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We propose a general method to map nonlinear recursions on a linear
(but matrix) one. The solution of the recursion is represented as a product of
matrices whose elements depend only on the form of the recursion and not on
the initial conditions. First we consider the method for polynomial recursions
of arbitrary order. Then we discuss the generalizations of the method for
systems of polynomial recursions and arbitrary analytic recursions as well.
The only restriction for these equations is to be solvable with respect to the

highest order term (existence of a normal form).

I. INTRODUCTION

Recursions take a central place in various fields of science. Numerical solution of differ-
ential equations and different models of evolution of a system involve, in general, recursions.

By now, only linear recursions with constant coefficients could be solved [1-3]. However,
the nonlinearity changes the situation drastically. Solution of a rather simple recursion, the
logistic map,

Yns1 = AYn(L — yn)

is far from being so simple as one might guess. The analysis of its behavior, while based on
a roundabout approach, has revealed many amazing properties.

In this paper we suggest a new approach to the solution of nonlinear recursions. It
turns out, that the coefficients of the i-th iteration of the polynomial depend linearly on the

coefficients of the (7 — 1)-th iteration. Using this fact we succeed to write down the general



solution of the polynomial recursion and to generalize it for any recursion

Ynt1 = f(Yn) with 5o =y,

where f(x) is an analytic function. In the paper we study the conditions that the analytic
function must satisty to make this generalization possible.
The gist of the method is the construction of a special transfer matriz, T. It allows to

represent the solution in the form

Yn = (e|Tn|Y>7 (1)

where (e| is the first unit vector, |y) is a vector of initial values and T" is the n-th power of

the matrix T.

II. FIRST-ORDER POLYNOMIAL RECURSION

Here we consider a first-order recursion equation in its normal form

Ynt1 = P(yn)v (2)

where P(x) is a polynomial of degree m:

P(x) = g:akxk, an # 0. (3)

Let yo = y be an initial value for the recursion (2). We denote by |y) the column vector
of powers of y |y) = {y’} )2, and the vector {e| is a row vector (e| = [0j1];Z, - 1t should be

emphasized, that j runs from 0, since in the general case ag # 0. In this notation (ely) is a

scalar product that yields

{ely) =y. (4)

Theorem 1. For any recursion of type Eq. (2) there exists a matric T = {Tjk};okzo such

that



yn = (e[T"]y). ()

The matriz power T" exists for all n and all the operations in the right-hand side of Eq. (5)

are assoctative.

Proof. For n = 0 the statement of the theorem is valid (see Eq. (4)). We introduce the

column vector |y1) af {y{} , where 11 = P(y). Let T be a matrix such that

ly1) =Tly). (6)

The existence of this matrix will be proven later on. If such a matrix exists, then, analogically
to Eq. (4), we have y; = (e|y1) = (e|T|y). Therefore, the statement of the theorem is true
for n =1 as well.

Assume, that Eq. (5) is valid for n = [ for any initial value y. Then y;41 can be represented
as Y11 = (e|T'|y1), where y; = P(y) is considered as a new initial value of the recursion.

Then, using Eq. (6) one gets
yir1 = (€| T'ly1) = (e[ TT'ly) = (e|T™|y).

Now we prove the existence of the matrix T. One has (y1| e [Pj(y)];io. In turn P7(y)

is the ym-th degree polynomial

Pi(y) = (é aiyi)j = éT]wk, (7)

and we infer that T = {7} },_, obeys Eq. (6).
Note, that for j and £ satisfying k£ > ym we have T}; = 0, therefore, each row is finite
(i.e., there is only a finite number of nonzero matrix elements in each row). This proves the

existence of powers of T and associativity in Eq. (5). Thus, the proof is complete.

ITI. SPECTAL CASES

In some special cases the matrix T has the rather simple form.



(a) The binomial: P(x) = a,a” + a,a?. As one can see, in the general case elements of
the matrix T have a form of rather complicated sums. However, they are degenerated to a

fairly simple expression, when the polynomial (3) has only two terms. In this case one has

Pi(y) = (ay” + ay?y =3 (Z)aé‘la;yp“‘””?

