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We calculate asymptotic forms for the expected number of distinct sites,^SN(n)&, visited byN noninter-
actingn-step symmetric Le´vy flights in one dimension. By a Le´vy flight we mean one in which the probability
of making a step ofj sites is proportional to 1/u j u11a in the limit j→`. All values ofa.0 are considered. In
our analysis each Le´vy flight is initially at the origin and bothN andn are assumed to be large. Different
asymptotic results are obtained for different ranges ina. Whenn is fixed andN→` we find that^SN(n)& is
proportional to~Nn2!1/~11a! for a,1 and toN1/(11a)n1/a for a.1. Whena exceeds 2 the second moment is
finite and one expects the results of Larraldeet al. @Phys. Rev. A45, 7128~1992!# to be valid. We give results
for both fixedn andN→` andN fixed andn→`. In the second case the analysis leads to the behavior
predicted by Larraldeet al. @S1063-651X~96!09705-X#

PACS number~s!: 05.40.1j

I. INTRODUCTION

Although the problem of calculating properties of the
number of distinct sites visited by ann-step lattice random
walk, S(n), was first suggested as being of purely math-
ematical interest@1#, properties of this random variable have
been extensively applied in a number of fields in the physical
sciences@2–12#. For example, a knowledge of the behavior
of S(n) can be used to characterize the amount of territory
reached by a diffusing particle. It is therefore useful for ex-
tending the Smoluchowski model for deriving macroscopic
rate constants from a microscopic model of a chemical reac-
tion @13,14#.

Quite difficult mathematical problems arise in finding the
probability distribution ofS(n). However, if attention is re-
stricted to the first two moments of this random variable then
a considerable amount of information can be learned about
asymptotic properties because the generating functions for
these quantities are known@15–17#. More sophisticated
mathematical methods have also been used to find asymp-
totic properties of the second moment ofS(n) @18,19#. In
principle, generating functions can be found for higher mo-
ments but the resulting analysis requires quite tedious calcu-
lations@17#. A knowledge of generating functions combined
with the application of Tauberian methods enables one to
calculate at least the first-order term in an asymptotic expan-
sion of the moments.

The problem of finding moments ofS(n) as described in
the preceding paragraphs has been analyzed only for a single
random walker. More recently this analysis has been ex-
tended by Larraldeet al. @20# to that of finding properties of
the expected number of distinct sites visited byN noninter-
actingn-step random walkers, a quantity which will be de-
noted by^SN(n)&. Even in the simplest case of an isotropic
random walk in which the single jump is bounded the behav-
ior of ^SN(n)& was proven to be surprisingly rich when con-
sidered as a function of the two variablesn andN. In the

present work we calculatêSN(n)& for random walkers in
one dimension which have symmetric displacement prob-
abilities having an asymptotically stable-law form.

Let p( j ) be the probability that any one of the random
walkers makes a displacement equal toj in a single step. By
the asymptotic stable-law form we will mean that in the limit
j→`, p( j ) has the property

p~ j !'
Ja

u j u11a , ~1!

whereJ is a constant. Random walks having this property
are special cases of what are generally termed Le´vy flights
@21–25#, or, in mathematical terminology, are in the domain
of attraction of stable laws@26#. Lévy flights were introduced
as a class of random walks which have associated limit laws
but may not have finite moments. They are fundamental in
the discussion of non-Brownian enhanced diffusion. The as-
ymptotic forms for^S1(n)& for random walks characterized
by the property in Eq.~1! was first derived by Gillis and
Weiss@27#; see also@28,29#.

Whena<2 in Eq.~1! the second moment of displacement
is infinite, leading to the expectation that the asymptotic be-
havior should differ from that found in@20#. On the other
hand, whena.2 the second moment is finite and thus one
might expect that the results will be those obtained in@20#.
However, we have found them to be correct in then→`
limit only, while for N→` the function^SN(n)& differs from
the results derived in@20#.

II. DETAILS OF THE ANALYSIS

Let us begin by writing the formalism for calculating
^SN(n)& similar to that given in@20#. Let pn( j ) be the prob-
ability that a single random walker is at sitej at stepn, and
let f n( j ) be the first-passage time probability for the random
walker to be atj at stepn. A function required for our
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analysis is the probability that the walker hasnot visited j by
stepn. This will be denoted byGn( j ) which is related to the
set of f m( j ), m50,1,...,n, by

Gn~ j !512 (
m51

n

f m~ j !. ~2!

The expected number of distinct sites visited by theN ran-
dom walkers all starting at the same site is

^SN~n!&5(
j

@12Gn
N~ j !#, ~3!

where the sum is over all sitesj .
WhenN is large, sites close to the origin tend to be visited

after a small number of steps. Hence the principal contribu-
tion to ^SN(n)& at largen is dominated by the large-u j u be-
havior. This allows us to simplify the analysis by requiring
only a calculations the large-j form of f n( j ). Let p̂( j ;z)
denote the generating function

p̂~ j ;z!5 (
n50

`

pn~ j !z
n ~4!

and f̂ ( j ;z) be the analogous generating function for the
f n( j ). The relation between the two generating functions is

f̂ ~ j ;z!5 p̂~ j ;z!/ p̂~0;z!, jÞ0 ~5!

