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We study the model for branched polymers recently introduced by Lucena et al. [Phys. Rev. Lett. 72,
230 (1994)]. Our calculations of the three exponents d,, dni,, and = for large systems suggest that the
model belongs to the universality class of percolation. This is in contrast with the common belief that
branched polymers belong to the universality class of lattice animals.

PACS numbers: 61.41.+e

In the last decades, the polymerization process has
become an important topic in both applied and basic re-
search [1-5]. It is commonly believed that in dilute so-
lutions [6], where interactions between different polymers
can be neglected, linear polymers can be modeled by self-
avoiding walks (SAWSs) [1,2,5] and branched polymers
are in the universality class of lattice animals (LAs) [7-9].
The SAW ensemble consists of all configurations of noin-
tersecting random walks (of N steps), while the LA en-
semble consists of all configurations of N-site clusters. In
recent years it became clear that asymptotically SAWSs
can be generated by a kinetic growth walk (KGW), where
at each step the random walker can move only to those
neighboring sites that have not been visited before [10-
12]. Very recently, in order to generate branched poly-
mer structure, Lucena et al. [13] generalized the KGW
to include branching [branched polymer growth model
(BPGM)] [14]. They found the interesting phenomenon
that at a (small) finite probability of branching, 5., that
increases monotonically with the concentration ¢ of im-
purities in the system, a transition occurs from SAW-type
structures at small branching probability » to compact
structures at large 5. The important question, however, to
which universality class the structures at the critical line
b.(q) belong to has not been resolved.

In this Letter we show that the branched polymers at
the critical line are not of LA type as would have been
expected, but most probably belong to the universality
class of percolation. Our results are based on extensive
numerical studies of the fractal dimension d,;, of the
minimum path between two cluster points, of the chemical
dimension d, and of the exponent = characterizing the
distribution of clusters of given size.

The BPGM generates polymer structures from a seed in
a self-avoiding manner similar to the KGW, but allows for
the possibility of branching with bifurcation probability
b. To be specific, consider a square lattice where at
t = 0 the center of the lattice is occupied by a polymer
“seed.” There are four empty nearest-neighbor sites of
the seed, where the polymer is allowed to grow. At
step r = 1, two of these four growth sites are chosen
randomly: One of them is occupied by the polymer with
probability 1, the other is occupied with probability 5.
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This process is continued. At step 7 + 1, the polymer
can grow from each of the sites added at the foregoing
step ¢ to empty nearest-neighbor sites (growth sites) either
in a linear fashion or by bifurcation with probability 5,
provided there are enough growth sites left; otherwise,
the polymer stops growing. If a certain concentration ¢
of the lattice sites are occupied by impurities and cannot
serve as growth sites, large polymers can be generated
only below the percolation threshold ¢. of the considered
lattice (g, = 0.40723 on the square lattice). According
to Lucena et al. [13] the critical line b.(g) separates a
phase that belongs to the universality class of SAWs at
small » from a phase belonging to the universality class
of compact Eden clusters at large b, with b.(0) = 0.055
and b.(gq.) = 1. The universality class at the critical
line could not be identified by Lucena et al. [13] when
calculating the fractal dimension d; of the clusters in
Euclidean space.

To determine the universality class of the BPGM at
the critical line we have studied the growth process in
chemical ¢ space and determined the critical exponents
dmin, de, and 7 [14]. The chemical distance ¢ between
two cluster points separated by Euclidean distance r is
defined as the length of the shortest path between them
on the cluster, and the fractal dimension d,,, describes
how ¢ scales with r, £ ~ r%n, The chemical dimension
d, describes how the cluster mass within chemical dis-
tance ¢ scales with ¢, M ~ ¢4, The conventional frac-
tal dimension d, defined by M ~ rd, is related to d,
and dpyin by dy = dedyin. FOr SAW structures, de = 1
and dnin = dy, while for Eden clusters dpi, = 1 and
d¢ = dy = d. For percolation clusters in d = 2 at criti-
cality, we have dni, = 1.13, dy = 91/48, and d; = 1.68
[15]. The exponent = describes the cluster size distribu-
tion. We have found that direct numerical calculations
of dy by the mass-radius relation are not conclusive due
to the existence of strong boundary effects. In contrast,
calculations in chemical space do not have any boundary
effect, since the branched polymers are grown in chem-
ical space: At step ¢+ = 1 the first shell in € space is
completed, at + = 2 the second shell, and so on. Hence
the chemical space is the natural metric for calculating
the critical exponents of the BPGM.
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Plot of the chemical dimension d, as a function of 1/¢ [obtained from the successive slopes of logM(€) vs log€] for

