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Abstract. Taking into account spatial fluctuations in the discrete model for certain types 
of immune response, the model of Weisbuch and Atlan is studied on a square lattice. In 
general, we end up with a healthy carrier state ‘29’ where at all sites all cell types except 
activated killer cells are present. We study the time it takes to reach this fixed point, as 
well as effects of disorder and noise. 

Weisbuch and Atlan (1988, hereafter referred to as WA) recently suggested a simple 
discrete model for certain types of immune response: the concentration of killer cells, 
activated killer cells, helpe cells and two types of suppressor cells are approximated 
as being either one or zero, and the different types of cells influence each other with 
a strength which is 1, 0 or -1. At the next time step, the concentration of one cell 
type is unity if the sum of‘ the interactions with the various cell types is positive; for 
zero or negative sums, the concentration is taken as zero at the next time step. The 
main result of this WA model is the existence of only two basins of attractions: starting 
from any one of the 32 possible configurations, we either end up in the empty state 
where all five concentrations are zero, or in state ‘29’ in the WA notation, where only 
activated killers have vanished, and the four other concentrations are unity. We leave 
the biological implications to the experts and deal here with the relations of this model 
to cellular automata and to percolation (Wolfram 1986, Stauffer 1985). 

The WA version corresponds to a mean-field approximation: every killer cell in the 
system has the same probability of affecting any other cell in the system; no lengths 
enter the calculation. Thus it is natural to generalise this model to the case of a lattice, 
where on each lattice site one has five variables (corresponding to the five concentra- 
tions) each of which can be 0 or 1 only. Each site influences itself and its nearest 
lattice neighbours in the same way as in the WA version. Thus for a square lattice of 
N = L*L sites one now has 5N ‘spins’ which can be up or down. Again, the sign of 
the sum of all interactions (five sites on square lattice, with five cell types each) at 
time t determines the value of the concentration, 0 or 1, at the next time step t + 1. 

More specifically, we number the spin corresponding to the killer cells as SI, the 
activated killers correspond to S 2 ,  the suppressor cells to S3,  the helper cells to S4, 
and the suppressors produced by the helpers to S 5 ,  with S, = 0 or = 1. The state number 
n, in the WA notation, of a lattice site is defined as n = SI + 2S2 + 4S3 + 8S4 + 16S5 and 
thus varies between 0 and 31 (corresponding to all concentrations zero and unity, 
respectively). Many properties of the system can be derived directly from the defining 
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equations, where Si(t) denotes the concentration of the ith component at time t = 
0, 1 , 2 . .  .: 

S I (  t)+ S,( t )  - S3( t) 

C S , (  t)+ S,( t) - S,( t) - S,( t) 

S3( t + 1) = sgn SI( t )  0 

where the sign function sgn(x) of integer argument x is 1 if x > 0 and is 0 otherwise 
( x G O ) .  The summations are performed over the site itself and over its nearest 
neighbours on the lattice. (The original WA model dealt with ‘summation’ over the 
site itself only.) 

We see that S3( t) = S,( t) for times t 3 1 and then S,(  t+ 1) = sgn(Z S , (  t)). Thus for 
positive times the killer concentration SI behaves like a forest fire (Stauffer 1985) or 
epidemic (Grassberger 1983,1985) in the percolation model: the sites become infected 
if at least one neighbour was infected at the previous time step. The behaviour of SI 
is thus known from percolation theory. Furthermore we see that for t 5 2 we have 
S,( t )  = SI( t ) ,  and thus S,( t) = S , (  t) for t 3 3; thus finally S,( t )  = 0 for t 2 4. Thus if 
at least one site in the whole lattice has S I  = 1 at some time t 3 1 then all lattice sites 
will finally end up in the stable fixed point 29. Thus the SI site can be put there 
initially, or evolve out of an S4 = 1 neighbour at time t = 1. If the lattice initially has 
not a single killer or helper cell, i.e. if S ,  = S4 = 0 for all sites, then the whole lattice 
ends up in the completely healthy n = 0. Thus normally the whole lattice reaches the 
fixed point n = 29, and in pathological limit cases it reaches the fixed point n = 0, for 
all sites. 

Our computer simulations on square lattices started with all spins down, except 
for the killer cells S I  of which a fraction p is randomly set to unity. Thus, except for 
very small p ,  we avoid the possibility of having not a single killer cell in the system. 
After a few time steps all lattice sites are in state 29, the healthy carrier state of WA. 

