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Abstract. Scale-free networks are networks with a scale-free degree distribution, i.e.,
where the distribution of the number of links per node is a power-law, p(k) = ck−λ. We
review results for the properties of such networks, emphasizing the structural properties
of these networks. We begin with normal random scale-free networks and present their
percolation properties. We also review results for directed scale-free networks and their
percolation properties. Finally we present a study of the possibility of embedding scale-
free networks in a lattice.

3.1 Random Scale-Free Networks

The study of random network models began with Erdős and Rényi [1, 2, 3].
They studied models of networks with randomly distributed links. Those models
lead to Poisson degree distributions [4]. Due to the development of computers,
allowing the analysis of large amounts of data, and the formation of large scale
networks, such as the Internet and WWW, some analysis of real world networks
has been done in the last decade [5, 6, 7, 8, 9]. This research lead to the conclusion
that real world networks are not described correctly by the ER model. The main
difference found was that the degree distribution of real world networks studied
was found to be very broad rather than the narrow Poisson distribution. Many
of the networks studied can be fitted with a scale-free degree distribution. In
this chapter we will elaborate on the properties of scale free networks.

A scale free network is a network having a degree distribution:

P (k) = ck−λ, (3.1)

where λ is the exponent and c is an appropriate normalization factor. The dis-
tribution is limited by the lower and upper cutoffs, which we will denote by m
and K, respectively. The unique properties of this distribution stem from the
fact that all moments with n ≥ λ−1 diverge with K (which is usually increasing
with the size of the network).

3.1.1 Percolation Threshold

Percolation theory deals with the cluster structure of networks when a fraction
of the sites or bonds is removed. A spanning cluster (or a “giant component”
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in the terminology of random graphs) is a cluster of connected sites (i.e. where
there is a path from each site to each other) of the order of the size of the entire
network. Most standard treatments of percolation deal with lattices and regular
graphs. However, a similar treatment can be applied to random networks.

For a general random network having degree distribution P (k) to have a
spanning cluster, a site which is reached by following a link from this cluster
must have at least one other link on average to allow the cluster to exist. For
this to happen the average degree of a site must be at least 2 (one incoming and
one outgoing link) given that the site i is connected to j:

〈ki|i ↔ j〉 =
∑

ki

kiP (ki|i ↔ j) = 2. (3.2)

Using Bayes rule we get

P (ki|i ↔ j) = P (ki, i ↔ j)/P (i ↔ j) = P (i ↔ j|ki)P (ki)/P (i ↔ j), (3.3)

where P (ki, i ↔ j) is the joint probability that node i has degree ki and that
it is connected to node j. For randomly connected networks (neglecting loops)
P (i ↔ j) = 〈k〉/(N − 1) and P (i ↔ j|ki) = ki/(N − 1), where N is the total
number of nodes in the network. Using the above criteria (3.2) reduces to [10, 11]:

κ ≡ 〈k2〉
〈k〉 = 2, (3.4)

at the critical point. A spanning cluster exists for graphs with κ > 2, while
graphs with κ < 2 contain only small clusters whose size is not proportional to
that of the entire network. This criterion was derived earlier by Molloy and Reed
[10] using a somewhat different arguments.

The negligence of loops can be justified below the threshold since the probabi-
lity for a bond to form a loop in an s-node cluster is proportional to (s/N)2 (i.e.,
proportional to the probability of choosing two sites in that cluster). Calculating
the fraction of loops Ploop in the system yields:

Ploop ∝
∑

i

s2i
N2 <

∑

i

siS

N2 =
S

N
, (3.5)

where the sum is over all clusters in the system and si is the size of the ith cluster
[12]. Therefore, the fraction of loops in the system is less than or proportional
to S/N , where S is the size of the largest cluster. Below the critical threshold
there is no spanning cluster in the system and therefore the fraction of loops
is negligible. Hence, for values of κ below κ = 2, loops can be neglected. At
the threshold the structure of the spanning cluster is almost a tree. Above the
threshold loops can no longer be neglected, but since this only happens when
a spanning cluster exists the criterion in (3.4) is valid as a criterion for finding
the critical point. A derivation of the exact conditions under which (3.4) is valid
can be found in [10].
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The above reasoning can be applied to the problem of percolation on a ge-
neralized random network. If we randomly remove a fraction p of the sites (or
bonds), the degree distribution of the remaining sites will change. For instance,
sites with initial degree k0 will have, after the random removal of nodes, a dif-
ferent number of connections, depending on the number of removed neighbors.
The new number of connections will be binomially distributed. If we begin with
a distribution of degrees P0(k0), the new degree distribution of the network will
be:

P (k) =
∞∑

k0=k

P0(k0)
(
k0

k

)

(1 − p)kpk0−k. (3.6)

Calculating the first moment for this distribution, given 〈k0〉 and 〈k2
0〉 for the

original distribution leads to:

〈k〉 =
∞∑

k=0

P (k)k = (1 − p)〈k0〉. (3.7)

In the same manner we can calculate the second moment:

〈k2〉 =
∞∑

k=0

P (k)k2 = (1 − p)2〈k2
0〉 + p(1 − p)〈k0〉. (3.8)

Both those quantities can be substituted into (3.4) to find the criterion for
criticality. This yields:

κ ≡ 〈k2〉
〈k〉 =

(1 − p)2〈k2
0〉 + p(1 − p)〈k0〉

(1 − p)〈k0〉 = 2. (3.9)

Reorganizing (3.9), one gets the critical threshold for percolation [11]:

1 − pc =
1

κ0 − 1
, (3.10)

where κ0 ≡ 〈k2
0〉/〈k0〉 is calculated using the original distribution, before the

removal of sites.
Eqations (3.4) and (3.10) are valid for a wide range of generalized random

graphs and distributions. For example for a Cayley tree – a graph with a fixed
degree z and no loops – the criterion from (3.10) can be used. This yields the
critical concentration qc = 1− pc = 1/(z− 1), which is well known [13]. Another
example is a random Erdös-Rényi (ER) graph. In those graphs edges are distri-
buted randomly and the resulting degree distribution is Poissonian [4]. Applying
the criterion from (3.4) to a Poisson distribution yields:

κ ≡ 〈k2〉
〈k〉 =

〈k〉2 + 〈k〉
〈k〉 = 2, (3.11)
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which reduces to 〈k〉 = 1 as known for ER graphs [4].
Our main concern in this chapter will be with the behavior of scale-free net-

works. Scale-Free networks are networks whose degree distribution (i.e. fraction
of sites with k connections) behaves as:

P (k) ∝ k−λ, m ≤ k ≤ K, (3.12)

where λ is the exponent, m is the lower cutoff, and K is the upper cutoff. There
are no sites with degree below m and above K. For finite networks the upper
cutoff N arises naturally since the fraction of high-degree sites decays with k.
An estimate of this cutoff can be found by the assumption that the tail of the
distribution above K is of the order of one site [11]:

∞∑

k=K

P (k) ∼
∫ ∞

K

P (k)dk =
1
N
. (3.13)

The estimate obtained this way gives:

K ≈ mN1/(λ−1). (3.14)

This estimate allows the derivation of finite size effects in the network and al-
lows calculations of moments of the distribution in (3.12), that would otherwise
diverge. Newman et al [14] use an exponential cutoff rather than a sharp one,
but the effect on the results is minor.

The importance of scale-free networks lies in the fact that this distribution
occurs in many natural and man-made networks [5, 14, 15]. An example of
a scale-free network is the physical Internet structure, that is the router to
router (and end-units) connectivity. This structure was studied by Faloutsos et
al [5]. They have found that the inter-router network is a non-directed scale-free
network with λ ≈ 2.5. The size of the Internet today is about 107 sites, making
it a fairly large network.

Further results about the structure of scale-free networks have also been
proven by Aiello et al [16]. The size of the infinite cluster was calculated, and it
was found that for λ ≤ 2 the infinite cluster is of almost the size of the entire
graph (i.e. P∞ = 1 − o(1), where o(1) is a function of the network size, f(N),
such that f(N) → 0 when N → ∞). For λ > λc = 3.478 . . . there is no infinite
cluster at all (since we use a somewhat different distribution [17], we get λc ≈ 4).
For λ < λc the second largest cluster is of order lnN . For lower cutoff m ≥ 2 a
spanning cluster exists for every λ.

The average distance between sites is also different in scale free sites from
its value for normal random graphs. While for ER graphs the average distance
between sites behaves as d ∼ lnN [4], for scale free graphs with 2 < λ < 3
the distance behaves as d ∼ ln lnN [18, 19], for λ = 2, d ∼ const, and for
λ = 3, d ∼ lnN/ ln lnN [20]. The reason for this short distance is the small
core, containing most high degree sites, which has a very small diameter. For
λ > 3 the random graph behavior d ∼ lnN is recovered. Those results were later
confirmed using different methods in [21, 22].
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3.1.2 Generating Functions

A general method for studying the size of the infinite cluster and the residual
network for a graph with an arbitrary degree distribution was first developed
by Molloy and Reed [23]. They suggested viewing the infinite cluster as being
explored and used differential equations for the number of un-exposed links and
unvisited sites to find the size of the infinite cluster and the degree distribution
of the residual graph (the finite clusters).

An alternative and very powerful derivation was given by Newman, Strogatz
and Watts [14]. They have used the generating functions method to study the
size of the infinite cluster as well as other quantities (such as the diameter and
cluster size distribution). They have also applied this method to other types of
graphs (directed and bipartite). Here we closely follow their derivation in order
to find the size of the infinite cluster and the critical exponents.

In [14, 24] a generating function is built for the degree distribution:

G0(x) =
∞∑

k=0

P (k)xk. (3.15)

The probability of reaching a site with degree k by following a specific link is
kP (k)/〈k〉 [10, 11, 14, 24], and the corresponding generating function for those
probabilities is

G1(x) =
∑
kP (k)xk−1
∑
kP (k)

=
d

dx
G0(x)/〈k〉 . (3.16)

Assuming that H1(x) is the generating function for the probability of reaching a
branch of a given size by following a link, the self-consistent equation for H1(x)
is:

H1(x) = 1 − q + qxG1(H1(x)) . (3.17)

Since G0(x) is the generating function for the degree of a site, the generating
function for the probability of a site to belong to an n-site cluster is:

H0(x) = 1 − q + qxG0(H1(x)) . (3.18)

Below the transition, H0(1) = 1, since this is the probability to belong to a
cluster of any size. However, above the transition this probability is no longer
normalized since this does not include the infinite cluster. Then, the relative size
of the giant cluster is P∞ = 1− q+ qH0(1), since H0 contains only the finite-size
clusters. It follows that

P∞ = q

(

1 −
∞∑

k=0

P (k)uk
)

, (3.19)

where u ≡ H1(1) is the smallest positive root (which can be found numerically)
of
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u = 1 − q +
q

〈k〉
∞∑

k=0

kP (k)uk−1 . (3.20)

This equation can be solved numerically and the solution can be substituted into
(3.19) to calculate the size of the infinite cluster in a graph with a given degree
distribution.

