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Percolation critical exponents in scale-free networks
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We study the behavior of scale-free networks, having connectivity distributionP(k);k2l, close to the
percolation threshold. We show that for networks with 3,l,4, known to undergo a transition at a finite
threshold of dilution, the critical exponents are different than the expected mean-field values of regular perco-
lation in infinite dimensions. Networks with 2,l,3 possess only a percolative phase. Nevertheless, we show
that in this case percolation critical exponents are well defined, near the limit of extreme dilution~where all
sites are removed!, and that also then the exponents bear a strongl dependence. The regular mean-field values
are recovered only forl.4.
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Large networks have been attracting considerable inte
@1–6#. A useful characterization of such networks is th
degree distributionP(k) or the probability that an arbitrary
node be connected to exactlyk other nodes. Many naturally
occurring networks~the Internet, nets of social contacts, s
entific collaborations, ecological nets of predator-prey, et!
exhibit a power-law orscale-freedegree distribution:

P~k!5ck2l, k>m, ~1!

wherem is the minimal connectivity~usually taken to bem
51) andc is a normalization factor.

Imagine that a large network is diluted, by random
moval of a fractionp of its nodes. Ifp is small, one expects
that the network remains essentially connected: there exi
giant componentof connected nodes that constitutes a fin
fraction of the total size of the original network. Above
certain threshold of dilutionpc , the giant component disap
pears and the network effectively disintegrates. This is
problem of percolation@7,8# as defined on networks.~Perco-
lation was originally defined on regular lattices.! The giant
component corresponds to theinfinite incipient clusteror
spanning clusterwhich forms only in thepercolating phase,
at dilutions smaller than the percolation thresholdpc .

Percolation in scale-free networks is widely recognized
a key problem of interest@1–6#. Applications range from the
robustness of communication networks~the Internet, phone
networks! in the face of random failure~removal! of a frac-
tion of their nodes~e.g., random breakdown of routers!, to
the efficiency of inoculation strategies against the sprea
disease, to the ecological impact of the extinction of so
species.

For a random network of arbitrary degree distribution, t
condition for the existence of a spanning cluster is@5,9–11#

k[
^k2&

^k&
.2. ~2!
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Suppose a fractionp of the nodes~and their links! are re-
moved from the network.~Alternatively, a fractionq51
2p of the nodes are retained.! The original degree distribu
tion, P(k), becomes

P8~k!5(
l 5k

`

P~ l !S l
kD ~12p!kpl 2k. ~3!

In view of this newP8(k), Eq. ~2! yields the percolation
threshold:

qc512pc5
1

k21
, ~4!

wherek is computed with respect to the original distributio
P(k) before dilution.

Applying the criterion~4! to scale-free networks one con
cludes that forl.3 a phase transition exists at a finiteqc ,
whereas for 2,l,3 the transition takes place only at th
extreme limit of dilution ofqc50 @5,6#. Here we concern
ourselves with the critical exponents associated with the p
colation transition in scale-free networks ofl.2. We show
that critical exponents are well defined~and we compute
their l-dependent values! even in the nonpercolative regim
of 2,l,3. In the percolative range ofl.3, we find
l-dependent exponents which differ from the regular me
field values of percolation in infinite dimensions. This irreg
larity can be traced to the fat tail of the distribution~1!. The
regular mean-field exponents are recovered only forl.4.

In @4,12# a generating function is built for the connectivit
distribution:

G0~x!5 (
k50

`

P~k!xk. ~5!

The probability of reaching a site with connectivityk by
following a specific link iskP(k)/^k& @4,9,12#, and the cor-
responding generating function for those probabilities is
©2002 The American Physical Society13-1
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G1~x!5
( kP~k!xk21

( kP~k!

5
d

dx
G0~x!/^k&. ~6!

Let H1(x) be the generating function for the probability
reaching a branch of a given size by following a link. After
dilution of a fractionp of the sites,H1(x) satisfies the self-
consistent equation

H1~x!512q1qxG1„H1~x!…. ~7!

SinceG0(x) is the generating function for the connectivi
of a site, the generating function for the probability of a s
to belong to ann-site cluster is

H0~x!512q1qxG0„H1~x!…. ~8!

