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Abstract

We determine the geometrical properties of the most probable paths at #nite temperatures T ,
between two points separated by a distance r, in one-dimensional lattices with positive energies
of interaction �i associated with bond i. The most probable path-length tmp in a homogeneous
medium (�i = �, for all i) is found to undergo a phase transition, from an optimal-like form
(tmp∼ r) at low temperatures to a random walk form (tmp∼ r2) near the critical temperature
Tc = �=ln 2. At T ¿Tc the most probable path-length diverges, discontinuously, for all #nite
endpoint separations greater than a particular value r∗(T ). In disordered lattices, with �i ho-
mogeneously distributed between � − �=2 and � + �=2, the random walk phase is absent, but a
phase transition to diverging tmp still takes place. Di3erent disorder con#gurations have di3erent
transition points. A way to characterize the whole ensemble of disorder, for a given distribution,
is suggested. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider a disordered lattice of bonds of random energy. A path along this lattice
which minimizes the total energy is known as an optimal path. One may distinguish
between two kinds of paths: paths of -xed length, and paths between two #xed end-
points but of undetermined length. The case of #xed length might be interpreted as a
linear polymer that interacts strongly with a disordered surface or solvent; it has been
studied in detail in the context of self-avoiding walks in random media [1–7]. Similarly,
the case of undetermined length applies to a very long polymer that only portions of it
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interact with the substrate. Our study of optimal paths aims to elucidate how the length
of the path depends on the end-to-end distance. The optimal path between two #xed
points can be determined exactly by the Dijkstra algorithm [8]. Numerical studies by
means of this technique show that the path length increases linearly with the distance
between its endpoints, and therefore such paths are said to belong to the universality
class of directed polymers [8,9].
The minimal energy sought by optimal paths corresponds to the limit of zero temper-

ature. At #nite temperature, there is no longer a unique path, due to thermal Guctuations,
and instead we focus on the most probable path—in a thermodynamical sense. Most
probable paths (at #nite temperature) are markedly di3erent from optimal paths (at
zero temperature). For example, optimal paths are always self-avoiding, which is not
necessarily true about most probable paths.
A useful representation of optimal, or most probable paths is achieved by augmenting

the d-dimensional lattice with a perpendicular dimension along which the path evolves.
This special dimension is referred to as “time”, t. Notice that the walk must always
step forward in the t-direction (even in the case of #nite temperature), so the path
problem is recast into a directed walk in d+ 1 dimensions (Fig. 1).
Directed paths at #nite temperature have been studied only for the case of #xed

length t [10,11]. A crossover was observed from random walk behavior, for small t,

Fig. 1. (a) Two points, marked O and A, separated by r lattice units (or, bonds) on a one-dimensional
lattice. A nondirected path of length t from O to A may be obtained by projecting on this lattice the
directed path shown in part (b) of this #gure. (b) A directed path (in bold line) of length t from O to
A on a (1+1)-dimensional lattice. The horizontal dimension represents ‘space’ and the vertical dimension
represents ‘time’. Directed paths on this lattice are those along which time can only increase. Any directed
path from O to A is the resultant of adding either the bond BA to a directed path from O to B or the bond
CA to a directed path from O to C. This is the basis of the iterative procedure stated in Eq. (14).
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to optimal-like behavior, for large t. In other words, as long as t is large enough
the behavior of directed polymers is the same as for optimal paths, regardless of the
temperature.
In this paper, we address the problem of most probable paths of undetermined length,

at #nite temperature. The walks take place in a one-dimensional lattice, between two
endpoints separated by a distance r (the length of the walks is t¿ r not #xed). We
#rst study an homogeneous lattice, where all the bonds have the same energy �. This
ostensibly simple case exhibits a surprisingly rich behavior. Given a distance r between
the endpoints, there exists a critical temperature T ∗(r) such that the most probable
length of the path, tmp, is #nite for T ¡T ∗(r), but in#nite for T ¿T ∗(r). When tmp
exists (T ¡T ∗), it exhibits crossover behavior; from tmp∼ r for small r, to tmp∼ r2
for large r. We then turn to disordered lattices, where the energy of a bond is in the
range (� − �=2; � + �=2), with uniform probability. In this case, the phase transition is
somewhat modi#ed: there is now a range of temperatures where a #nite fraction of
all disorder con#gurations possesses a well de#ned tmp. De#ning a critical temperature,
Tc(�; �), as the temperature below which tmp is #nite for all con#gurations, we #nd
that Tc(�; �)− Tc(�; 0)∼ − �x, where x≈ 1:2.

