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Percolation critical exponents in scale-free networks
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We study the behavior of scale-free networks, having connectivity distriblRigd~k~*, close to the
percolation threshold. We show that for networks with 8<4, known to undergo a transition at a finite
threshold of dilution, the critical exponents are different than the expected mean-field values of regular perco-
lation in infinite dimensions. Networks with<2\ <3 possess only a percolative phase. Nevertheless, we show
that in this case percolation critical exponents are well defined, near the limit of extreme dilutiere all
sites are removedand that also then the exponents bear a stiodgpendence. The regular mean-field values
are recovered only fox>4.
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Large networks have been attracting considerable intereSuppose a fractiop of the nodes(and their linkg are re-
[1-6]. A useful characterization of such networks is theirmoved from the network(Alternatively, a fractiong=1
degree distributiorP(k) or the probability that an arbitrary —p of the nodes are retaingdlhe original degree distribu-
node be connected to exacttyother nodes. Many naturally tion, P(k), becomes
occurring networksthe Internet, nets of social contacts, sci-
entific collaborations, ecological nets of predator-prey, jetc., % |
exhibit a power-law oscale-freedegree distribution: pr(k)zlzk p“)( k)(l_ p)p' K, 3)

P(k)=ck™, k=m, (1)
In view of this newP’(k), Eqg. (2) yields the percolation

) o o threshold:
wherem is the minimal connectivityusually taken to ben

=1) andc is a normalization factor.
Imagine that a large network is diluted, by random re-
moval of a fractionp of its nodes. Ifp is small, one expects
that the network remains essentially connected: there exists a
glant componenbf cor!nected node_s .that constitutes a flnltewhereK is computed with respect to the original distribution
fraction of the total size of the original network. Above a P(k) before dilution.
certain threshold of dilutiomp., the giant component disap-
pears and the network effectively disintegrates. This is th%I
problem of percolatiofi7,8] as defined on networkgPerco-
lation was originally defined on regular lattice3he giant
component corresponds to thefinite incipient clusteror
spanning clustewhich forms only in thepercolating phasge
at dilutions smaller than the percolation threshpld
Percolation in scale-free networks is widely recognized a
a key problem of intere$tl—6]. Applications range from the

robustness of communication networktke Internet, phone d d hich differ f h |

networks in the face of random failurécemova) of a frac- )‘ ependent exponents which differ from the regular mean-

tion of their nodes(e random breakdown of routgrso field values of percolation in infinite dimensions. This irregu-
9. I]arity can be traced to the fat tail of the distributi@l). The

the efficiency of inoculation strategies against the spread Oregular mean-field exponents are recovered onlyord.

disease, to the ecological impact of the extinction of some In [4,17] a generating function is built for the connectivity

species. distribution:
For a random network of arbitrary degree distribution, the '

condition for the existence of a spanning clustef5®-11]

1
QCzl_pc:mv (4)

Applying the criterion(4) to scale-free networks one con-
udes that foiA>3 a phase transition exists at a findg,
whereas for 2\ <3 the transition takes place only at the
extreme limit of dilution ofq,=0 [5,6]. Here we concern
ourselves with the critical exponents associated with the per-
colation transition in scale-free networks 2. We show
that critical exponents are well definddnd we compute
heir \-dependent valug®ven in the nonpercolative regime
of 2<\<3. In the percolative range ok>3, we find

Go(x)= 2, P(k)xX. 5
(i) o) =2, P(k)x (5)
K= —2>2. 2
(k)
The probability of reaching a site with connectiviky by
following a specific link isk P(k)/(k) [4,9,13, and the cor-
*Email address: cohenr@shoshi.ph.biu.ac.il responding generating function for those probabilities is
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k(k—=1))> 1
> kP(k)xk< 1 %& E(k(k— 1)(k—2))e+---+cl(2—\)e* 3
Gy(X)= ———————=Go(/K).  (6) 13
dx
> kP(k)
The divergence o as A <3 confirms the lack of a phase
Let H,(x) be the generating function for the probability of transition in that regime. Thus, limiting ourselvesxo-3,
reaching a branch of a given size by following a link. After a@nd keeping only the dominant term as-0, Eq.(13) im-
dilution of a fractionp of the sitesH;(x) satisfies the self- plies
consistent equation

