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Abstract

A method for embedding graphs in Euclidean space is suggested. The method connects nodes
to their geographically closest neighbors and economizes on the total physical length of links.
The topological and geometrical properties of scale-free networks embedded by the suggested
algorithm are studied both analytically and through simulations. Our 2ndings indicate dramatic
changes in the embedded networks, in comparison to their o3-lattice counterparts, and call into
question the applicability of o3-lattice scale-free models to realistic, everyday-life networks.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The Internet and the World Wide Web (WWW), the electricity power grid, networks
of @ight connections, of social contacts, and neuronal networks of the brain are few of
the many examples of networks that surround us and that may be usefully described
as graphs [1–5].
Graph theory is rooted in the 18th century, beginning with the work of Euler. Early

e3orts focused on properties of special (and usually small) graphs. In 1960s, Paul
Erdős and AlfrEed REenyi [6–8] initiated the study of random graphs, also known as ER
graphs. The unlimited size and randomness of ER graphs made them natural contenders
for models of large networks encountered in everyday life.
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In 1967, the psychologist Stanley Milgram asked himself how many acquaintances,
on average, connect between a person on the East coast and another on the West
coast of the USA. Following some research, he 2nally concluded that the number of
acquaintances is surprisingly small, just about six [9]. This celebrated “six degrees
of separation” achieved widespread popularity. It was later realized that an average
short path, typically of the order lnN (N being the number of nodes, or the size of
the network), connects between randomly selected nodes in most naturally occurring
networks. Recognizing Milgram’s contribution, the e3ect came to be known as the
small world property of networks. ER graphs possess the small world property.
However, an important ingredient was still missing. In networks of social contact

the people who are connected to a certain individual (such as family, acquaintances
at work, and friends) are highly likely to be connected among themselves. This high
degree of clustering is absent in ER graphs. Small World Networks, introduced in
Refs. [11,10], exhibit high degrees of clustering as well as the small world property.
They mark an important stage in the modeling of everyday networks and are studied
in their own right.
It was recently realized that in addition to a high clustering index and the small world

property, real-life networks exhibit yet a third important characteristic: a scale-free
degree distribution. The degree of node i is the number of links, ki, connected to the
node. The likely degree of the various nodes in most observed networks follows a
power-law distribution:

P(k) = ck−�; m6 k6K ; (1)

where c is an appropriate normalization factor, m is the minimal degree of any given
node, and the cuto3 degree K depends on the size of the network, K ∼mN 1=(�−1)

[12,13]. The term scale-free refers to the fact that the moments 〈kn〉 for n¿ ��� do
not exist (diverge), in the limit of N → ∞. Scale-free networks possess the small world
property, and it is possible to construct them with a high degree of clustering. Many
important examples follow this pattern, including the Internet [14,15] and the WWW
(both for incoming and outgoing links) [16,17], social networks, and virtually any large
network arising in some natural context. See Refs. [3,4], for excellent reviews, and
Ref. [5], for a timely anthology.
An oft-neglected aspect in the modeling of everyday-life networks is the fact that

they are embedded in physical (Euclidean) space and possess a geography, in addi-
tion to their topology. The spatial location of nodes and the length of the connecting
links is never a consideration in the models of networks discussed above. Neverthe-
less, routers of the Internet and social networks lay on the two-dimensional surface
of the globe; neuronal networks in brains occupy three-dimensional space, etc. The
likelihood of connections between the nodes in such networks is certainly a3ected by
their geographical proximity, and one expects nontrivial consequences arising from this
interplay between geography and topology [18]. Yet, most studies so far have focused
on topological networks, where the nodes and links exist in some abstract space, devoid
of metric.
In this paper, we consider the embedding of networks in Euclidean space. In

Section 1, we discuss general aspects of embedding and introduce a speci2c algorithm



D. ben-Avraham et al. / Physica A 330 (2003) 107–116 109

for the embedding of random networks of arbitrary degree distribution. This algorithm
favors connections to nearest nodes and economizes on the total length of the links.
We show that in2nite networks can be thus embedded if and only if the degree dis-
tribution has compact support, that is, provided that there exists a sharp upper cuto3
K¡∞ for the degree of any given node. If the distribution has no compact support,
then embedding introduces an arti2cial cuto3 and is only possible in a restricted sense.
In Section 2, we apply the embedding algorithm to the widespread case of scale-free
networks and study the key structural properties of the resulting lattices. We conclude
with a discussion of open work and a comparison to an interesting related algorithm,
proposed by Warren, Sander, and Sokolov [19], in Section 3.