=0

Denoting k = p(j — i) +qi, 1 =l(k) = (¢ —p)~'(k — pj), we have

Jq .
P](y) = Z yk (l(k)) a; l(k)afl(k)

k=jp

Thus, the matrix elements T}, are

Example 1. To demonstrate this let us consider the following recursion:

Ynt1 = Ayn(1—yn)  with yo=1y. (9)

Plugging p =1, ¢ = 2, a, = —a, = X into Eq. (8) one immediately obtains

Ty = (—1)F (k J ) M (10)

—J
Thus, we recover the result of Rabinovich et al [4] for the recursion equation known as the

logistic mapping.

(b) The trinomial P(x) = ag+ apz? + a,2? and ag # 0. Then the matrix T has a special

form.
Lemma 1. Let P(x) = ag + apa? + a,2?. Then, the following decomposition exists
T = AT,,

where Tq is a matriz corresponding to the polynomial Po(x) = apa? + azx? and A is a

triangular matriz.



Proof. Consider Py(x) = a,a”? + a,a? and the corresponding matrix Tq. It yields

o0

Toly) = ly}) = {Pi(n)}

=0
For the matrix T one gets T|y) = |y1) et {P(y)j};io )

j .
j JY i—i i
P =3 ()bt + )
=0

Denoting in the last line A;; = (Z) al™" one obtains |y,) = Aly}) = AT,ly) = Tly), and

T = ATy. The lemma is proven.

IV. POLYNOMIAL RECURSIONS WITH NON-CONSTANT COEFFICIENTS

As shown in [4] a generalization of Eq. (9),

can be solved using a similar approach. The solution is
yn = (€|Ty - ToTuly), (12)

where the matrix elements of T; are now i-dependent:

t = (Yo, 1)

—J

The same argument is valid for the general case.

Theorem 2. Let the polynomial in the Eq. (2) depends on n. Then the solution Eq. (5) takes
the form of Eq. (12) with the obvious changes (ag, ..., a, become i-dependent functions) in

corresponding matriz elements.
To illustrate this Theorem we consider

Example 2. We are going to apply the previous material to the Riccati equation. Usually,

people use this name for the equation

Ynt1Yn + a;’byn‘l'l + b;’byn + c;z = 0.
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However, by appropriate variable change [1,2] this equation can be reduced to a linear one

and then treated by conventional techniques. Here we shall be dealing with the following

recursion:

Yni1 = Gp + bpyn + coy? with yo=y.

This is another possible (asymmetric) discrete analog of the Riccati differential equation
[5-7]. It is well-known that the latter cannot be solved in quadratures.
The general results of the two previous sections can be employed to write down the

solution of this recursion. Namely, the solution reads
yn = (€[Tw-- - ToTily),
where the matrix T; is a product of two matrices
T, =AS;.

The matrix elements are given by

(Ai)jr = (i) al™" and (S = (k J ) BRIk ki

—J
V. SYSTEM OF FIRST-ORDER NONLINEAR EQUATIONS

Actually, very little is known about systems of nonlinear equations [8]. We now extend
our method of Sect. II to handle systems of nonlinear equations. Let us demonstrate it on

the following example:

Uny1 = Aty (1 —v,) with  wy =u,

(14)
Upg1 = pop(l —u,)  with  vg=v.
Proceeding here as in Sect. II, we are checking the transformation of a product u/v*:
= oot = )t = v -y (oot () e
7,5 r S
_z —k ] k Kk
_ Zupvq(_l)(p 3)+(a—k) MR (15)
Py q—k)\p—1



One can proceed with the aid of multidimensional matrices [11], but here we prefer to
use more traditional two-dimensional matrices.

Introduce now a vector |uv), which consists of powers u/v* of variables u and v, arranged
in some order. Namely, introduce a bijection (-, -): N*> — N, where N is the set of the natural
numbers and zero. Then, the monomial u/v* is the (j, k)-th component of the vector |uv).

For example, one can use
. L . .
(k) =k+ 50+ 8@ +k+1).
Introducing a matrix T with the elements
Ty gy = (—1)P7 IR ( / ) ( ¢ ) Nk
o q—k)\p—J
we basically return to the familiar transfer-matrix construction. Indeed, we have

U, = (e(170)|T”|uv),

v, = (€| T"uv),
where {e(; )| = {61, }iZo-
Theorem 3. Consider a system of m first-order nonlinear equations:
2D =P 2y, =1 m. (16)
Then the matriz T exists such that

2l = (e(i)|T”|X(1) . .X(m)>7

where the vectors (€] and |xV) ... x™) are defined as above, with the aid of some bijection

(..., ):N™ —=N.