H0(1) is the probability that a site belongs to a cluster of a
finite size. Thus, below the percolation transitionH0(1)
51, while above the transition there is a finite probabil
that a site belongs to the infinite spanning cluster:P`51
2H0(1). It follows that

P`~q!5qS 12 (
k50

`

P~k!ukD , ~9!

whereu[H1(1) is the smallest positive root of

u512q1
q

^k& (
k50

`

kP~k!uk21. ~10!

This equation can be solved numerically and the solut
may be substituted into Eq.~9!, yielding the size of the span
ning cluster in a network of arbitrary degree distribution,
dilution q @4#.

We now compute the order parameter critical exponenb.
Near criticality the probability of belonging to the spannin
cluster behaves asP`;(q2qc)

b. For infinite-dimensional
systems~such as a Cayley tree! it is known that b51
@7,8,13#. This regular mean-field result is not always val
however, for scale-free networks. Eq.~9! has no special be
havior atq5qc ; the singular behavior comes fromu. Also,
at criticality P`50 and Eq.~9! implies thatu51. We there-
fore examine Eq.~10! for u512e andq5qc1d:

12e512qc2d1
~qc1d!

^k& (
k50

`

kP~k!~12e!k21. ~11!

The sum in Eq.~11! has the asymptotic form

(
k50

`

kP~k!uk21;^k&2^k~k21!&e1
1

2
^k~k21!~k22!&e2

1•••1cG~22l!el22, ~12!

where the highest-order analytic term isO(en), n5 bl22c.
Using this in Eq.~11!, with qc51/(k21)5^k&/^k(k21)&,
we get
03611
y

n

t

^k~k21!&2

^k&
d5

1

2
^k~k21!~k22!&e1•••1cG~22l!el23.

~13!

The divergence ofd as l,3 confirms the lack of a phas
transition in that regime. Thus, limiting ourselves tol.3,
and keeping only the dominant term ase→0, Eq. ~13! im-
plies

e;H S ^k~k21!&2

c^k&G~22l! D
(1/l23)

d (1/l23), 3,l,4

2^k~k21!&2

^k&^k~k21!~k22!&
d, l.4.

~14!

Returning toP` , Eq. ~9!, we see that the singular contribu
tion in e is dominant only for the irrelevant range ofl,2.
For l.3, we find P`;qc^k&e;(q2qc)

b. Comparing this
to Eq. ~14! we finally obtain

b5H 1

l23
, 3,l,4,

1, l.4.

~15!

We see that the order parameter exponentb attains its
usual mean-field value only forl.4. Moreover, forl,4
the percolation transition is higher than second-order: fo
1@1/(n21)#,l,31@1/(n22)# the transition is of thenth
order. The result~15! has been reported before in@6#, and
also found independently in a different but related model
virus spreading@14,15#. The existence of an infinite-orde
phase transition atl53 for growing networks of the Albert-
Barabási model, has been reported elsewhere@16,17#. These
examples suggest that the critical exponents are not m
dependent but depend only onl.

For networks withl,3 the transition still exists, though
at a vanishing threshold,qc50. The sum in Eq.~11! be-
comes

(
k50

`

kP~k!uk21;^k&1cG~22l!el22. ~16!

Using this in conjunction with Eq.~10!, and remembering
that hereqc50 and thereforeq5d, leads to

e5S 2cG~22l!

^k& D (1/32l)

d (1/32l), ~17!

which implies

b5
1

32l
, 2,l,3. ~18!

In other words, the transition in 2,l,3 is a mirror image
of the transition in 3,l,4. An important difference is tha
qc50 is notl dependent in 2,l,3, and the amplitude of
P` diverges asl→2 ~but remains finite asl→4).
3-2
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In @12# it was shown that for a random graph of arbitra
degree distribution the finite clusters follow the usual scal
form

ns;s2te2s/s* . ~19!

Heres is the cluster size andns is the number of clusters o
size s. At criticality s* ;uq2qcu2s diverges and the tail o
the distribution behaves as a power law. We now derive
exponentt. The probability that a site belongs to ans cluster
is ps5sns;s12t, and is generated byH0:

H0~x!5( psx
s. ~20!