@28,30#. To find an approximate analytic form forf̂ ( j ;z)
valid for large u j u, and in the limit z→1 we can use the
approximation topn( j ) valid at these values ofj . These
probabilities are readily shown to have the asymptotic form

pn~ j !'
nJa

u j u11a . ~6!

In the indicated limits we can write forp̂( j ;z)

p̂~ j ;z!'
Ja

~12z!2u j u11a , jÞ0. ~7!

When j50 we make use of the known integral representation
of p̂(0;z) @28#,

p̂~0;z!5
1

p E
0

p du

12zp̂~u!
, ~8!

where p̂(u)5S j p( j ) exp(i j u). The asymptotic property in
Eq. ~1! implies that in the neighborhood ofu50, p̂~u! can be
expanded to lowest order as

p̂~u!' H12~Ju!a, aÞ2
12~Ju!2ln~1/u!, a52 . ~9!

In consequence, the behavior ofp̂(0;z) in the z→1 limit is
approximately

p̂~0;z!'H 1

p E
0

p du

12z1~Ju!a , aÞ2

1

p E
0

p du

12z1~Ju!2ln~1/u!
, a52,

~10!

and equal to the constantp̂~0;1! whena,1. Whena.1 the
integral is singular atu50 but not atu5`. Hence calcula-
tions are simplified by approximating to the singular behav-
ior in that limit by setting the upper limit equal tò. The
resulting integral can be evaluated exactly, yielding the result

p̂~0;z!'
csc~p/a!

Ja

1

~12z!121/a , z→1, 1,a,2.

~11!

When a51 the limit of integration in Eq.~10! cannot be
extended tò without introducing an extraneous singularity.
However, the middle integral in Eq.~10! is trivial integrable
and implies that

p̂~0;z!'
1

pJ
lnS 1

12zD , z→1, a51. ~12!

Whena52 a slightly more complicated calculation leads to
the result

p̂~0;z!'
1

2J~12z!1/2
ln21S 1

12zD , z→1, a52.

III. THE CASE a>1

In order to make use of the expression in Eq.~3! it is
necessary to find the large-u j u approximation tof n( j ). The
starting point for doing so is the representation off̂ ( j ;z)
shown in Eq.~5! together with the estimates in Eqs.~7! and
~11!. These lead to the approximation, valid in the limit
z→1,

FIG. 1. Results obtained from 50 realizations of the casea51.5
compared with the prediction of Eq.~17!. The fitted slope of the
line is '0.67, which is to be compared to the theoretical value of
1/a5

2
3. The plotted data corresponds toN5100 ~d!, 5000~1!, and

10 000~L!.
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f̂ ~ j ;z!'H J11aa sin~p/a!

u j u11a~12z!111/a , aÞ2

2J3

u j u3~12z!3/2
ln21S 1

12zD , a52.

~13!

The use of a Tauberian theorem can be invoked to yield the
asymptoticn-dependent behavior

f n~ j !'
J11asin~p/a!

u j u11aG~1/a!
n1/a5K

n1/a

u j u11a , aÞ2 ,

'K
n1/2

u j u3lnn
, a52, ~14!

whereK is the numerical coefficient indicated in the detailed
expression. We next return to Eq.~2!, which, for large values
of n, can be approximated by replacing the sum by an inte-
gral, thus yielding

Gn~ j !'12E
0

n

f m~ j !dm'H 12K8
n111/a

u j u11a , aÞ2

12
2K

3

n3/2

u j u3lnn
, a52,

~15!

whereK85aK/(11a). This approximation will be valid for
values ofn that satisfyu j u@n1/a. Since this means that the
second term on the right-hand side of Eq.~15! is small in
comparison to 1 we can derive a lowest-order approximation
to ^SN(n)& by writing

Gn~ j !'H expS 2K8
n111/a

u j u11a D , aÞ2

expS 2
2K

3

n3/2

u j u3lnnD , a52,
~16!

and

^SN~n!&'2E
0

`

@12Gn
N~ j !#d j

'2E
0

`F12expS 2K8
Nn111/a

j 11a D Gd j
52GS 1

11a D ~K8N!1/~11a!n1/a, aÞ2

'2GS 13D S 2N3 D 1/3 n1/2lnn
, a52. ~17!