Below, we present the scheme of the proof of a transfer-matrix representation for arbitrary

systems of first-order nonlinear equations.



As before we are checking the product

Pl Pim =P,

jl 7~~~7jm) °

m)

The polynomial P, . ;.) depends on m variables M, .. 20" and therefore can be repre-

'7jm

sented as

P(]17~~~7jm)(x(1)7 s 7x(m)) = (t(]17~~~7]m)|x(1) T X(m)>7
where (t(jl,...,jm)| is the constant vector of coefficients of the polynomial Py . ). This
vector (t(;, .. is the (ji,...,jm)-th row of the transfer matrix T.

The above procedure can be easily generalized on polynomials with variable coefficients,

Pi(n,2M ... (™) in complete analog to the Theorem 2.

VI. RECURSION SOLUTION FOR ARBITRARY ANALYTIC FUNCTIONS IN

THE RHS
Let the series
Z apz’ = (x) (17)
k=0
converge absolutely in [—r,r]. Then the series
Z&kxk = f(:z;), (18)
k=0

where aj, = |ay|, also converge in [—r,r]. We construct the following absolutely convergent

in [—r,r] [9,10] series
o0 7 , j , j , j , o0
Z apr®| = ap + ala{)_lx + azaé_l + a%aé_Q 2. = Z Tjkxk, (19)
k=0 1 1 2 k=0
- ; . . . -
[Z dw’“] = ap + (i) a4 [(i)aza{;l + (‘;) aia{;?] =Y That. (20)
k=0

is said to be the transfer matriz of the analytic

Definition 1. The matriz T = {T;}
Junction f(x) if 3oy Tika® = fi(x).

o0
3,k=0



Using Eq. (19) one can estimate the coefficients T} for a fixed k:

|Tx] < (‘7 —Ik_ )aé_k [r?&xai] < Clag +e€) (21)

for arbitrary € > 0, a constant C' = C(¢), and j > k.

Theorem 4. Let the series

ki_o: bpz" = g(z) (22)

converge absolutely in [—R, R]. The matriz S be the transfer matriz of the function g(x),
and v < r be such that the function f(:z;), defined by (18), satisfies f(|:1;|) [—r, 7] — [0, R].
Then the matriz product ST exists and is equal to the transfer matrix of the composition of
the functions f(x) and g(x), gof(x), i.e., the j-th row of the matriz ST is the vector of the

coefficients of Maclaurin’s decomposition of the function |g of]j ().

Proof. First we prove the existence of the matrix ST. One can estimate the (j, k)-th
element of the matrix ST using Eq. (21):
(STl < 1S5l Tol < Crt Do 1S3llTul < € 32 [Siil(ao + €)'
=0 1=k+1 i=k+1
Since minf(:z;) = f(()) = ap < R we can choose ¢ > 0 sufficiently small, that ag 4+ ¢ < R,
therefore the series in the last expression converges. Thus, the matrix ST exists.
Now we should study the series
k=0 k=0:=0
Since the series converge absolutely:
SIS T | < 301851 Y Tl < 22185l [F(J2])] < oo (24)
k=0:=0 =0 k=0 =0

we can change the order of summation [10]:

S (STt = 3085 Y Tk = 3 S5 ) = (@ =g o ¥ (o).

The theorem is proved.

Restricting ourselves to the first row of the matrix S only we get the following
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Corollary 1. Let the functions f(x) and g(x) satisfy the conditions of Theorem 4; the
bra-vector (b| is the vector of coefficients of the series (22). Then the vector {c| = (b|T

consists of the coefficients of the series

ki_o: cre® = gof(x). (25)

It is easy to see, that calculating the scalar product of the vector {c| and the vector

|x) = {z'}32, we obtain

{(b|T|x) = g o f(x). (26)

In this way we can write down the solution of the recursion

Ynt1 = fyn)  with yo =y. (27)

Theorem 5. Let the series (17) converge absolutely on [—r,r|, the matriz T be the transfer
matriz of the function f(x) and 7 < r be such that (see Eq. (18)) f(|:1;|) [—7, 7] — [0,7].