(k(k=1))? \ N3 g
-3)
H1(X)=1— g+ X Gy(H1(x)). (@) (c(k)l“(z—)\) 79, 3<n<4
e~ (14
Since Go(x) is the generating function for the connectivity 2(k(k—1))? 5 a>a
of a site, the generating function for the probability of a site (K){(k(k=1)(k—=2)) '

to belong to am-site cluster is
Returning toP.., Eq. (9), we see that the singular contribu-
Ho(X)=1—0g+gxGo(H1(x)). () tion in € is dominant only for the irrelevant range b 2.
For \>3, we findP,.~q4k)e~(q—q.)?. Comparing this

Ho(1) is the probability that a site belongs to a cluster of any, Yo Eq. (14) we finally obtain

finite size. Thus, below the percolation transitidiy(1)
=1, while above the transition there is a finite probability

that a site belongs to the infinite spanning clusteg=1 L 3<\<A4,
—Hy(1). It follows that B={ M3 (15)
. 1, \>4.
Pm(q)=q< 1_2‘0 P(k)uk), ©) We see that the order parameter expone@nattains its
usual mean-field value only fot>4. Moreover, forn <4
whereu=H,(1) is the smallest positive root of the percolation transition is higher than second-order: for 3

+[1/(n—1)]<A<3+[1/(n—2)] the transition is of thath
B 0 < 1 order. The resulf15) has been reported before [ii], and
u=1l-g+ ) kzo kP(kju™ ™. (100 also found independently in a different but related model of
virus spreading 14,15. The existence of an infinite-order

This equation can be solved numerically and the solutiorPhase transition at=3 for growing networks of the Albert-
may be substituted into E¢9), yielding the size of the span- Barabai model, has been reported elsewhgré,17. These
ning cluster in a network of arbitrary degree distribution, ateéxamples suggest that the critical exponents are not model
dilution q [4]. dependent but depend only an

We now compute the order parameter critical exporgnt For networks withA <3 the transition still exists, though
Near criticality the probability of belonging to the spanning at a vanishing thresholdj.=0. The sum in Eq(11) be-
cluster behaves aB..~(q—q.)?. For infinite-dimensional comes
systems(such as a Cayley trget is known that =1
[7,8,13. This regular mean-field result is not always valid, - 1 N2
however, for scale-free networks. E§) has no special be- g’o kP(K)u* “~(k)+cl'(2—=N) e~ (16)
havior atg=q.; the singular behavior comes from Also,
at criticality P.,=0 and Eq.9) implies thatu=1. We there-

fore examine Eq(10) for u—1— e andq=q.+ &: Using this in conjunction with Eq(10), and remembering

that hereq,=0 and thereforg= 5, leads to

1—6:1—qc—a+(qc 2 kP(k)(1—e)* 1. (12)

(k) =0 €=

_ _ (1/3-))
cl'(2 7\)) eray) a7

(k)

The sum in Eq(11) has the asymptotic form which implies

i KP(k)uk™1~(k) —(k(k—1))e+ E(k(k—l)(k—Z))ez 1
K=0 2 B:ﬁv 2<A<3. (18
+.-+cl(2—N) €2, (12)

In other words, the transition in<2\<3 is a mirror image
where the highest-order analytic termQge"), n=|\ —2]. of the transition in 3X\<4. An important difference is that
Using this in Eq.(12), with g.=1/(k—1)=(k)/(k(k—1)),  g.=0 is not\ dependent in 2\ <3, and the amplitude of
we get P.. diverges as\—2 (but remains finite ad —4).
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In [12] it was shown that for a random graph of arbitrary the dimensionality of the embedding space. Using a continu-
degree distribution the finite clusters follow the usual scalingous approximation of the distributiafi) one obtaing5]

form
2—N\
3o

K3—)\_m3—)\
KZ*)\_mZ*)\ ’