The singular behavior ofH0(x) stems fromH1(x), as can be
seen from Eq.~8!. H1(x) itself can be expanded from Eq
~7!, by using the asymptotic form~12! of G1. We let x51
2e, as before, but work at the critical pointq5qc . With the
notation f(e)512H1(12e), we finally get @note that at
criticality H1(1)51]

2f52qc1~12e!qcF12
f

qc
1

^k~k21!~k22!&
2^k&

f21•••

1c
G~22l!

^k&
fl22G . ~21!

From this relation we extract the singular behavior ofH0 :
f;ey. Then, using Tauberian theorems@18# it follows that
ps;s212y, hencet521y.

For l.4 the term proportional tofl22 in Eq. ~21! may
be neglected. The linear termef may be neglected as wel
due to the factore. This leads tof;e1/2 and to the usua
mean-field result

t5
5

2
, l.4. ~22!

For l,4, the terms proportional toef, f2 may be ne-
glected, leading tof;e1/(l22) and

t521
1

l22
5

2l23

l22
, 2,l,4. ~23!

Note that for 2,l,3 the percolation threshold is strictl
qc50. In that case we work atq5d, small but fixed, taking
the limit d→0 at the very end@19#. For growing networks of
the Albert-Baraba´si model withl53, it has been shown tha
sns}(slns)22 @17#. This is consistent witht53 plus a loga-
rithmic correction. Related results for scale-free trees h
been presented in@20#.

The critical exponents, for the cutoff cluster size, too
may be derived directly. Finite-size scaling arguments p
dict @7# that

qc~`!2qc~N!;N21/dn5N2(s/t21), ~24!

where N is the number of sites in the network,n is the
correlation length critical exponent:j;(q2qc)

2n, andd is
03611
g

e

e

-

the dimensionality of the embedding space. Using a conti
ous approximation of the distribution~1! one obtains@5#

k'S 22l

32l DK32l2m32l

K22l2m22l , ~25!

whereK;N1/(l21) is the largest site connectivity of the ne
work. For 3,l,4, this and Eq.~4! yield

qc~`!2qc~N!;Dk;K32l;N(32l/l21), ~26!

which in conjunction with Eq.~24! leads to

s5
l23

l22
, 3,l,4. ~27!

For l.4 we recover the regular mean-field results51/2.
Note that Eqs.~24!, ~15!, and ~23! are consistent with the
known scaling relation:sb5t22 @7,8,13#. For 2,l,3,
qc(`)50 andqc(N);Kl23;N(l23)/(l21). Therefore,

s5
32l

l22
, 2,l,3, ~28!

again consistent with the scaling relationsb5t22 @cf. Eq.
~18!#.

Through similar scaling relations, any two of the perco
tion exponents discussed above determine the remai
~static! percolation exponents. Thus, for example, the ex
nent g, governing the average size of finite clusters:^s&
;(q2qc)

2g, follows from the scaling relationg5(3
2t)/s. In view of Eqs.~23!, ~27!, and~28!, we get

g5H 1, l.3

21, 2,l,3.
~29!

The negative value ofg in the range 2,l,3 is, at first
sight, surprising. However, recall that for that range only t
percolating phase exists. At the transition point,qc50, all
clusters have sizezero. As q increases, finite-size cluster
begin to show, consistent witĥs&;(q2qc)

2g;q.
In summary, we have shown that percolation critical e

ponents in scale-free networks bear a strong depend
upon the degree distribution exponentl. This is true even in
the range 3,l,4, where the percolation transition occu
at a finite thresholdqc : the regular mean-field behavior o
percolation in infinite dimensions is recovered only forl
.4. Moreover, critical exponents are well defined also in
most physically relevant region of 2,l,3 ~the case of most
naturally occurring networks!, despite the lack of a nonper
colating phase. In this regime too the critical exponents
pend strongly onl.

An interesting exception is the exponentg, which attains
constant values independent ofl, Eq. ~29!. This suggests
some underlying deeper principle which we were not
able to uncover.

We thank the National Science Foundation for suppo
under Grant No. PHY-9820569~D.b.-A.!.
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