Then for any initial conditions y € [—r, 7]

Yn = (e|Tn|Y>7 (28)

where the bra-vector (e| = [6;1]:—, and the ket-vector |y) = {y'}:2,.

In order to solve a generalization of the recursion (27), y,41 = f(n,y,), we should

consider n-dependent matrices T,, instead of the matrix T.

One can use the same technique to solve the more general case of multivariable recursions,

Yo =[f(yn1),  [R"=R" f(x)={fix)}_, . xeR

Here we should consider series decomposition of the functions [T, [f;(x)]", instead of the
series (19), and then proceed by the analogy to multivariable polynomial recursions. How-
ever, since the notation becomes very cumbersome, we shall not write down this formalism.

The theorems of this section can be easily generalized on complex mappings. Namely,

the statement of the Theorem 4 for the complex variable functions reads:
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Theorem 6. Let the series (17), (18) and (22) be the series of complex variable z with
the complex coefficients. Series (17) and (18) converge in the circle |z| < r and series (22)
converge in |z| < R. The matrices S and T be the transfer matrices of the functions g(z)
and f(z) correspondingly and 7 < r, ¥ € R be such that f(f) < R. Then the matriz product
ST exists and equals to the transfer matriz of the composition of the functions f(z) and g(z),
gof(z), i.e., the j-th row of the matriz ST is the vector of the coefficients of Maclaurin’s

decomposition of the function [g of]j (z) convergent in |z| < 7.

VII. EXAMPLES

In order to show that the condition f(|z|):[—F, 7] — [0, R] is essential (see Theorem 4)

we present the following

Example 3. Let
VIR S S

. L
glx) ==z —4:1; —|—9:1; —16:1; +...,

Le. dg = %, az+1 = 0, ¢ > 2 and radius of convergence is R = 1; let f(x) be defined

by f(x) = 2z(1 — 2?), f:[-1,1] — [~1,1]. The transfer matrix T of the function f(x)

according to Eq. (8) is Ty, = (—1)*=)/2 ((k—é‘)/2) 2/ for even j — k. The sign in the sequences
{51,252, and {722 }32, alternates. Therefore the sign in the sequence {57 2,15 21 }52, is

constant and for the 2k-th component of the first row of the matrix ST one has

levael = D S12iT2izr| = Y 1S12i 22k = 1S1,206-2) To(h—2) 2]
=0 =0
(k—3y 2 =

for any k£ > 3. Thus, the components of the the first row cannot be the coefficients of

Maclaurin’s decomposition of the function g o f because of its divergence for x > 1/4.

The following example presents a family of function whose transfer matrices form is

invariant under the multiplication.
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Example 4. Let the function f(x) = ax/(b+ x). Then the components of the transfer

matrix T are

E—1\ .
T, = (] B 1)a]b_k, for y,k >0 and T, = bojos, forj=0or k=0, (29)
where
(n) 7m!(:im)! integer myn 0 <m <n,
m 0 any other m,n;

and Oy, is the Kronecker symbol. If g(z) = cx/(d 4+ =) and S is the transfer matrix of g(x),

then the components of the matrix ST are

(5T = isjiTik = i (l _ 1)cjd_i (f:ll)ab_k - (f - i)cjb_k g(a/d)’“ (k ; j)

=0 =0 ]_1
(k=1 (ac )J‘ bd \ "
- j—1 a-+b a-+b '

One can see, that the matrix elements (S7');; have the same form as in Eq. (29).

VIII. SUMMARY

In this paper we have presented a new method to obtain the solution of arbitrary polyno-
mial recursions. The method has been generalized to the systems of multivariable recursions
and analytical recursions. We found a class of analytical function recursions to which the
method can be applied. Particularly, this class contains functions which are analytical over
all space.

Generally, the solution is obtained in the form of a matrix power, applied to the vectors
of initial values. We have presented a way to construct such a matrix.

Famous and important examples, such as the logistic map and the Riccati recursion,
have been considered and the corresponding matrices have been written down explicitly.

The following generalizations are also can be done:

a) Multivariable analytic recursions. This can be done, for example, as in the Section V.
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b) System of higher-order nonlinear equations. The scheme is quite obvious: introduction
of new variables to bring each equation to the first-order structure and, then, construction

of a transfer matrix, as in the previous case.
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