3.1.3 Critical Exponents

Using Abelian and Tauberian methods [25, 26] one can use . (3.19) and (3.20)
to find the critical exponents for percolation in scale free networks. Some preli-
minary results can be found in [27]. A more detailed treatment can be found in
[28, 19]. Here we just state the results.

The size of the giant component near the critical point behaves as P∞ ∼
(p− pc)β , where

β =






1
3−λ 2 < λ < 3,

1
λ−3 3 < λ < 4,
1 λ > 4.

(3.21)

The number of clusters with size s behaves as ns ∼ (p− pc)−τ , where

τ = 2 +
1

λ− 2
=

2λ− 3
λ− 2

, 2 < λ < 4 . (3.22)

For λ > 4, τ = 2.5, which is the regular mean field value. From those results
it can be seen that the critical exponents are anomalous even when the second
moment 〈k2〉 is convergent and only the third moment 〈k3〉 diverges, as in the
case of 3 < λ < 4.

From τ it can be deduced that the “double jump” in Erdős-Rényi graphs is
also seen in scale free graphs, Where S, the size of largest component, scales
as S ∼ N (λ−2)/(λ−1) exactly at criticality [19]. For λ ≥ 4 the known result of
S ∼ N2/3 is obtained. The fractal dimensions at criticality for λ > 3 can also be
obtained [19] and are:

dl =
λ− 2
λ− 3

, df = 2
λ− 2
λ− 3

, dc = 2
λ− 1
λ− 3

, (3.23)

where for λ ≥ 4 the regular mean field values of 2, 4, 6 are restored.

3.2 Directed Graphs

Many complex networks in nature have directed links, a property that affects the
network’s navigability and large-scale topology. Here we study the percolation
properties of such directed scale-free networks with correlated in and out degree
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distributions. We derive a phase diagram that indicates the existence of three
regimes, determined by the values of the degree exponents. In the first regime
we regain the known directed percolation mean field exponents. In contrast, the
second and third regimes are characterized by anomalous exponents, which we
calculate analytically. In the third regime the network is resilient to random
dilution, i.e., the percolation threshold is pc → 1.

Recently the topological properties of large complex networks such as the
Internet, WWW, electric power grid, cellular and social networks have drawn
considerable attention [29, 15]. Some of these networks are directed, for ex-
ample, in social and economical networks [30] if node A gains information or
acquires physical goods from node B, it does not necessarily mean that node
B gets similar input from node A. Likewise, most metabolic reactions [31] are
one-directional, thus changes in the concentration of molecule A affect the con-
centration of its product B, but the reverse is not true. Despite the directedness
of many real networks, the modeling literature, with few notable exceptions
[14, 32], has focused mainly on undirected networks.

An important property of directed networks can be captured by studying
their degree distribution, P (j, k), or the probability that an arbitrary node has
j incoming and k outgoing edges. Many naturally occurring directed networks,
such as the WWW, metabolic networks, citation networks, etc., exhibit a power-
law, or scale-free degree distribution for the incoming or outgoing links:

Pin(out)(l) = cl−λin(out) , l ≥ m , (3.24)

where m is the minimal connectivity (usually taken to be m = 1), c is a
normalization factor and λin(out) are the in(out) degree exponents characte-
rizing the network [6, 7]. An important property of scale-free networks is
their robustness to random failures, coupled with an increased vulnerability to
attacks [33, 11, 24, 27, 34]. Recently it has been recognized that this feature
can be addressed analytically in quantitative terms [11, 24, 27] by combining
graph theoretical concepts with ideas from percolation theory. Yet, while the
percolation properties of undirected networks are much studied, little is known
about the effect of node failure in directed networks. As many important net-
works are directed, it is important to fully understand the implications to their
stability. Here we review and extend the results [35] showing that directedness
has a strong impact on the percolation properties of complex networks and we
draw a detailed phase diagram.

3.2.1 Structure

The structure of a directed graph has been characterized in [14, 32], and in the
context of the WWW in [7]. In general, a directed graph consists of a giant
weakly connected component (GWCC) and several finite components. In the
GWCC every site is reachable from every other, provided that the links are
treated as bi-directional. The GWCC is further divided into a giant strongly
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GSCC OUTIN

TendrilsFinite components

Fig. 3.1. Structure of a general directed graph

connected component (GSCC), consisting of all sites reachable from each other
following directed links. All the sites reachable from the GSCC are referred to
as the giant OUT component, and the sites from which the GSCC is reachable
are referred to as the giant IN component. The GSCC is the intersection of the
IN and OUT components. All sites in the GWCC, but not in the IN and OUT
components are referred to as the “tendrils” (see Fig. 3.1).

