster size, exactly as
before [see Eq. (B11) and those following]. The quantity
ugo is not diverging at p., thus v = 0.

Similar computations can be applied to (C30), where
we find

Lon = A™(L20 + C33) + n2Csz + nay + &0,  (C35a)
in which c3;, are some vectors not diverging at p.. Again
I_:zo + €33 should be parallel to ;. This condition gives

3q

C(-e—p) - (C35b)

u 5
20 = q-— 1a
which remains finite at p = p. and thus, from (C25),
vy =0 (see Fig. 7).
The difference comes when we solve Egs. (C28) and
(C29), which can now be written in a simpler form
E1i+1 = Al_:lz + G/BAi'l—).l + 640, (036)
where av; = Loo + (A — 1)"1&p. Note that matrices A
and B do not commute and that the matrix algebra is no

longer analogous to the scalar algebra. The problem can
still be solved, however, if we express aBv; as a linear
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combination of the two eigenvectors

anfl = (1,11-)‘1 + azﬁz, (037)

where v, = (l_i_“’) is the second eigenvector of matrix
A. Then we find

Ly, = A" [Em + &0+ (At — )\1_1)_102172]

+n/\f"a1ifl + 551, (038)
in which &, are vectors that are finite at p = p,..

Once again, in order to prevent the unphysically rapid
growth of L;,, we have to assume that the expression in
the square brackets is parallel to ¥;. As before, dig = 0

and after some calculation we get

quoo . 1 — (g — 2)uoo
= s C39
U10 20 + 7—1 ( )
where ugp = 1 — € — ¢. We see that u;o diverges as
1/¢ ~ (p — p.)~/? when p — p} (see Fig. 8) and
=12 wos ~ (P =) (C40)

Thus v = 1/4 above p..

2. Solution below p.

In the presence of percolation (p < p.), we have to
modify the form of Egs. (C27)—(C30). The reason is that
in general the probability of a site in the nth level being
connected to a finite cluster through an upper bond is
[frn(1) — p]/fn(1). In the previous case when p > p., we
have f,(1) = 1 and we obtain Egs. (C27)-(C30) but this
is not true below p.. Thus we have to replace the matrices
A and B in Egs. (C31)—(C33) with the level-dependent
matrices A,, and B,,, which are of the form

2 1
A, = , C41
(2 @ ue) (G41)
(2 1
Bn = (—1 ~(gn + 1)/2) ! (642)
where we have defined
fn(1)
Gn = 0L C43
Fa() = 7] (©43)
The resulting equations can be formalized as
Lyiv1 = AiLgi + Chi (C44)

in which Cy ; are some vectors dependent on :. We divide
these equations into a homogeneous and an inhomoge-
neous part,

- " o 0 - d®
Lg}l-)l = AiLgh)v L(()h) = (1) ’ Lr(zh) = (u(h) , (C45)

i 2(i o =(i 0 =@ d¥
Hun = 4 +ae, B0-(§), 22~ (%)

ukn
(C46)
Then we can write
Ly, = ukol-islh) + Ef:i (047)

We use these equations for finding the behavior of uyo as
a function of p by applying the condition

lim ug, =0.
n—o00

(C48)
This equation is true for p < p. because as n increases the
probability of belonging to an infinite cluster increases.
For high enough levels any upgoing bond is either blocked
with probability p) or it connects to an infinite cluster.
Hence the moments uy, of distribution of finite branches
are zero. The condition (C48) is valid only for p < p.
and is equivalent to the condition for slow growth of Lin,
|Lkn|| < C(2e — 1)™. Indeed, since g, — oo, the largest
elgenvalue of matrix A,, which corresponds to the eigen-
vector () becomes infinite and the smallest eigenvalue
that corresponds to the eigenvector ((1)) approaches 2.

Hence in order to grow slower than (z. —1)%, E,m should
be collinear to the vector () which leads to Eq. (C48).

Using this limit in Eq. (C47) we arrive at the following
formula for uge:

(C49)

Using (C49) we find the values of uyo for p < pc, that is,
we iterate (C45) and (C46) using known values of f,(1)
as obtained by the dichotomy method (see Appendix B).
The results are presented in Figs. 5, 7, and 8 as the iter-
ation data. The result for ugo is in excellent agreement
with Eq. (31), which was obtained directly from the be-
havior of the generating function fo(z) forz — 1 (see Fig.

5). We observe that for k£ = 0 and 2 both ugo remain fi-
nite and as before we derive v = 0 and v, = 0. The story
is different for u;o which is diverging as |p—p.|~3/2. This
means that for p < p., v = 3/4, thus it is different from
its value above p., which is 1/4 (see Fig. 8). We compare
the results obtained by Eq. (C49) with the direct Monte
Carlo simulations of the random diode-resistor Cayley
tree with a given probability p of diodes for p distant
from p. (see Fig. 2). Figures 5, 7, and 8 show the excel-
lent agreement between the results obtained by iteration
and simulation, which proves the validity of the assump-
tions behind our derivation of Egs. (C45)—(C49).