(25

ne~s "e 5", (19

Heres is the cluster size and is the number of clusters of \yherek ~NY*~1) js the largest site connectivity of the net-
sizes. At criticality s*~[q—q.|~” diverges and the tail of \york. For 3<\ <4, this and Eq(4) yield
the distribution behaves as a power law. We now derive the
exponentr. The probability that a site belongs to amluster qc(®) — qo(N) ~ Ak~ K3 A~ NEMA=1) (26)
is ps=sns~s'~7, and is generated bil:
which in conjunction with Eq(24) leads to

Ho(X)= 2, pex®. (20)

>

=2’

w

o=

3<N<4. (27)
The singular behavior dfiy(x) stems fronH,(x), as can be

seen from Eq(8). H,(x) itself can be expanded from EQ. For \ >4 we recover the regular mean-field resuk:1/2.
(7), by using the asymptotic forrfl2) of G,. We letx=1 " Note that Eqs(24), (15), and (23) are consistent with the
— €, as before, but work at the critical poigt=qc. Withthe  ynown scaling relationo=r—2 [7,8,13. For 2<\<3,
notation ¢(e)=1—H;(1—€), we finally get[note that at g() =0 andgu(N)~K* 3~NO=3/0-1) Therefore,
criticality H,(1)=1]

3—A\
- ¢ (k(k—1)(k-2)) , o="2 2<)<3, 29)
—d)——qc+(1—6)qc 1—a+T + .. )\ 2
T(2—)\) again consistent with the scaling relatiof8= 7— 2 [cf. Eq.
+CT¢)\_2 . (21 (19)].

Through similar scaling relations, any two of the percola-
tion exponents discussed above determine the remaining
(statio percolation exponents. Thus, for example, the expo-
nent y, governing the average size of finite clustefs)
~(q—qy) "7, follows from the scaling relationy=(3
—7)lo. In view of Egs.(23), (27), and(28), we get

From this relation we extract the singular behaviorHy:
¢~ €’. Then, using Tauberian theorerfi3] it follows that
ps~s 7Y, hencer=2+y.

For A >4 the term proportional t@* 2 in Eq. (21) may
be neglected. The linear terewp may be neglected as well,
due to the factor. This leads top~ ¥ and to the usual

. 1, A>3
mean-field result

-1, 2<\<3. @9

»-y:

5
=5, A>4 22 The negative value ofy in the range Z\<3 is, at first

sight, surprising. However, recall that for that range only the
For A<4, the terms proportional te¢, #> may be ne- percolating phase exists. At the transition poig¢="0, all
glected, leading tap~ ¢*®~2) and clusters have sizeera As q increases, finite-size clusters
begin to show, consistent wiifs)~(q—qc) ~¥~q.

In summary, we have shown that percolation critical ex-
ponents in scale-free networks bear a strong dependence
upon the degree distribution exponentThis is true even in
Note that for 2<\ <3 the percolation threshold is strictly the range 3XA <4, where the percolation transition occurs
g.=0. In that case we work &= &, small but fixed, taking at a finite thresholdj.: the regular mean-field behavior of
the limit 5—0 at the very endl19]. For growing networks of percolation in infinite dimensions is recovered only for
the Albert-Barabsi model withx =3, it has been shown that >4. Moreover, critical exponents are well defined also in the
snx(slns) ™2 [17]. This is consistent withr=3 plus a loga- most physically relevant region ok2\ <3 (the case of most
rithmic correction. Related results for scale-free trees haveaturally occurring networks despite the lack of a nonper-
been presented if20]. colating phase. In this regime too the critical exponents de-

The critical exponentr, for the cutoff cluster size, too pend strongly on.
may be derived directly. Finite-size scaling arguments pre- An interesting exception is the exponepntwhich attains

oy L A3 s 23
T T e B

dict [7] that constant values independent ®f Eq. (29). This suggests
g o1 some underlying deeper principle which we were not yet
0e(®) = e(N) ~ N~ =N~ (/7= 1), (24 able to uncover.
where N is the number of sites in the network, is the We thank the National Science Foundation for support,

correlation length critical exponenf~(q—q.) ", anddis  under Grant No. PHY-982056®.b.-A.).
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