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Abstract

We study the 
uctuations of the probability density P �r� t� of diusing parti�

cles to be at distance r at time t in the presence of random potentials� represented

by random transition rates� We �nd an exact relation which expresses all the

moments of P �r� t� in terms of its �rst moment� for both quenched and annealed

disorder and for any dimension� From this relation follows that anomalous diu�

sion implies non�trivial behavior of the moments of P �r� t�� such as an exponential

divergence of the relative 
uctuations for large r�
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The random�walk �RW� model� has been widely used to describe transport

properties in disordered systems���� In general� the randomness of the media

can be characterized by two types of disorder� structural disorder and random

potentials� Models for structural disorder include percolation clusters� random

walks �RW�� self�avoiding walks� or DLA� A common feature of all these models

is that they are fractals on certain length scales���� Models for random potentials

can be developed in terms of continuous time random walk �CTRW� and RW on

regular lattices with a random distribution of transition rates� representing the

random potentials������

In all these models� the crucial point is that transport can be anomalous� i�e��

the mean square displacement of a random walk does not obey the common Fick�s

law hr�i � Dt� but rather scales with time as hr�i � Dt
�
dw where dw � � is the

anomalous diusion exponent� This re
ects the commonly seen feature of average

slowing down the motion of a particle in a disordered medium� which is of interest

for many applications����

When transport properties of such models are discussed� a central role is

played by the propogator P �r� t�� which is the probability of �nding a RW at time

t at a distance r from its starting point r � �� In disordered systems� P �r� t�

itself can be regarded as a random variable provided that we index it with a

variable relating to dierent realizations of disorder� This variable corresponds to

the density of independent particles diusing in this medium� Moments of P �r� t�

with respect to the con�gurational disorder contain information on the relation

between the static disorder and the dynamical process�

In this paper� we discuss disordered systems which are described by ran�

dom distribution of transition rates on regular lattices� We show rigorously that

anomalous diusion leads to a non conventional scaling behavior of the proba�

bility density� which is re
ected in the divergence of its relative 
uctuations for

large r� We �nd a general relation� applicable to all the varieties of this model�

i�e�� quenched or annealed disorder� in any dimension� which connects all of the

moments of P �r� t� with respect to dierent realizations to its �rst moment�

Consider N dierent realizations of the disordered system� in which a random

walker starts at the origin at time t � � and moves until time t� Then

hP q�r� t�i � �

N

NX
i��

P q
i �r� t� � ���
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where Pi�r� t� is the probability that in the i�th realization the RW has reached r

at time t� and h�i represents averaging over the N realizations� For simplicity� we

will consider in what follows the moments of the propogator relative to its value

at the the origin� i�e�� we deal with the variables ui�r� t� � Pi�r� t��Pi��� t��

Within the framework of this de�nition� an indication of non�conventional

scaling is that huq�r� t�i is not asymptotically �in time� proportional to hu�r� t�iq�
Our calculation of the q�th moment will be based on an expression for huq�r� t�i in
terms of the �rst moment evaluated at a shifted value of r�

For this purpose we �rst de�ne the parameters of the underlying RW and

specify the parameters to be used in the subsequent analysis� Let p�j� be the

probability density that the displacement of the RW in a single step is equal j� We

will assume this function to be symmetric in the sense that hp�j�i � � and to have

�nite second moments� i�e��

X
r

jkjlp�j� �� � k� l � �� �� ���� d � ���

where d is the dimensionality of the space� For simplicity we will assume that all of

the second moments are equal a constant �� and that the second order correlations

all vanish� More general cases can be analyzed but provide no essentially new

information� We return to the problem of evaluating huq�r� t�i as de�ned in Eq� ���
under these assumptions�

At a �xed t� we can decompose the sum over P q
i �r� t� into contributions from

RWs which have taken exactly n steps at time t� The variable n can take on all

non�negative integer values� Let the number of realizations out of the total N

having this property be Nn�t� so that

�X
n��

Nn�t� � N � ���

We can appeal to the law of large numbers to assert that

lim
N��

Nn�t�

N
� �n�t� � ���

where �n�t� is the probability density that exactly n steps have been taken until

time t� Let ui�r� tjn� be the normalized distribution of the displacement at time t

of a RW in the i�th realization� conditional on there having been exactly n steps
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at that time� It follows that

huq�r� t�i � �

N

�X
n��

NnX
i��

uqi �r� tjn� � ���

However� the de�nition of the model used in this analysis implies that the pro�

pogator for being at a given displacement is known once the number of steps is

known� i�e�� one may write P q
i �r� tjn� � P �r� n� which depends neither on i nor on

t� It therefore follows that �for large t�

huq�r� t�i � �

N

�X
n��

Nn�t�u
q�r� n� �

�X
n��

�n�t�u
q�r� n� � ���

Equation ��� can be simpli�ed by noting that the restriction indicated in

Eq� ��� is equivalent to the statement that the limit t �� also implies n � ��

An appeal to the central limit theorem allows us to conclude that u�r� n� can be

approximated in this limit as a Gaussian� hence in the large t limit we have

u�r� n� � exp

�
� r�

���n

�
� ���

The long time form of the q�th power of this function� in turn� can be expressed

as the rather simple expression

uq�r� n� � u�r
p
q� n� � �	�

This asymptotic relation allows us to express huq�r� t�i as

huq�r� t�i �
�X
n��

u�r
p
q� n��n�t� � hu�rpq� t�i � ���

Thus the q�th moment of u�r� t� is related to the �rst moment of this function

with a shifted argument� This result is independent of dimension and valid for

quenched or annealed disorder�

We now �nd an expression for the histogram N�log ��u�� i�e�� the distribution

of u over the dierent realizations� for given r and t� For this purpose� we use the

alternative expression for the moments

huq�r� t�i �
Z
�

�
N�log ��u�uqd�log ��u� � ����
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Identifying Eq� ���� with Eq� ��� we �nd

N�log ��u� � � r�

log ��u
�t�

r�

�log ��u��
� ����

Let us now discuss the implications of these results� For systems in which the

diusion is regular� i�e�� hr�i � Dt for large t and the averaged probability density

is a Gaussian hu�r� t�i � exp�� r�

Dt
�� it follows from ��� that

huq�r� t�i � hu�rpq� t�i � hu�r� t�iq � ����

This is what we will term a regular scaling of the moments� An example for this

situation is a CTRW model in which the pausing time probability density ��t�

has a �nite �rst moment hti� In the large t limit� n is also large� allowing us by

a renewal�theoretic argument�� to replace it by t�hti� With this substitution we

derive the expected Gaussian approximation hu�r� t�i

hu�r� t�i � exp

�
�htir

�

���t

�
� exp

�
� 	�

�


�
� ����

in which we have set 	 � r�� and 
 � t�hti� Moreover� in this case �n�t� may

be calculated exactly� and has the form �n�t� � tne�t�n� � and it therefore follows

from ���� that the distribution of u takes the form

N�log ��u� �
tr

��	log ��u
e�t

��r���log ��u� � ��

r�

�log ��u��
� ����

On the other hand� when the diusion is anomalous� i�e�� hr�i � Dt��dw and

hu�r� t�i � exp

�
�
� r

t��dw

���
� ����

where dw and � � dw
dw��

� it follows from ��� that

huq�r� t�i � hu�rpq� t�i � hu�r� t�iq��� � ����

i�e�� there is non�trivial scaling of the moments� This behavior is called

multifractality���� An example for this situation is furnished by a CTRW model

with ��t� � T��t���� where � � � � �� For this case the probability density is

known�� to have the form ���� with � � �
��� �
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Let us now derive an expression for �n�t� in this case� and thus �nd the

histogram N�log ��u� and also con�rm the result ���� explicitly�

We de�ne a dimensionless time 
 � t�T � The Laplace transform of ��
 � can

be shown to have the small�s expansion

Lf��
 �g � ���s� � �� s� � e�s
�

� ����

The Laplace transform of �n�
 � is known to be

Lf�n�
 �g � ��n�s� �
�� ���s�

s
��n�s� � ��	�

which� in the limit s� �� is approximated by

��n�s� � s���e�ns
�

� ����

Thus the long time behavior of �n�t� can be found by inverting this transform�

We can write the inversion integral as

�n�
 � � �

�i

Z


�

s���
e�ns

��s�ds

�
�

�i

�n



� �
���

Z


�

����
exp

������ � ��
	
ds � ����

in which � indicates the Bromwich contour� and � is the parameter

� �
� n


�

� �
���

� ����

In the regime � �� � we can evaluate the integral approximately by using

the steepest descent method� In this way we �nd

�n�
 � �
�
n����


 ��

� �
������

exp
h
�C

� n


�

�i
� ����

It therefore follows from ���� that the histogram for this case takes the form

N�log ��u� � 

��

������ r
����
��� �log ��u�

����
������ exp

�
�C

�
r�

�log ��u�
�

��
� ����

Note that since ���� is valid only for n �� 
� ���� is valid only for log ��u �� r�

�� �

and cannot be valid for large log ��u�
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Let us now return to Eq� ���� which we approximate in the long time limit

as

huq�r� 
 �i �
Z
�

�

u�r
p
q� n��n�
 �dn � ����

where Eq� ���� is used to furnish an expression for �n�
 �� While the resulting

integral cannot be evaluated exactly� we can again appeal to the steepest descent

method to �nd the exponential term in the resulting approximation� The expo�

nential term in the integrand of ���� is

huq�r� 
 �i � exp

�
�C

� n


�

�
� q	�

�n

�
� ����

and the value of n that maximizes this exponent is proportional to q
���
��� from

which follows that

lnhuq�r� 
 �i � q
�

��� lnhu�r� 
 �i � ����

which agrees with our general result in Eq� ���� �applicable for all systems with

anomalous diusion� for the CTRW case with ��t� � T��t����

Multifractal behavior of moments as indicated by Eqs� ���� and ���� have been

discovered for various simulated systems���� but has been established analytically

only for some speci�c models�� This behavior indicates that there is no single

scaling exponent in terms of which all the moments scale and is re
ected� for

example� in divergence of the relative 
uctuations of u�r� t� as follows�

Using Eq� ����� the relative 
uctuations of u�r� t� can be expressed in terms

of the �rst moment�
�u

u

��

� hu��r� t�i � hu�r� t�i�
hu�r� t�i� �

hu�r� t�i� � hu�r� t�i�
hu�r� t�i� � ��	�

Since � � �� for large r� where hu�r� t�i �� �� the second term in the nominator

can be neglected� and one obtains�
�u

u

��

�
�

hu�r� t�i��� � ����

i�e�� the relative 
uctuations diverge as hu�r� t�i goes to zero� or r goes to in�nity�

For the CTRW model discussed above� the form of hu�r� t�i is known explicitly���

and one �nds �
�u

u

��

�
�

hu�r� t�i��� � exp



��� ��

�
br

t��dw

��
�
� ����

�



i�e�� the relative 
uctuations diverge stronger then exponentially as the distance

from the origin increases�

This expression corresponds to a measurable quantity� Consider N indepen�

dent diusing particles in the presence of random potentials� Then� P �r� t� is just

the �normalized� density for particles to be found at distance r at time t� Equation

���� then implies that the relative 
uctuations of this quantity would diverge as r

increases�

It has recently been suggested������ that such multifractal behavior is related

to the existence of an algebraic long�tail in the histogram N�log ��u�� On the

contrary� we �nd that both Eq� ���� and ���� have an algebraic long tail behavior�

but while the histogram of Eq� ���� does not correspond to a multifractal behavior�

that of Eq� ���� does correspond to such behavior� This can be understood by

looking at Eq� ���� which can be rewritten as

huq�r� t�i �
Z
�

�
N�log ��u�e�q	log ��u
d�log ��u� � ����

In other words� huq�r� t�i is just the Laplace transform ofN�log ��u�� and therefore�

the asymptotic behavior of the latter� is related only to the behavior of huq�r� t�i
for small q� In particular� according to a Tauberian theorem� if N�log ��u� �
�log ��u��� for large �log ��u� �as in ������ then huq�r� t�i � � � Aq ln q � e�Aq

for small q �excluding a logarithmic correction�� i�e�� only the small q behavior is

non�multifractal� However� in such cases� this small q behavior may indicate the

existence of a qmin� in which a crossover between multifractal and non�multifractal

regimes occurs� such that for q � qmin the behavior of the moments is non�

multifractal� Such features have been found in other systems��� Note that Eq�����

is valid only for large value of the argument in the exponent� and says nothing

about the behavior for small q� Therefore does not rule out the possibility of such

a crossover�
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