3.2.2 Percolation Threshold

For a directed random network of arbitrary degree distribution the condition
for the existence of a giant component can be deduced in a manner similar to
[11]. If a site is reached following a link pointing to it, then it must have at least
one outgoing link, on average, in order to be part of a giant component. This
condition can be written as

〈kj |i → j〉 =
∑

ki,kj

kjP (ki, kj |i ↔ j) = 1. (3.25)

Using Bayes rule we get

P (ki, kj |i → j) =
P (ki, kj , i ↔ j)

P (i → j)
=
P (i → j|ki, kj)P (ki, kj)

P (i → j)
. (3.26)

For random networks P (i → j) = 〈k〉/(N −1) and P (i → j|ki, kj) = ki/(N −1),
where N is the total number of nodes in the network. The above criterion thus
reduces to [14, 32]

〈jk〉 ≥ 〈k〉. (3.27)
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Suppose a fraction p of the nodes is removed from the network. (Alternatively,
a fraction q = 1 − p of the nodes is retained.) The original degree distribution,
P (j, k), becomes

P ′(j, k) =
∞∑

j0,k0

P (j0, k0)
(
j0
j

)

(1 − p)jpj0−j
(
k0

k

)

(1 − p)kpk0−k . (3.28)

In view of this new distribution, (3.27) yields the percolation threshold

qc = 1 − pc =
〈k〉
〈jk〉 , (3.29)

where averages are computed with respect to the original distribution before
dilution, P (j, k). Equation (3.29) indicates that in directed scale-free networks
if 〈jk〉 diverges then qc → 0 and the network is resilient to random breakdown
of nodes and bonds.

The term 〈jk〉 may be dramatically influenced by the appearance of correla-
tions between the in- and out-degrees of the nodes. In particular, let us consider
scale-free distributions for both the in- and out-degrees:

Pin(j) ∼
{
Bcinj

−λin j 
= 0,
1 −B j = 0,

(3.30)

and

Pout(k) = coutk
−λout . (3.31)

In (3.30) we choose to add the possible zero value to the in-degree in order
to maintain 〈j〉 = 〈k〉. If the in- and out-degrees are uncorrelated, we expect
〈jk〉 = 〈j〉〈k〉. For several real directed networks this equality does not hold. For
example, the network of Notre-Dame University WWW [6], has 〈k〉 = 〈j〉 ≈ 4.6,
and thus 〈j〉〈k〉 = 21.16. In contrast, measuring directly we find 〈jk〉 ≈ 200,
about an order of magnitude larger than the result expected for the uncorrelated
case. This yields an estimate of qc ≈ 0.02, i.e., a very stable directed network.
Similar results are also obtained for metabolic networks studied in [31], indicating
that in many real directed networks, the in- and out-degrees are correlated.

To address correlations, we model it in the following manner: we first generate
the j values for the entire network. Next, for each site with j 
= 0 with probability
A we generate k fully correlated with j, i.e., k = k(j). Assuming that k(j) is a mo-
notonically increasing function then the requirement coutk−λoutdk = cinj

−λindj
— needed to maintain the distributions scale-free — leads to kλout−1 = jλin−1.
With probability 1 −A, the degree k is chosen independently from j:

P (j, k) ∼
{

(1 −A)Bcinj−λincoutk
−λout +BAcoutk

−λoutδj,j(k) j 
= 0,
(1 −B)coutk−λout j = 0,

(3.32)
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Fig. 3.2. Phase diagram of the different regimes for the IN component of scale-free
correlated directed networks. The boundary between Resilient and Anomalous expo-
nents is derived from (3.33) while that between Anomalous exponents and Mean field
exponents is given by (3.48) for λ� = 4. For the diagram of the OUT component λin

and λout change roles. After [35]

where j(k) = k
λout−1
λin−1 . With this distribution, any finite fraction BA of fully

correlated sites yields a diverging 〈jk〉 whenever

(λout − 2)(λin − 2) ≤ 1 , (3.33)

causing the percolation threshold to vanish (see Fig. 3.2). The influence of even
very small correlation on the threshold, and the sharpness of the transition to
the resilient regime can be seen in Fig. 3.3.

In the case of no correlations between the in- and the out-degrees, A = 0,
(3.32) becomes P (j, k) = Pin(j)Pout(k). Then the condition for the existence of
a giant component is: 〈k〉 = 〈j〉 = 1. Moreover, (3.29) reduces to:

qc = 1 − pc =
1

〈k〉 . (3.34)

Applying (3.34) to scale-free networks one concludes that for λout > 2 and
λin > 2 a phase transition exists at a finite qc. Here we concern ourselves with the
critical exponents associated with the percolation transition in both correlated
and uncorrelated scale-free network of λout > 2 and λin > 2, which is the most
relevant regime (Fig. 3.2).

Percolation of the GWCC can be seen to be similar to percolation in the non-
directed graph created from the directed graph by ignoring the directionality of
the links. The threshold is obtained from the criterion [11]
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Fig. 3.3. The critical concentration as a function of λin and λout. Notice the steep
change at the boundaries of the transition between the resilient and non resilient regi-
mes. This plot was obtained for A = 0.05

qc =
〈k〉

〈k(k − 1)〉 . (3.35)

Here the connectivity distribution is the convolution of the in and out distribu-
tions

P ′(k) =
k∑

l=0

P (l, k − l). (3.36)

Regardless of correlations, P ′(k) is always dominated by the slower decay-
exponent, therefore percolation of the GWCC is the same as in non-directed
scale-free networks, with λeff = min(λin, λout). Note that the percolation thres-
hold of the GWCC may differ from that of the GSCC and the IN and OUT
components [32].