2. The embedding algorithm

Our general problem is that of embedding a given in2nite graph in Euclidean space.
Suppose 2rst that the graph contains no cycles (loops), i.e., it is a tree. Let the volume
of a node be v. The total volume of nodes within chemical shell l (nodes up to l links
away from a given node) increases as 〈k〉lv, where 〈k〉 = ∫

kP(k) dk is the average
degree of the nodes. On the other hand, the volume enclosed within a Euclidean dis-
tance r scales as rd (in d-dimensions). Unless the links become progressively long, the
exponential growth in l cannot be sustained within the much slower algebraic growth in
r. If the network is to be statistically homogeneous, a lengthening of successive links
is unacceptable. We conclude that in2nite trees, such as the Cayley tree (Fig. 1a),
are not embeddable in Euclidean space. 1 Allowing for loops, the volume constraint is

Fig. 1. Embedding problem. The Cayley tree (a) is a regular graph (all nodes have the same connectivity,
k =3) without loops. It cannot be embedded in Euclidean space, unless one allows for loops: the hexagonal
lattice (b) is one example of embedding achieved in this way. Notice that the degree distribution remains
unchanged.

1 An amusing example is provided by star-burst dendrimers (SBD)—star-shaped polymers that grow in
the pattern of the Cayley tree of Fig. 1a. The SBDs typically cannot grow beyond chemical shell l=6, due
to lack of space. See, for example, Ref. [21].
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reduced to the extent that embedding might be possible while retaining homogeneity,
and without a change in the degree distribution. An example is shown in Fig. 1b.
In order to make further headway, we restrict ourselves to random graphs, of arbi-

trary degree distribution P(k), and the following embedding algorithm [22]. To each
site i of a d-dimensional lattice, assign a random connectivity ki, taken from the degree
distribution P(k). Select site j at random and connect it to its closest neighbors, until
its preassigned connectivity kj is realized, or until all sites within distance

r(kj) = Ak
1=d
j (2)

have been explored. A link to site l is allowed provided that: (a) the site is not saturated
(its connectivity has not yet reached the preassigned kl), and (b) its distance from
site j is smaller than Ak1=dl . Repeat this procedure for all sites. This algorithm makes
sense in the context of social networks, where connections are typically con2ned to
one’s immediate neighborhood. The implied economy in the physical length of links
might render the algorithm useful for the modeling of other networks of interest.
Suppose that one attempts to embed an in2nite network, of degree distribution P(k),

in an in2nite lattice, by the above algorithm. Nodes with a connectivity larger than a
certain cuto3 kc(A) cannot be realized, because of the possible saturation of surrounding
sites. Consider the number of links n(r) entering a generic node from a surrounding
neighborhood of radius r. Sites at distance r′ are linked to the node with probability

Pr(k ¿ (r′=A)d) =
∫ ∞

(r′=A)d
P(k ′) dk ′ :

Thus,

n(r) =
∫ r

0
dr′Sdr′

d−1
∫ ∞

(r′=A)d
dk ′P(k ′) ;

where Sd is the surface area of the d-dimensional unit sphere. Reversing the order of
integration and carrying out the spatial integral, we obtain

n(r) =
∫ (r=A)d

0
dkP(k)

∫ Ak1=d

0
dr′Sdr′

d−1 +
∫ ∞

(r=A)d
dkP(k)