The prediction in Eq.~17! is compared with simulated
data fora51.5 in Fig. 1. It should be noted that fora.2 the
second moment of the flights distribution, Eq.~1!, becomes
finite and the approximation~6! is valid for j@n1/a. Chang-
ing of the lower integration limit in~17! from zero ton1/a

affects only the constant in~17!. As for j!n1/a, the probabil-

FIG. 2. ~a! The crossover behavior fora52.5. Forn35100 and
N'60 the crossover occurs as predicted by Eq.~19!. For
N5103@60 the asymptotic slope is about 0.26, which is to be com-
pared with the prediction 1/~11a!50.286.~b! A line fitted to simu-
lated results for̂SN(n)& for a55 andn5500. These results corre-
spond to the asymptotic behavior derived by Larraldeet al. @20#,
before the crossover indicated by Eq.~19!.

FIG. 3. A line fitted to data obtained from 50 realizations ac-
cording to Eq.~24! for a50.75. The slope of the line is close to
1.13, which is in agreement with the theoretical value of 2/~11a!
'1.143. The values ofN presented are 1000~s!, 5000~1!, 10 000
~h!, and 50 000~n!.
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ity pn( j ) can be approximated by a Gaussian and the corre-
sponding results have been obtained by Larraldeet al. @20#:

^SN~n!&}@n ln~N!#1/2. ~18!

Therefore, fora.2 we have for^SN(n)& the sum of the
results of Eqs.~17! and ~18!. One can see that in then→`
limit the highest-order term is that from Eq.~18! and in the
N→` limit the highest-order term is that from Eq.~17!.

In comparing the dependence of^SN(n)& on n andN in
simulated data we found that indeed for comparatively small
values ofn the data agrees with the prediction of Eq.~17!, as
can be seen from the plot in Fig. 2~a! for a52.5. A crossover
to the behavior predicted in Eq.~18! occurs at later times.
Figure 2~b! shows simulated data in the region in which Eq.
~18! holds, which corresponds to a relatively small number
of random walkers. The behavior indicated in Eq.~17! oc-
curs as the number of random walkers increases. The time at
which the crossover occurs,n3 , is found by equating these
two equations and is found to satisfy

n3}SN2/~11a!

ln~N! D a/~a22!

~19!

so that asa→21 the value ofn3 tends to infinity, which
means that the regime in Eq.~18! no longer exists when
a,2.

IV. THE CASE a51

In this case we find

f̂ ~ j ;z!'
pJ2

~12z!2 j 2lnS 1

12zD
. ~20!

Since the logarithm is a slowly varying function we can infer
from this that in the limitsn→` and j 2@n2

Gn~ j !'12
pJ2n2

2 j 2ln~n!
. ~21!

The analog of Eq.~17! then yields

^SN~n!&'
21/2pJN1/2n

@ ln~n!#1/2
. ~22!

Notice that the denominator is ln1/2(n), in contrast to the first
power of the logarithm that occurs forN51 @27#.

V. THE CASE a<1

The same technique as used in the preceding sections can
be used to calculate the form of^SN(n)& whena,1. In the
present case we have

f̂ ~ j ;z!'
Ja

u j u11ap̂~0;1!~12z!2
, ~23!

which leads to the result

^SN~n!&'S 2a

p̂~0;1! D
1/~11a!

GS 1

11a D ~Nn2!1/~11a!.

~24!

Behavior consistent with this prediction is illustrated by the
data in Fig. 3.

Notice that Eq.~24! cannot hold in the limit ofN fixed
and n→`, since for any value ofa, it is obvious that
^SN(n)& must be less thanNn while the power to whichn is
raised in Eq.~24! is greater than 1. We conjecture that when
N is fixed andn→` ^SN(n)& is actually proportional tonN,
since at sufficiently long times the random walkers tend to
separate, thereafter moving with minimal overlap. Consistent
with this conjectured behavior would be a crossover time
obtained from equating Eq.~24! with nN, which predicts that
this occurs for values ofn that satisfy

n>O~Na/~12a!!. ~25!

VI. SUMMARY

We have found the asymptotic results for^SN(n)&, which
are different for different ranges ina. All the results are
displayed in Table I.

It has been shown that fora,1 and fora.2, the forms
taken by^SN(n)& depend on the order in which limits are
taken: n fixed, N→` and N fixed, n→`. By equating
^SN(n)& in the two regimes we can estimate the crossover
timen3 for transitions between the two regimes. We find the
crossover time between those regimes:

n3}H O~Na/~12a!! for a,1

SN2/~11a!

ln~N! D a/~a22!

for 1,a<2.

Note, that whena→21 andn3→` only one regime exists.
It is interesting to note that the result for bounded step

sizes derived in@20# is not valid in the limitN→`. As seen
in Table I one obtains the bounded step result@20# only when
N is fixed andn→`.
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TABLE I. Asymptotic results obtained in the present work for different regimes ofa.

a,1 a51 1,a,2 a52 a.2

N→` ~Nn2!1/~11a! N1/2n~lnn!21/2 N1/(11a)n1/a N1/3n1/2 N1/(11a)n1/a

n→` Nn N1/2n~lnn!21/2 N1/(11a)n1/a N1/3n1/2~lnn!21 ~n lnN!1/2
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