3.2.3 Critical Exponents

We now use the formalism of generating functions [26] to analyze percolation of
the GSCC and IN and OUT components [35]. In [14, 32] a generating function
is built for the joint probability distribution of outgoing and incoming degrees,
before dilution:

Φ(x, y) =
∑

k,j

P (j, k)xjyk . (3.37)
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Using the approach of Callaway et al [24], let q(j, k) be the probability that a
vertex of degree (j, k) remains in the network following dilution. The generating
function after dilution is then

G(x, y) =
∑

k,j

P (j, k)q(j, k)xjyk . (3.38)

From (3.38) it is possible to define the generating function for the outgoing
degrees G0

G0(y) ≡ G(1, y) =
∑

k,j

P (j, k)q(j, k)yk . (3.39)

The probability of reaching a site by following a specific link is proportional to
jP (j, k), therefore, the probability to reach an occupied site following a specific
directed link is generated by

G1(y) =

∑
j,k jP (j, k)q(j, k)yk
∑
j,k jP (j, k)

. (3.40)

Let H1(y) be the generating function for the probability of reaching an ou-
tgoing component of a given size by following a directed link, after a dilution.
H1(y) satisfies the self-consistent equation:

H1(y) = 1 −G1(1) + yG1(H1(y)) . (3.41)

Since G0(y) is the generating function for the outgoing degree of a site, the
generating function for the probability that n sites are reachable from a given
site is

H0(y) = 1 −G0(1) + yG0(H1(y)) . (3.42)

For the case where correlations exist, and assuming random dilution: q(j, k) = q,
(3.41) and (3.42) reduce to

H1(y) = 1 − q +
qy

〈j〉
∑

k

(BAj(k) + (1 −A)〈j〉)Pout(k)H1(y)k , (3.43)

and

H0(y) = 1 − q + qy
∑

k

Pout(k)H1(y)k . (3.44)

If A → 0, one expects that H0(y) = H1(y), since there is no correlation between
j and k, thus the probability to have k outgoing edges is Pout(k) whether we
choose the site randomly or weighted by the incoming edges j.

H0(1) is the probability to reach an outgoing component of any finite size
choosing a site. Thus, below the percolation transition H0(1) = 1, while above
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the transition there is a finite probability to follow a directed link to a site which
is a root of an infinite outgoing component: P∞ = 1 −H0(1). It follows that

P∞(q) = q(1 −
∞∑

k

Pout(k)uk) , (3.45)

where u ≡ H1(1) is the smallest positive root of

u = 1 − q +
q

〈j〉
∑

k

(BAj(k) + (1 −A)〈j〉)Pout(k)uk . (3.46)

Here P∞(q) is the fraction of sites from which an infinite number of sites is
reachable. Equation (3.46) can be solved numerically and the solution may be
substituted into (3.45), yielding the size of the IN component at dilution p = 1−q.

Giant Component Size

Near criticality, the probability to start from a site and reach a giant outgoing
component follows P∞ ∼ (q − qc)β . For mean-field systems (such as infinite-
dimensional systems, random graphs and Cayley trees) it is known that β =
1 [36]. This regular mean-field result is not always valid. Instead, we study [35]
the behavior of (3.46) near q = qc, u = 1, and find

β =






1
3−λ� 2 < λ
 < 3,

1
λ�−3 3 < λ
 < 4,
1 λ
 > 4,

(3.47)

where

λ
 = λout +
λin − λout
λin − 1

. (3.48)

We see that the order parameter exponent β attains its usual mean-field value
only for λ
 > 4. As λout → λin the correlated fraction BA of sites resembles
non-directed networks [28, 37] (where there is no distinction between incoming
and outgoing degrees). In this case we get λ
 = λout = λin for any amount
of correlation A. The criterion for the existence of a giant component is then
〈k2〉/〈k〉 = 1, and not 2 as in the non-directed case. The difference stems from
the fact that in the non-directed case one of the links is used to reach the site,
while in the directed case there is generally no correlation between the location of
the incoming and outgoing links. Therefore, one more outgoing link is available
for leaving the site.

Without any correlations, A = 0, different terms prevail in the analysis and

β =

{
1

λout−2 2 < λout < 3,
1 λout > 3.

(3.49)
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This is the same as (3.47) but with λ
 = λout + 1.
The GSCC is the intersection of the IN and OUT components. Therefore, it

behaves as the smaller of the two components: βGSCC = max(βin, βout). This can
be also derived by applying the same methods as for the IN and OUT components
to the generating function of the GSCC obtained in [32]. The exponent for
the GWCC, on the other hand, is independent of the exponents of the other
components, since the transition point is different.

Finite Component Sizes

It is known that for a random graph of arbitrary degree distribution the finite
clusters follow the scaling form

n(s) ∼ s−τe−s/s∗
, (3.50)

where s is the cluster size and n(s) is the number of clusters of size s. At criticality
s∗ ∼ |q − qc|−σ diverges and the tail of the distribution follows a power law.