2. Most probable paths in a homogeneous medium

2.1. Theory

Consider a one-dimensional chain where the energy associated with each bond is �.
The number N (r; t) of all paths of length t, between two #xed points at distance r
apart, is

N (r; t)=
(
t
t−r
2

)
=

t!
(t − r=2)!(t + r=2)! : (1)

At temperature T each step on the lattice has a Boltzmann weight e−�=T (we take
kB=1); hence, each path of length t has a weight of e−�t=T . A “microcanonical” par-
tition function, for paths of #xed length t, is

GT (r; t)=N (r; t)e−t�=T ; (2)

and the corresponding partition function, for paths of all possible lengths, is:

GT (r)=
∑
t

GT (r; t) : (3)

Notice that there is no “chemical potential”, or “fugacity”. The length of our paths is
controlled only by entropy and the energy of interaction with the lattice. The probability
that the length of the path between the two #xed points is t, is

PT (r; t)=
GT (r; t)
GT (r)

: (4)
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The most probable path-length, tmp, is the value of t for which PT (r; t) (or GT (r; t))
is maximum. At T =0, the only possible path is the optimal path, the one of minimal
energy. In one-dimension it is simply the line joining the endpoints:

tmp(r)|T = 0 = r : (5)

For T ¿ 0, we assume t�r and make use of Stirling’s approximation, to yield

GT (r; t)≈ 1√
2�

exp
[
− t�
T

+ (t + 1) ln 2− 1
2
ln t − r2

2t

]
: (6)

Thus, from dGT (r; t)=dt|tmp =0, we #nd

tmp=
1−

√
1− 8(ln 2− �=T )r2
4(ln 2− �=T ) : (7)

There emerge two di3erent regimes:
(i) �=T ¿ ln 2. In this case tmp is well de#ned for all r. We identify two asymptotic

behaviors, depending on whether the end-to-end distance r is smaller or larger than
the crossover distance r× =(�=T − ln 2)−1=2. For r�r×, we have

tmp≈ r2 ; (8)

which is the signature of a random walk. Whereas for r�r×,

tmp≈ r√
2(�=T − ln 2)

; (9)

similar to the linear relation characteristic of optimal paths at zero temperature. Note
that the region where tmp behaves like a random walk vanishes as T → 0. 1

The asymptotic behavior may be summarized by the scaling form

tmp= r2f
(
r
r×

)
; f(x)∼

{
1; x�1 ;
1√
2x
; x�1 :

(10)

(ii) �=T ¡ ln 2. In this case, for every #nite r there exists a temperature T ∗(r) such
that tmp is #nite if T ¡T ∗(r), but in#nite if T ¿T ∗(r):

T ∗(r)=
�

ln 2− 1=8r2
: (11)

Note that Tc ≡ limr→∞ T ∗(r)= �=ln 2 might be thought of as a critical temperature,
since for T ¡Tc the most probable length is #nite for all values of r. Conversely, for
T ¿Tc, there exists a #nite crossover distance

r∗(T )=
1

2
√
2

(
ln 2− �

T

)−1=2
; (12)

such that tmp is well de#ned only for r ¡ r∗(T ). Hence, at Tc both r× and r∗ diverge,
with the same critical exponent, �= 1

2 . The critical point at Tc can be further illustrated
by the behavior of the average length of the paths, 〈t〉, which is #nite for T ¡Tc but
in#nite for T ¿Tc, regardless of r.

1 For very low temperatures, �=T�ln 2, we have tmp≈
√
T=2� r, which reproduces the expected optimal-like

linear dependence of tmp on r. The coePcient of r is however, incorrect because the necessary condition for
the use of Sterling’s approximation, tmp�r, is violated.
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2.2. Numerical results

In the above discussion we have replaced factorials by the #rst term of Sterling’s
approximation, thus our results are applicable only for large r and t. For unrestricted
values of r and t, analytic calculations may be easily carried out to any desired ac-
curacy. Instead, we now describe a numerical iterative procedure that we also use for
the study of disordered lattices. The results for homogeneous lattices presented in this
section help validate the technique.
Consider a one-dimensional lattice with energies �i, associated with bond i. (The

energy values are #xed, so in the 1 + 1-dimensional lattice of Fig. 1b the energies of
the bonds in a given column are all the same.) The partition function for walks from
(0; 0) to (r; t), at temperature T , is

GT (r; t)=
∑
C

e−EC=T ; (13)

where C denotes a path from 0 to r of exactly t steps, i.e., a directed path from (0; 0)
to (r; t). The energy of interaction of a path, EC, is the sum of the energies of the
lattice bonds encountered along the path. The partition function follows the recursion
relation [12]:

GT (r; t + 1)=GT (r − 1; t)e−�L=T + GT (r + 1; t)e−�R=T : (14)

where �L and �R are the energies of the bonds from (r − 1; t) to (r; t + 1) and
from (r + 1; t) to (r; t + 1), respectively. This can be most clearly seen with help of
Fig. 1b. In practice, however, only the one-dimensional array of GT (r; t); −L6 r6L,
is stored in the computer, and successive iterations for increasing values of t (starting
with GT (r; 0)= �0;0) are generated by the exact enumeration method [13].
For the homogeneous lattice case, we take �i=1, and we have used L=1000. For

each value of r ¿ 0 and #xed temperature T the most probable path-length tmp was
identi#ed as the value of t (t ¡L) for which GT (r; t) is maximum. At every temperature
T , it was observed that beyond a certain value of r; GT (r; t) was maximum only at
t=L, which means that tmp could not be obtained within the #nite lattice imposed.
The results obtained for tmp as a function of r at various temperatures are shown in

Figs. 2 and 3. Fig. 2a shows that the nature of the most probable path-length is almost
entirely optimal-like (tmp∼ r) for T�1=ln 2, but the random walk nature (tmp∼ r2)
appears over a rapidly increasing range of r as T → 1=ln 2≈ 1:44269. When the
variables tmp and r are rescaled according to Eq. (10), the data for di3erent temperatures
are seen to fall on a single curve, except for the region of very small r (Fig. 2b); this
curve represents the universal scaling function f(x) of Eq. (10). For r. 8 there is a
large deviation from the scaling form due to the discreteness of the lattice.
The data for tmp at temperatures above Tc are shown in Fig. 3a. In concurrence

with the theoretical expectations, the random walk nature (tmp∼ r2) is evident at small
values of r and eventually tmp appears to diverge at a certain separation r∗(T ) for every
temperature T ¿ 1=ln 2; at r∗(T ) we observe that the value of tmp suddenly jumps to L.
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Fig. 2. (a) Most probable path-length tmp as a function of the endpoint separation r at temperatures T ¡Tc
in a homogeneous medium. The curves, from right to left, are for the temperatures: 1.4, 1.41, 1.42, 1.43,
1.435, 1.44, 1.441, 1.442, 1.4421, 1.4422, 1.4423, 1.4424, 1.4425 and 1.4426. The data show that most
probable paths far from Tc =1=ln 2≈ 1:44269 are optimal-like (tmp∼ r), indicated by the slope 1, whereas
close to Tc the most probable paths are random walk-like (tmp∼ r2), indicated by the slope 2. (b) The
curves for di3erent temperatures collapse to a single curve when the data shown in part (a) of the #gure
are plotted with rescaled variables. The single curve is the universal scaling function of Eq. (10).

Fig. 3. (a) Most probable path-length tmp as a function of the endpoint separation r, at temperature T ¿Tc, in
a homogeneous medium. The curves, from right to left, are for T =1:4427; 1.4428, 1.4429, 1.443, 1.4431,
1.4432, 1.4433, 1.4434, 1.4435, 1.4437, 1.444 and 1.445. The curves for all the temperatures follow the
parabola tmp = r2 for small values of r, but eventually separate out and diverge at a particular endpoint
separation r∗(T ) characteristic of each temperature. The last curve on the right, which is the data for
T =1:4427, is closest to Tc =1=ln 2≈ 1:44269 and it has the parabolic form almost throughout. (b) The
characteristic endpoint separations r∗(T ) is shown as a function of the temperature T .
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Fig. 3b shows the variation of r∗ with temperature, which agrees well with the result
derived from Sterling’s approximation as T → Tc.

3. Most probable paths in disordered media

For the study of most probable paths in disordered lattices, we consider a lattice with
random bond energies, �i, homogeneously distributed in (�− �=2; �+ �=2), where � can
be thought of as the parameter characterizing disorder: the limit �→ 0 corresponds to
the homogeneous lattice. Furthermore, for comparison with the homogeneous results
presented so far, we take �=1.
We have performed computer simulations of 104 realizations of disorder, for several

ranges � of energies, in one-dimensional lattices of 4000 bonds. For each realization of
disorder the partition function G(r; t) was calculated by the exact enumeration method
of the previous section.
Unlike what is observed in a homogeneous medium, the random walk behavior

of the most probable path-length never appears in the disordered case. Otherwise, a
transition similar to that of the homogeneous case is observed, but with some features
that are unique to disorder. For each realization, and for T ¿T ′, there exist a r∗(T )
such that the most probable path-length diverges for endpoint separations r ¿ r∗(T ). If
T ¡T ′, there is no divergence, regardless of r. An example, for a typical realization
with 0:56 �i6 1:5 (�=0:5), is shown in Fig. 4. In contrast to the homogeneous case,