∫ r

0
dr′Sdr′

d−1

= Vdrd
{(

A
r

)d ∫ (r=A)d

0
kP(k) dk +

∫ ∞

(r=A)d
P(k) dk

}
;

where Vd = 1=dSd is the volume of the d-dimensional unit sphere. Finally, taking the
limit r → ∞, we derive the cuto3

kc = lim
r→∞ n(r) = VdA

d〈k〉 : (3)

We distinguish between two cases for the degree distribution P(k): with and without
compact support. The distribution P(k) has compact support if there exists a K ¡∞
such that P(k) = 0 for all k ¿K . All 2nite networks have a distribution with compact
support, however in2nite networks might too have compact support (an example is the
Cayley tree of Fig. 1a). If this is the case, then 〈k〉6K is 2nite, and one can always
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select A large enough so that kc ¿K . In other words, if there is compact support, the
network is embeddable.
If the network is in2nite and without compact support, then if 〈k〉¡∞, for any 2nite

A, the cuto3 kc is 2nite and the tail of the distribution for k ¿kc is chopped o3. (In2nite
networks with diverging 〈k〉 are pathological—we are not aware of any important
practical application—though they might be embeddable.) The cuto3 connectivity kc
implies a cuto3 length

�= r(kc) = (Vd〈k〉)1=dA2 : (4)

The embedded network displays the original (chopped) distribution up to length scale
� and repeats, statistically, at length scales larger than �. Indeed, � is analogous to
the correlation length in percolation theory, above criticality, where the in2nite cluster
is fractal for r ¡� and is homogeneous for r ¿� [23–25]. We emphasize that the
cuto3 kc is of consequence even if the distribution P(k) is narrow, that is, even if∫∞
kc
P(k) dk�1. Indeed, even in such a case, the length scale � is 2nite (and controlled

mainly by A).
In summary, 2nite networks (all practical situations) are always embeddable by our

proposed algorithm. In2nite networks are strictly embeddable only if their degree dis-
tribution has compact support. Otherwise, they are embeddable in a restricted manner,
with a cuto3 kc imposed by the embedding, and statistical repetition at length scales
r ¿�∼A2.

3. Embedding of scale-free networks

We now apply the embedding algorithm to the widespread case of scale-free net-
works, Eq. (1). Generally, we consider embedding in d-dimensional lattices of size
R, though in the numerical simulations shown below, we limit ourselves to two-
dimensional square lattices with periodic boundary conditions. Because the lattice has a
2nite number of sites, N ∼Rd, the degree distribution (1) has compact support [12,13]:

K ∼mN 1=(�−1) ∼Rd=(�−1) : (5)

This, in conjunction with (2), implies a natural cuto3 length

rmax = r(K)∼AR1=(�−1) : (6)

The interplay between the three length scales, R, �, rmax, determines the nature of the
network. The embedding cuto3 kc is imposed only if �¡rmax, and there is statistical
repetition for r ¿�. Otherwise (rmax¡�), the natural cuto3 of K is attained. As long
as min(rmax; �)�R, the 2nite size of the lattice imposes no serious restrictions. Oth-
erwise (min(rmax; �) & R), 2nite-size e3ects become important. In short, there exist
six di3erent regimes, characterized by the relative ordering of R, �, and rmax: Regime
A: rmax¡R¡�. Natural cuto3 K is attained, and no 2nite-size e3ects. Statistical
repetition occurs at length scales r ¿ rmax, rather than �. Regime B: rmax¡�¡R.
Same as regime A, but statistical repetition occurs at length scales r ¿�. Regime C:
�¡rmax¡R. Cuto3 kc is imposed; no 2nite-size e3ects. Regime D: �¡R¡rmax.
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Fig. 2. Regimes of embedded scale-free networks: (A) rmax¡R¡�, (B) rmax¡�¡R, (C) �¡ rmax¡R,
(D) �¡R¡rmax, (E) R¡�¡rmax, (F) R¡rmax¡�. The diagram can be reduced into just four regimes
separated by the cuto3 kc and by 2nite-size e3ects. (A and B) no cuto3 and no size e3ect; (C and D) cuto3
and no size e3ect; (E) cuto3 and size e3ect; (F) no cuto3 but size e3ect. The two symbols indicate the
parameters corresponding to Fig. 3b, � = 2:5 (diamond) and � = 5 (circle).