The probability that s sites can be reached from a site by following links at
criticality follows p(s) ∼ s−τ , and is generated by H0, where H0(y) =

∑
s p(s)y

s.
As in [28], H0(y) can be expanded from (3.42). In the presence of correlations
we find [35]

τ =

{
1 + 1

λ�−2 2 < λ
 < 4,
3
2 λ
 > 4.

(3.51)

The regular mean-field exponents are recovered for λ
 > 4. For the uncorrelated
case we get [35]

τ =

{
1 + 1

λout−1 2 < λout < 3,
3
2 λout > 3.

(3.52)

Now the regular mean-field results are obtained for λ > 3.

3.2.4 Summary

In summary, we calculate the percolation properties of directed scale-free net-
works. We find that the percolation critical exponents in scale-free networks are
strongly dependent upon the existence of correlations and upon the degree dis-
tribution exponents in the range of 2 < λ
 < 4. This regime characterizes most
naturally occurring networks, such as metabolic networks or the WWW. The re-
gular mean-field behavior of percolation in infinite dimensions is recovered only
for λ
 > 4.

A connection is found between non-directed and directed scale-free percola-
tion exponents for any finite correlation between the in- and out-degrees. The
correlation between the in- and out-degrees is responsible for the change in the
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Table 3.1. Values of λ� for the different network components for both correlated and
uncorrelated cases

uncorrelated correlated

GWCC min(λout, λin) + 1 min(λout, λin)

IN λout + 1 λout + λin−λout
λin−1

OUT λin + 1 λin + λout−λin
λout−1

GSCC min(λout, λin) + 1 min(λ∗
out, λ

∗
in)

critical exponents, and the question whether both incoming and outgoing links
lead to the same sites (as in non-directed networks) has no influence on the ex-
ponents. In the uncorrelated case, i.e. P (j, k) = Pin(j)Pout(k), the probability to
reach an outgoing component does not bear any dependence upon Pin(j). The
results are summarized in Table 3.1.

3.3 Spatially Embedded Scale-Free Graphs

The networks studied so far were examples of infinite dimensional networks.
They are referred to as infinite dimensional objects since there is no notion of
vicinity – every site can connect to every other site with some probability – and
since the number of sites in a chemical distance (minimal path length) l from
a given site grows exponentially (or faster [18]), which is faster than any power
law N(l) ∼ ld, expected for a d-dimensional lattice.

Here we describe a method for embedding scale-free networks, with degree
distribution P (k) ∼ k−λ, in regular Euclidean lattices accounting for geographi-
cal properties [38]. The embedding is driven by a natural constraint of minimiza-
tion of the total length of the links in the system. All networks with λ > 2 can
be successfully embedded up to an (Euclidean) distance ξ which can be made
as large as desired upon the changing of an external parameter. However, the
natural cutoff of the distribution can only be achieved for λ > 3. Clusters of suc-
cessive layers are found to be compact (the fractal dimension is df = d), while
the dimension of the shortest path between any two sites is smaller than one:
dmin = λ−2

λ−1−1/d , contrary to all other known examples of fractals and disordered
lattices. An alternative method was suggested by Warren et al [39].

All of the networks discussed in previous sections were off-lattice, i.e. the
Euclidean distance between nodes was irrelevant. However, real-life networks are
often embedded in Euclidean geographical space (e.g., the Internet is embedded
in the two-dimensional network of routers, neuronal networks are embedded in
a three-dimensional brain, etc.). Indeed, in the case of the Internet, indications
for the relevance of embedding space is given in [40].

Here we review and extend a method for generating scale-free networks on
Euclidean lattices, accounting for geographical properties, and describe some of
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its properties [38]. As a guiding principle we impose the natural restriction that
the total length of links in the system be minimal.

3.3.1 Model Definition

Our model is defined as follows. To each site of a d-dimensional lattice, of size
R, and with periodic boundary conditions, we assign a random connectivity k
taken from the scale-free distribution

P (k) = Ck−λ, m ≤ k < K, (3.53)

where the normalization constant C ≈ (λ− 1)mλ−1 (for K large) [41]. We then
select a site at random and connect it to its closest neighbors until its (previously
assigned) connectivity k is realized, or until all sites up to a distance

r(k) = Ak1/d (3.54)

have been explored. (Links to some of the neighboring sites might prove im-
possible, in case that the connectivity quota of the target site is already filled.)
This process is repeated for all sites of the lattice. We show that following this
method networks with λ > 2 can be successfully embedded up to an (Euclidean)
distance ξ which can be made as large as desired upon the changing of the
external parameter A.

Suppose that one attempts to embed a scale-free network, by the above re-
cipe, in an infinite lattice, R → ∞. Sites with a connectivity larger than a
certain cutoff kc(A) cannot be realized, because of saturation of the surrounding
sites. Consider the number of links n(r) entering a generic site from a surroun-
ding neighborhood of radius r. Sites at distance r′ are linked to the origin with
probability P (k′ > (r′/A)d):

P

(

k′ >
(
r′

A

)d
)

= C

∫

( r′
A )d

k−λdk ∼
{

1 r′ < A.

( r
′
A )d(1−λ) r′ > A.