Fig. 4. Most probable path-length as a function of the endpoint separation r, at di3erent temperatures, for a
particular realization of disorder. The curves from left to right, are for T =1:16, 1.14, 1.12, 1.1, 1.05, 1.01,
0.97, 0.9. The energies �i are in the range [0:5; 1:5]. Above a certain temperature T ′, which is characteristic
of the particular realization of disorder analyzed, the most probable path-length diverges when r ¿ r∗(T )
for every T ¿T ′, similar to the case of a homogeneous lattice. Unlike homogeneous lattices, the random
walk phase is absent.
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the temperature T ′ is speci-c to each realization, and does not characterize the en-
semble as a whole.
A general property that describes the full ensemble of disordered lattices is the

fraction f�;�(T; r) of realizations for which the most probable path-length between
two points, a distance r apart, diverges at temperature T . In the homogeneous case,
f�;0(T; r) is the step function:

f�;0(T; r)|r = const:=

{
0; T6T ∗(r) ;

1; T ¿T ∗(r) :
(15)

In the presence of disorder, �¿ 0, the fraction f�;�(T; r) obtained numerically has a
sigmoid shape. Results for �=1 and various values of � are shown in Fig. 5.
One can see from Fig. 5 that for each range of disorder, � − �=26 �i6 � + �=2,

there is a temperature T ∗
�;�(r) below which f�;�(T; r) is zero. Consequently, below

the asymptotic value Tc(�; �)=T ∗
�;�(r→∞) the quantity f�;�(T; r) is always zero,

Fig. 5. Fraction of realizations of disorder in which the most probable path-length diverges shown as a
function of the temperature T , for disorder range: (a) 0:96 �i6 1:1, (b) 0:76 �i6 1:3, (c) 0:56 �i6 1:5.
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Fig. 6. (a) Critical temperature Tc(�; �), for �=1, shown as a function of the width � of the range of
disordered bond energies. The data obtained numerically are found to be above the theoretical lower bound
denoted by the solid line. (b) Deviations of the critical temperatures shown in part (a) from that of the
homogeneous medium with �=1 seem to follow a power law.

regardless of the value of r. The temperatures T ∗
�;�(r) and Tc(�; �) are characteristic of

the ensemble.
A lower bound for Tc(�; �) is provided by the extreme case where all the bonds

assume the lowest possible energy, �− �=2:

Tc(�; �)¿Tc

(
�− �

2
; 0
)

=
�− �=2
ln 2

=Tc(�; 0)
[
1− �

2�

]
: (16)

In Fig. 6(a), we show values of Tc(1; �) obtained numerically. We also #nd that
Tc(1; �) deviates from Tc(1; 0) of the homogeneous system in power-law fashion
(Fig. 6b):

Tc(1; 0)− Tc(1; �)∼ �x; x≈ 1:2 : (17)

Though our data is for �=1, we believe that a similar relation holds for other values
of �¿ 0.

4. Discussion

The central result of this paper is the phase transition in the nature of most probable
paths between two #xed points in a one-dimensional lattice with homogeneous bond
energy �. A transition was shown to occur from an optimal-like nature at low temper-
atures to a random walk form near criticality, and to a discontinuous divergence of the
path lengths at temperature T ¿Tc= �=ln 2. The length of the most probable path at
any #nite temperature is controlled by two opposing factors: the energy of interaction
with the lattice and the entropy. At low temperatures (�=T → ∞) the optimal nature
of the most probable paths could be attributed to the drive to minimize the energy of
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interaction with the lattice, entropy being of negligible consequence. At extremely high
temperatures (�=T → 0), the available entropy is large enough for the most probable
paths to ignore the interaction with the lattice; consequently the paths assume the form
of a random walk and eventually diverge in length.
Remarkably, disorder seems to kill the random walk phase, though the transition

to divergent path lengths persists. A likely reason is that the entropy available to the
most probable paths is lowered by the pinning of the walks to regions of relatively low
energy. It would be interesting to see how our one-dimensional results are modi#ed
in higher (spatial) dimensions, where the landscape of disorder is richer due to the
possibility of a percolation transition. Also, we o3er no explanation for the numerically
observed power-law dependence of Tc(�; �)− Tc(�; 0) on �; this remains a subject for
future research.
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