We can justify the results of iterations explained above
by the following analytical argument. If we bring p very
close to p. then according to Eq. (B27), fo(1) is very
close to 1 and qp is approximately equal to ¢ = 1/(1 —p),
which is less than 9. Expanding Eq. (C43) we derive

@n = q+q(q — 1)7n + O(n3). (C50)

If we insert n from Eq. (B26) into Eq. (B24), we see
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p

FIG. 7. Average square height u2 as a function of p similar
to Fig. 5. The exact analytical result of Eq. (C35b) for p > p.
and the numerical solution of Egs. (C45)—(C49) for p < p. are
shown by two curves that have finite limits for p — p.. The
results of computer simulations on the random Cayley tree
are shown by circles.

that 7, is negligible for small n but for large enough n,
7 approaches its final value 1 — p and g, start to grow
exponentially. At this level, the vector Ckn, the inho-
mogeneous part of (C44), becomes negligible compared

to the homogeneous term A,LI_:,(:,)1 and both L and Ei?l
start to diverge much faster than 3™ but their ratio ug,
stops changing (see Fig. 9). The value of n = m when

this happens can be well estimated from Eq. (B25). For

n < m, 7, grows as 3™ and, thus, for n <m — C—h;nlae" Mn

becomes negligible and the behavior of Egs. (C45) and
(C46) can be again well approximated by Egs. (C31)-
(C33) with fixed matrices A and B. Thus one can ex-
pect that the limiting value of ug, with n — oo is of
the same order as ug,, when m is taken from Eq. (B25).
Now we can approximate ugm, using Egs. (C31)—-(C33),
which are solvable analytically for any value of m. We
iterate Eq. (C31) to get Eq. (C34) and then we can find
the result by diagonalizing A as was done in Appendix
B [in fact, for A™ we can use Egs. (B21) and (B22) with

n — —n]. So we arrive at the following forms for uﬁ,h)

).
€ sinen) R

(2
and ug),:

uslh) = g"/? (cos on + !

(Cs51)

; sinfn
ué’,ﬁ = *‘qn/zuoo

-

p<p,, iterations
® p<p,, simulations q

---- p<p,, analytical approximation

N p>p,, exact solution 4
~ao O p>p,, simulations

89,5 3.0 20
log1olP-P.l

FIG. 8. The double logarithmic plot of the horizontal
branch width u;0 as a function of [p — p.| below and above p..
The data above p. are obtained by simulating the random
diode-resistor Cayley tree (circles) as well as exact solution
given by Eq. (C39) (solid line). The asymptotic slope of the
analytic solution for p — p. is —%. For p < pc, the results
of using iteration of Egs. (C45) and (C46) in Eq. (C49) are
shown by a solid line. The prediction of analytical approxi-
mation of Egs. (C51) and (C53) inserted in (C49) is shown
by a dashed line. For p close to p. these lines become almost
parallel with slope —3/2. The results of the Monte Carlo
simulation are shown by circles.

Inserting » = m from (B25) into (C51), we find ugo =

L~ = g which is finite (thus v = 0), and this is of the

1—
Salfle order as its exact value given by (B28). A quite
similar analysis gives similar results for uyg, that is, usg
remains finite as p — p.. Thus v, = 0 is also satisfied
below p..

For k¥ = 1 we must deal with the matrix B as we did
in the case of p > p.. First we iterate Egs. (C31) and
(C32) and, using Eq. (C34), arrive at

L{) = an [Egig -(A- 1)_1510}
n—1

+ Z A*BA™ L+ Gy,

=0

(C52)

where both 1:;60 and C; are vectors of order one. Next, to
solve this equation, we expand L, and also B%; in terms
of the two eigenvectors ¥} and 7,. We eventually arrive

at the following result for uﬁi:

) n/2 - _ 3 3 —1—
—UﬁZ _ q2 {n(3 _ 2¢) |:cos'n0 (1 _ (uwoo — 1+ €)(1 e)) 4 uoosm'nﬂ] N fs1nn0 ugo — 1 6}

o2

qn/2

(g—1)

_|_

(cos nf + 3-a-e sin nt9) + O(1).
®

7 Tsino p?

(C53)
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FIG. 9. (a) u{™ as a function of n for p = 0.8881 which is below p.. As seen, the results of iterating Eq. (C45) (solid
line) and its analytical estimate from Eq. (C51) (long dashed line) are in excellent agreement up to the value of n = m = 51
estimated by Eq. (B25). This value of n is shown by a vertical dotted line. Above n = m the analytical value goes to zero and

the iteration blows up. (b) ugg as a function of n for the same p. Again Eq. (C53) (long dashed line) estimates the numerical

solution of Eq. (C46) (solid line) very accurately up to about n = m. (c) The ratio uﬁ‘,ﬂ /uslh) which for n = m estimates the

value of average horizontal width uio [see Egs. (C45) and (C46) and the discussions below]. As seen, the ratio from analytical
estimate Eqgs. (C51), (C53) agrees with the ratio from the iteration Egs. (C45), (C46) up to about n = 48. For n = m = 51 the
analytical approximation gives a value about three times larger. Note that the ratio for numerical results quickly approaches
its limiting value uy0 for n > m. The ratio for analytical results computed at n = m according to Egs. (C51), (C53) diverges as
lp— pc|"%. The numerical results remain of the same order as analytical ones since the discrepancy between them accumulates
over a finite number of steps which does not increase with p — p.. The ratio of the numerical solution and the analytical

approximation remains constant for different p as seen in Fig. 8.

03~ |p—pc|~% and v, = 2 for p < pc.

In Fig. 8 we compare the approximate analytical result
(C53) with the exact numerical solutions of (C45) and
(C46). The data from the Monte Carlo simulation of the
diode-resistor Cayley tree are also included in Fig. 8 and
verify the exactness of the iterating equations.

For the m given by Eq. (B25) and a very small § we see
that sinm# is of order § and cos mé is —1 plus terms of
order #?. Inserting n = m into the homogeneous and
inhomogeneous parts we observe that the homogeneous
part is finite for n = m while the inhomogeneous part
is proportional to m3 or equivalently 673. Thus uio ~
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