(3.55)

Hence

n(r) ∼
r∫

0

dr′r′d−1P

(

k′ >
(
r′

A

)d
)

∼ λ− 1
d(λ− 2)

Ad − Ad(λ−1)

d(λ− 2)
rd(2−λ). (3.56)

The cutoff connectivity is then

kc = lim
r→∞n(r) ∼ 1

λ− 2
Ad. (3.57)

The cutoff connectivity implies a cutoff length

ξ = r(kc) ∼ (λ− 2)−1/dA2. (3.58)
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The embedded network is scale-free up to distances r < ξ, and repeats itself
(statistically) for r > ξ, similar to the infinite percolation cluster above critica-
lity: The infinite cluster in percolation is fractal up to the coherence length ξ
and repeats thereafter [13, 42, 43].

When the lattice is finite, R < ∞, the number of sites is finite, N ∼ Rd,
which imposes a maximum connectivity [11, 44]

K ∼ mN1/(λ−1) ∼ Rd/(λ−1). (3.59)

This implies a finite-size cutoff length

rmax = r(K) ∼ AR1/(λ−1). (3.60)

The interplay between the three length scales, R, ξ, rmax, determines the nature
of the network. If the lattice is finite, then the maximal connectivity is kmax = K
only if rmax < ξ. Otherwise (rmax > ξ) the lattice repeats itself at length scales
larger than ξ. As long as min(rmax, ξ) � R, the finite size of the lattice imposes
no serious restrictions. Otherwise ( min(rmax, ξ) ≥ R) finite-size effects become
important. We emphasize that in all cases the degree distribution (up to the
cutoff) is scale-free.

To study the possibility of embedding the network in the lattice we can use
(3.57) in conjunction with (3.54). This yields:

rmax ≡ r(kc) = (λ− 2)1/dk2/d
c . (3.61)

Since we forbid sites to connect further than the lattice size we must demand
rmax ≤ R = N1/d, which means that networks can be embedded in a lattice in
the suggested manner only if kc ≤ N1/2. This limitation imposes an unnatural
cutoff whenever λ < 3, when compared to (3.14).

In Fig. 3.4a we show typical networks that result from our embedding me-
thod, for λ = 2.5 and 5 in two-dimensional lattices (we limit our numerical
results to d = 2). The larger λ is the more closely the network resembles the
embedding lattice, because longer links are rare [45]. In Fig. 3.4b we show the
same networks as in part (a) where successive chemical shells are depicted in dif-
ferent colors. Chemical shell l consists of all sites at minimal distance (minimal
number of connecting links) l from a given site. For our choice of parameters,
λ = 5 happens to fall in the region of ξ > rmax, while for λ = 2.5, ξ < rmax. In
the latter case we clearly see (Fig. 3.4b, λ = 2.5) the (statistical) repetition of
the network beyond the length scale ξ. The different regimes are summarized in
Fig. 3.5.

We now address the geometrical properties of the networks, arising from their
embedding in Euclidean space. To this aim, it is useful to consider the spatial
arrangement of the networks as measured both in an Euclidean metric and in
chemical space. The chemical distance l between any two sites is the length of
the minimal path between them (minimal number of links). Thus if the distance
between the two sites is r, then l ∼ rdmin defines the minimal length exponent
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Fig. 3.4. Spatial structure of connectivity network. Top: shown is the typical map of
links for a system of 50 x 50 sites generated from a degree distributions with λ = 2.5
and λ = 5. Bottom: shown (in different colors) are shells of equidistant sites to the
central one in a lattice of 300 x 300 sites. Note that for λ = 5, shells are concentric and
continuous fractals; but for λ = 2.5, shells are broken

dmin. We will see that dmin < 1 (for d > 1), contrary to all naturally occurring
fractals and disordered media. Sites at chemical distance l from a given site
constitute its l-th chemical shell. The number of (connected) sites within radius
r scales as m(r) ∼ rdf , defining the fractal dimension df . Likewise, the number
of (connected) sites within chemical radius l scales as m(l) ∼ ldl , which defines
the fractal dimension dl in chemical space. The two fractal dimension are related:
dmin = df/dl [13, 42, 43].

To study df , we compute the perimeter S(r), the number of sites that connect
the interior cluster of a region of radius r to sites outside. The fractal dimension
then follows from the scaling relation S(r) ∼ rdf −1. We focus on the regime
ξ > rmax. Consider a shell dr′, of radius r′. A site of connectivity k′ within the
shell is connected to the outside (to a distance larger than r−r′) with probability
P (k′ > ( r−r

′
A )d), (3.55). Thus,

S(r) =
∫ r

0
dr′r′d−1P

(

k′ >
(
r − r′

A

)d
)

∼
{
rd r < A,
c(λ)Ard−1 r > A,

(3.62)
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Fig. 3.5. This diagram shows the six regions where different behavior of the network
is found: for region A: rmax < R < ξ, B: rmax < ξ < R, C: ξ < rmax < R, D:
ξ < R < rmax, E: R < ξ < rmax, F: R < rmax < ξ. The diagram can be mapped into
only four regions where the cutoff kc and where size effect K are expected. A and B:
no cutoff and no size effect; C and D: cutoff and no size effect; E: cutoff and size effect;
F: no cutoff but size effect. The two symbols indicate the parameters corresponding to
Fig. 3.4b, (full diamond) λ = 2.5 and (full circle) λ = 5

where c(λ) ∼ 1+1/[d(λ−1)+1]. In other words, the network is compact, df = d
at large distances r > A, and super-compact, df = d+ 1, at r < A.