(@ » =1 and g = 0.2 (square), 0.4030 (full triangle), 0.4045 (diamond), 0.4040 (full square), 0.4050 (triangle), and 0.4072 (full
circle); (b) » = 0.5 and g = 0.2 (full diamond), 0.34 (square), 0.3410 (full triangle), 0.3415 (diamond), 0.3420 (full square), 0.3430
(triangle), and 0.35 (full circle); (c) ¢ = 0 and b = 0.04 (full circle), 0.0550 (triangle), 0.0565 (full square), 0.0570 (diamond),
0.0575 (full triangle), 0.0580 (square), and 0.1 (full diamond). The upper plots of the figures show a broad regime around
criticality and are based on averages of M(¢) over 4000 configurations, with a maximum chemical distance €,.,x = 4000. The lower
parts concentrate on the immediate vicinity of the critical points, with 20 000 configurations and €,,.,x = 2000. The horizontal lines

represent the known value d; =

Figures 1 and 2 show the fractal dimensions d, and
dmin in the vicinity of three representative points at the
critical line: (a) around (b = 1, ¢ = 0.4037), (b) around
(b = 0.5, g = 0.3415), and (c) around (b = 0.0567, q =
0). The symbols are from our simulations, and the hor-
izontal lines represent the know values for percolation.
We expect three types of behavior for £ — . compact
structures with d; — 2 and dyi, — 1 below the critical
line, SAWSs with d¢; — 1 and dpin — % above the criti-
cal line, and critical branched polymers with different ex-
ponents at the critical line. These features are clearly
seen in the figures and the values of the fractal di-
mensions at the three points on the critical line are in

1.68 for percolation. The simulations were performed on a square lattice.

very good agreement with the known values for perco-
lation. The results are particularly convincing for b = 1
[Figs. 1(a) and 2(a)] and b =% [Figs. 1(b) and 2(b)],
where the critical regime is reached already for small
€. For g = 0 [Figs. 1(c) and 2(c)], however, there ex-
ist large crossover phenomena due to initial exponen-
tial growth in the absence of impurities, which yields
too large values of d,. This is clearly seen in Fig. 1(c)
for b = 0.1, where d, approaches 2 from above. From
Figs. 1(c) and 2(c) we conclude that the critical point for
g = 0 is between b = 0.0565 and 0.0575, and the expo-
nents are dy = 1.70 = 0.05 and d,;, = 1.1 = 0.05 which
are consistent with percolation. For obtaining more accu-
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FIG. 2. Plot of dy;, as a function of 1/¢ [obtained from the successive slopes of logr(€) vs log€] for the parameters described in

Fig. 1. The horizontal lines represent the known value d,;, =

1.13 for percolation.
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FIG. 3. Plot of the exponent 7 as a function of 1/¢ [obtained
from the successive slopes of logN(€) vs log(£)] in the vicinity
of the critical points, for the same parameters as in the upper
parts of Figs. 1 and 2. The horizontal lines represent the known
value 7 = (r — 2)d, = (d/d; — 1)d; = 0.092 for percolation.

rate results for ¢ = 0, one needs to study much larger sys-
tems (with €. > 10*) which is beyond the capacity of
present computers. From Figs. 1(a) and 1(b) and 2(a) and
2(b), on the other hand, we conclude d; = 1.68 * 0.02
and dpi, = 1.13 = 0.02 already for €,,,x = 4000. These
values are in excellent agreement with known percola-
tion values, but are significantly different from the values
known for lattice animals, d, = 1.33 and dy,;,, = 1.17 [9].

For obtaining further information on the exponents
we calculated the number N(r) of surviving polymers
as a function of the number of growth steps r. For
compact structures we expect N(r) — N(«) > 0 for r —
o, while for SAWs N(¢) should decay exponentially.
At criticality, we expect power-law behavior, N(r) «
t~7 or, since in the BPGM ¢t = ¢, N({) x €~ 7. For
percolation structures one has # = (r — 2)dy = (d/d; —
1)de = 0.092. Figure 3 shows 7 vs 1/¢ in the vicinity of
the above three critical points. Again, the symbols are
from our simulations, and the horizontal lines represent
the percolation value for 7. The results are consistent
with our conclusion from Figs. 1 and 2 that the BPGM
belongs to the universality class of percolation.

Figures 1(a), 2(a), and 3(a) show that for » = 1 (full
bifurcation) the critical ¢ value for the square lattice
is ¢*(b = 1) = 0.4040 = 0.0005, which is well below
the percolation threshold g, = 0.40723. The reason for
the difference between ¢* and g. is that higher-order
branching (trifurcation, tetrafurcation, etc.) is forbidden,
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which effectively decreases .. From this follows the
surprising observation that even on the infinite percolation
cluster below g., which is compact on large length scales,
branched polymers with bifurcation probability 5 = 1 will
also end up as SAW-type polymers, as long as ¢g >
g“(b =1).
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