Same as regime C. Regime E: R¡�¡rmax. Cuto3 kc is imposed; strong 2nite-size
e3ects prevent statistical repetition. Regime F: R¡rmax¡�. Natural cuto3 K is at-
tained; strong 2nite-size e3ects. The various regimes are demarcated by the lines

ln A
ln R

=




1
2
+

�− 3
2(�− 1)

; rmax = R ;

1
2
; �= R ;

1
2
− �− 3

2(�− 1)
; �= rmax ;

(7)

as shown in Fig. 2. In Fig. 3a, we present typical networks that result from our
embedding method, for �=2:5 and �=5. Long-range links become more noticeable as
� decreases. In Fig. 3b, we show the same networks as in Fig. 3a, where successive
chemical shells are shaded di3erently. Chemical shell l consists of all sites that can be
reached by a minimal number of l connecting links relative to a given site (the central
site, in the 2gure). For our choice of parameters, �=5 falls in the region of �¿rmax,
while for � = 2:5, �¡rmax. In the latter case, we clearly see the statistical repetition
beyond the length scale � (Fig. 3b, �= 2:5).
The degree distribution of the embedded networks is illustrated in Fig. 4. In Fig. 4a,

various values of A were selected such that �¡rmax, and the distribution terminates at
the imposed cuto3 kc. The scale-free distribution is altered slightly, for k ¡kc, due to
saturation e3ects, but the overall trend is highly consistent with the original power law.
The data-collapse shown in the inset con2rms the power-law, as well as the scaling
of the cuto3 kc∼Ad. In Fig. 4b, A=10 was 2xed and values of � were selected such
that �¿rmax. The natural cuto3 K is now attained, and the data collapse at the inset
con2rms the power-law distribution as well as the known relation K ∼mRd=(�−1).
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Fig. 3. Embedded scale-free networks. (a) Actual networks (links are highlighted) for graphs with � = 2:5
and 5, embedded in 50 × 50-sites square lattices. (b) Chemical shells, for the same parameters as in (a),
but for lattices of size 300× 300. Notice the statistical repetition at length scales greater than �, for �=2:5.
In this 2gure and throughout this article, the lower cuto3 was taken to be m = 4. This guarantees that for
large values of �, the network becomes a regular square lattice.

Fig. 4. Degree distribution of embedded scale-free networks, (a) when the cuto3 kc is imposed, and
(b) when the natural cuto3 K is achieved. For (a), the lattice size is R = 400, the distribution exponent
is � = 2:5, and A = 2 (circles), 3 (squares), 4 (diamonds). The inset con2rms the scaling of Eq. (3). For
(b) R = 100, A = 10, and � = 2:5 (circles), 3.0 (squares), 5.0 (diamonds). The inset con2rms the scaling
of Eq. (5).
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We now turn to the relation between the Euclidean metric and chemical length in
our embedded scale-free networks. The chemical distance l between two sites is the
minimal number of links l connecting the two. Thus, if the Euclidean distance between
the sites is r, then

l∼ rdmin (8)

de2nes the minimal (chemical) length exponent dmin. In order to compute dmin, we
regard the chemical shells as being roughly smooth, at least in the regime �¿rmax, as
suggested by Fig. 3b (�= 5). Let the width of shell l be Rr(l), then

l=
∫

dl=
∫

dr
Rr(l)

∼ rdmin ; (9)

since Rl = 1. The number of sites in shell l, N (l), is, on the one hand,
N (l)∼ r(l)d−1Rr(l). On the other hand, since the maximal connectivity in shell l
is K(l)∼N (l)1=(�−1), the thickness of shell (l+ 1) is Rr(l+ 1)∼ r(K(l))∼AK(l)1=d.
Assuming (for large l) that Rr(l+ 1)∼Rr(l), we obtain

Rr(l)∼ r(d−1)=[d(�−1)−1] : (10)