In order to compute dmin (or dl), we regard the chemical shells as being
roughly smooth, at least in the regime ξ > rmax, as suggested by Fig. 3.4b
(λ = 5). Let the width of shell l be ∆r(l), then

l =
∫

dl =
∫

dr

∆r(l)
∼ rdmin , (3.63)

since ∆l = 1. The number of sites in shell l, N(l), is, on the one hand, N(l) ∼
r(l)d−1∆r(l). On the other hand, since the maximal connectivity in shell l is
K(l) ∼ N(l)1/(λ−1), the thickness of shell (l+1) is ∆r(l+1) which is determined
by the length of the largest link to the next shell i.e., r[K(l)], and thus, ∆r(l +
1) ∼ r[K(l)] ∼ AK(l)1/d. Assuming (for large l) that ∆r(l + 1) ∼ ∆r(l), we
obtain

∆r(l) ∼ r
d−1

d(λ−1)−1 . (3.64)

Using this expression in (3.63), yields

dmin =
λ− 2

λ− 1 − 1/d
. (3.65)

Thus, above d = 1, the dimensions dmin and dl = df/dmin are anomalous for all
values of λ.

In Fig. 3.6 we plot dmin as measured from simulations, and compared
with the analytical result (3.65). The scaling suggested in Fig. 3.6b, N(l) ∼



42 R. Cohen et al.

10
-3

10
-2

10
-1

l
 d

l / R
d

10
0

10
1

10
2

N
(l

) 
/  

l (d
l -

 1
)

10
-3

10
-2

10
-110

0

10
1

10
2

3 4 5 6
λ

0.6

0.7

0.8

0.9

1

d m
in

(a)

(b)

Fig. 3.6. a The minimal length exponent dmin as a function of λ. Note the good
agreement between theoretical estimations (continuous line) and simulations results
(full squares). b The shape of the Φ(ldl/Rd) scaling function is shown for λ = 4 and
several lattice sizes: R=1000 (circle), 2000 (square), 2500 (diamond) and 3000 (triangle)

ldl−1Φ(ldl/Rd), is valid only for ξ > rmax. For R → ∞, we expect that the
network is scale-free up to length scale ξ and the analogous scaling will be
N(l) ∼ ldl−1Ψ(ldl/ξd), where Ψ(x � 1) ∼ x(d−dl)/dl .

Note on the Upper Cutoff

In (3.14) we suggest that the upper cutoff of a scale free network scales as
N1/(λ−1). However, for the spatially embedded graphs we find that no graph
with λ < 3 can be embedded in a lattice without sacrificing the natural cutoff
(see discussion after (3.61)). That is, the cutoff is limited to

√
N . This holds

true for every d. Similar results are indeed obtained for mean field (i.e. non-
embedded) graphs [46], while Warren et al [39] find the natural cutoff even for
graphs embedded in d = 2 lattices.

A possible explanation is in the different method for the network implemen-
tation, which leads to different ensembles. For the non-embedded networks we
allowed every link to lead to every other with an equal probability, thus allo-
wing more than one edge between a pair of sites, and edges leading from a site
to itself which were just ignored. In contrast, in the spatially embedded case
no such connections were allowed. It is plausible that allowing such connections



3 Directed and Non-directed Scale-Free Networks 43

Fig. 3.7. The infinite cluster in scale free networks at criticality. The clusters were
generated using a Leath type method, where the nearest available nodes are selected
in each shell

or, alternatively, allowing a deviation from the degree distribution, leads to the
“natural” cutoff, while requiring the exact degree sequence in conjunction with
no such connections influences the ensemble, bringing to an upper cutoff of

√
N ,

due to the high probability of forming such connections when the cutoff is higher.
The limit of K ∼ √

N seems to stem from the fact that the expected number
of edges between two such sites (or self-loops of a single such site) is of order
K2/〈k〉N � 1, which implies that most networks having such high degree sites
will be multigraphs, and therefore this might limit the cutoff. On the other hand,
since degree 1 sites consist of a finite fraction of the links in the network, a finite
fraction of the links of high degree sites will link to them, implying that the tail
of the distribution, and therefore the scaling of the cutoff is not changed, even
when double edges and self loops are removed.

3.3.2 Summary

In summary, we propose a method for embedding scale-free networks in Euc-
lidean lattices. The method is based on a natural principle of minimizing the
total length of links in the system. This principle enables us to embed the scale-
free networks in Euclidean space without additional external exponents. Very
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recently, independently, Manna and Sen [47] and Xulvi-Brunet and Sokolov [48]
suggested a different embedding method in Euclidean space which include an
external exponent. We have shown that while the fractal dimension df of the
network is the same as the Euclidean dimension, the chemical dimension dl > df
for all values of λ, yielding dmin < 1 for all λ and d > 1. A related work by War-
ren, Sander and Sokolov [39], studies some percolation properties of a similar
geographical model. In Fig. 3.7 we show some snapshots of the infinite cluster
at the percolation threshold, for 2d scale free systems with various values of λ.
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