We do not find any sites in any other states, even though initially the sites were in 
states n = 0 and n = 1. The same result is obtained if the initial state is selected randomly 
from 0 to 31 for each site. This result is in complete agreement with the arguments above. 

In contrast, the mean-field model of WA gave, in about half the initial conditions, 
the final fixed point n = 0, and in the remaining ones (including the initial configuration 
n = 11 which was ignored in a figure of WA) the fixed point n = 29. Thus our lattice 
generalisation, with the randomness introduced by the initial conditions, makes the 
fixed point n = 0 unstable and leaves only the unique fixed point n = 29. Thus the WA 

model on a lattice with random initial configurations corresponds to a class-1 cellular 
automaton (Wolfram 1986). Only if all lattice sites start with the same configuration 
can we trivially reproduce the mean-field diagram of WA with two large basins of 
attraction. (If we take the threshold of the sign function not slightly above zero but 
slightly above 2, we also get sites with n = 0, as in WA, and oscillating sites.) 
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The time after which all sites are in state 29, starting with 12.5% of the sites as 
killers ( S ,  = l ) ,  increases with some power of the logarithm of the system size according 
to our simulations (figure 1). (An IBM 3081 without vector feature took about 34 ns 
per site and time step.) This result can also be explained: killer and helper cells are 
able to infect the whole lattice, even if initially only one of them is present. At any 
finite concentration of killer cells, the infection spreads through the lattice with unit 
velocity. In a very big lattice there will be a few regions of relatively large size with 
no killers or helpers initially. These regions will be infected completely only after a 
relatively long time, since the infection has to travel through these regions. Then it 
will also take them a relatively long time to settle into the fixed point n = 29. The 
probability of such a large empty square of n2 sites, if initially all sites except a fraction 
p are in state zero, varies asymptotically as ( 1  - P ) ~ * ,  and the number of such empty 
regions is proportional to the number N of lattice sites in the system. Thus we have 
on average N(l - P ) ~ *  such large holes in our lattice, and the largest hole one can 
expect is that where this number is of order unity. Thus the largest n typically observed 
varies as (log N)1’2r and the time i n  to infect this hole completely therefore also varies 
with the square root of the logarithm of the system size. 

Figure 1. Variation of average time ( I )  for a lattice to reach state 29 at all sites, if initially 
a random fraction p = 0.125 of sites are in state 1 (killer cells), and the others in state zero 
(healthy). Four thousand lattice configurations of size N = Lz were simulated for each L. 
Note the logarithmic scale for N. No sites were taken as inert. The size of the squares 
represents the size of the error bars. 

If a randomly selected fraction of all sites is taken as inert, i.e. it always remains 
at n = 0, then the infection spreads through the lattice as in percolation theory (Grass- 
berger 1985, Stauffer 1985). Small clusters of normal sites ( n  > 0 allowed) may be 
surrounded by inert sites ( n  = 0 always) and if no killer (or helper) cell was initially 
present in this finite cluster, then the cluster sites move to a fixed point n = 0, not to 
n = 29. Thus the combination of the WA model with percolation on a lattice reproduces 
the original possibility of two different final fixed points n = 0 and n = 29. The time 
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development for the spreading infection is now given by the chemical distance (Havlin 
and Ben-Avraham 1987). As an alternative, we took the inert sites as being in one of 
the 32 different states, selected randomly for each site, and again never changing 
throughout the simulation; now some sites end up in a final state different from 0 or 
29 since they are influenced by inert neighbours. 

We also introduced ‘noise’ in the WA lattice model (without percolation effects): 
with a certain probability, the spins do not obey the above rules (Lam 1988) but instead 
remain for this time step in their old orientation. Again n = 29 is the final state but 
now the number of activated killers remains non-zero over a longer time than without 
noise. This effect might be relevant biologically. Instead we also let the spin point up 
if, with the given probability, it did not obey the rules; then we also find n = 29, except 
that some sites also have activated killers ( n  = 31). Finally, if the spins either obeyed 
the WA rules or were set to zero, then no fixed point for the whole lattice was found. 

In summary, the more complicated lattice version of the WA model was found not 
to have a more complicated behaviour than the mean-field version: the number of 
fixed points does not increase; instead it may decrease. This conclusion is opposite 
to that of Kurten (1988) who found additional fixed points if the interactions were 
allowed to take on all real values between -1 and 1. 

We thank G Weisbuch and K E Kurten for stimulating discussions. 
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