Using this expression in (9) yields

dmin =
�− 2

�− 1− 1=d
: (11)

Thus, for d¿ 1, the dimension dmin¡ 1. This result is opposite to all known disordered
media, where dmin¿ 1. (A particularly simple example is provided by a polymer chain,
or its self-avoiding-walk model, where the end-to-end distance is well approximated by
the Flory relation: r∼ l3=(d+2), i.e., dmin=(d+2)=3.) We have also computed the fractal
dimension of the networks and found that the interior of the l-clusters is compact, with
df = d [22]. (Fig. 3 suggests that the hull of the clusters is fractal.) This result was
con2rmed by simulations. It then follows that the fractal dimension of the network in
chemical space is also anomalous: dl = df=dmin = d=dmin¿d (for d¿ 1).
In Fig. 5a, we plot dmin as measured from simulations, and compared with the

analytical result of Eq. (11). The scaling suggested in Fig. 5b, N (l)∼ ldl−1�(ldl =Rd),
is valid only for �¿rmax. For R→∞, we expect that the network is scale-free up
to length scale � and the analogous scaling would be N (l)∼ ldl−1�(ldl =�d), where
�(x�1)∼ x(d−dl)=dl . It remains an open challenge to conceive of a general scaling
relation that would encompass all of the regimes A–F.

4. Discussion

In summary, we propose an algorithm for the embedding of networks in Euclidean
space. Finite networks can always be embedded in this way. In2nite networks are
strictly embeddable only if the degree distribution has compact support. If not, an
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Fig. 5. Minimal length exponent dmin. (a) dmin vs. �. The analytic result of Eq. (11) (curve) matches nicely
the results measured from simulations (squares). (b) Data collapse for the scaling function �(ldl =Rd), for
� = 4 and lattice sizes R = 1000 (circles), 2000 (squares), 2500 (diamonds) and 3000 (triangles).

arti2cial cuto3 kc results from our embedding technique, and the network repeats itself,
in a statistical sense, at length scales greater than �(kc). We have applied our embedding
algorithm to scale-free graphs, and studied the resulting networks.
Concurrently with our work (and independently), Warren et al. [19] proposed an

embedding algorithm very similar to ours. The main di3erence in their approach is
that connecting to saturated sites is allowed, and a node is connected to as many of
its closest neighbors as necessary, until its target connectivity is ful2lled. In this case,
our computation of kc in Section 1 is still valid, only that now it is a lower cuto3 for
the connectivity of the sites. On the other hand, there is no restriction, in this version
of embedding, on the upper cuto3 of the distribution. We anticipate that � here plays
the role of a ‘geometrical’ length scale, similar to the lattice spacing for a critical
percolation cluster grown on a lattice. (The cluster is self-similar only at length scales
larger than the lattice spacing.)
Embedding scale-free networks in Euclidean space results in some dramatic changes

from the original graphs. Consider, for example, the small world property, common
to o3-lattice scale-free networks grown by any of the known techniques. The small
world property disappears at length scales greater than �: two sites separated by a
physical distance r = n�, n�1, would be connected by at least n intervening links,
due to the statistical repetition. The number of sites within radius r is N ∼ nd�d, so
l∼N 1=d. Not surprisingly, this is the same scaling as for Euclidean d-dimensional
lattices. For distances r ¡�, we have l∼ rdmin ∼Ndmin=d, which represents small-world
behavior, since it improves on the Euclidean l∼N 1=d, but a far cry from the o3-lattice
random graph l∼ lnN or from the scale free with �¡ 3 where l∼ log logN [20].
Another example of a dramatic change is the qualitative di3erence between percolation
in o3-lattice and embedded networks. Indeed, Warren et al. [19] 2nd that the percolation
transition takes place in embedded lattices even for �¡ 3, in contrast to o3-lattice
scale-free networks [3,12]. In view of the fact that many everyday-life networks are
embedded in physical space, we ought to reconsider how the topological properties of
scale-free graphs—properties that we normally attribute to the physical networks—are
a3ected by the embedding.
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