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Abstract

We study the fluctuations of the probability density P(r,t) of diffusing parti-
cles to be at distance r at time ¢ in the presence of random potentials, represented
by random transition rates. We find an exact relation which expresses all the
moments of P(r,t) in terms of its first moment, for both quenched and annealed
disorder and for any dimension. From this relation follows that anomalous diffu-
sion implies non-trivial behavior of the moments of P(r,t), such as an exponential

divergence of the relative fluctuations for large r.



The random-walk (RW) model, has been widely used to describe transport

1=6 " In general, the randomness of the media

properties 1n disordered systems
can be characterized by two types of disorder: structural disorder and random
potentials. Models for structural disorder include percolation clusters, random
walks (RW), self-avoiding walks, or DLA. A common feature of all these models
is that they are fractals on certain length scales®®. Models for random potentials
can be developed in terms of continuous time random walk (CTRW) and RW on
regular lattices with a random distribution of transition rates, representing the
random potentials!®?.

In all these models, the crucial point 1s that transport can be anomalous, 1.e.,
the mean square displacement of a random walk does not obey the common Fick’s
law (r?) = Dt, but rather scales with time as (r?) = Dt7w where dy > 2 is the
anomalous diffusion exponent. This reflects the commonly seen feature of average
slowing down the motion of a particle in a disordered medium, which 1s of interest
for many applications'»>.

When transport properties of such models are discussed, a central role 1s
played by the propogator P(r,t), which is the probability of finding a RW at time
t at a distance r from its starting point » = 0. In disordered systems, P(r,t)
itself can be regarded as a random varable provided that we index it with a
variable relating to different reahzations of disorder. This varnable corresponds to
the density of independent particles diffusing in this medium. Moments of P(r,t)
with respect to the configurational disorder contain iformation on the relation
between the static disorder and the dynamical process.

In this paper, we discuss disordered systems which are described by ran-
dom distribution of transition rates on regular lattices. We show rigorously that
anomalous diffusion leads to a non conventional scaling behavior of the proba-
bility density, which 1s reflected in the divergence of its relative fluctuations for
large . We find a general relation, applicable to all the vareties of this model,
1.e., quenched or annealed disorder, in any dimension, which connects all of the
moments of P(r,t) with respect to different realizations to its first moment.

Consider N different realizations of the disordered system, in which a random

walker starts at the origin at time ¢ = 0 and moves until time ¢{. Then
1 N
q = 7
(Pi(r,t)) = I E_l Pi(r,t), (1)
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where P;(r,t) is the probability that in the i’th realization the RW has reached r
at time ¢, and (.) represents averaging over the N realizations. For simplicity, we
will consider in what follows the moments of the propogator relative to its value
at the the origin, i.e., we deal with the variables w;(r,t) = P;i(r,t)/P;(0,1).

Within the framework of this defimition, an indication of non-conventional
scaling is that (u?(r,t)) is not asymptotically (in time) proportional to {(u(r,t))?.
Our calculation of the q’th moment will be based on an expression for (u?(r,t)) in
terms of the first moment evaluated at a shifted value of r.

For this purpose we first define the parameters of the underlying RW and
specify the parameters to be used in the subsequent analysis. Let p(j) be the
probability density that the displacement of the RW in a single step is equal j. We
will assume this function to be symmetric in the sense that (p(j)) = 0 and to have

finite second moments, 1.e.,
S gkiwli) <o, kil=1,2,..d, (2)

where d 1s the dimensionality of the space. For simplicity we will assume that all of
the second moments are equal a constant o, and that the second order correlations
all vanish. More general cases can be analyzed but provide no essentially new
information. We return to the problem of evaluating (u?(r,t)) as defined in Eq. (1)
under these assumptions.

At a fixed ¢, we can decompose the sum over P!(r,¢) into contributions from
RWs which have taken exactly n steps at time ¢{. The variable n can take on all
non-negative integer values. Let the number of realizations out of the total N

having this property be N, (t) so that

Y O Nu(t)=N. (3)

We can appeal to the law of large numbers to assert that

Jim 0 gy, (4)

where ®,,(t) is the probability density that exactly n steps have been taken until
time t. Let w;(r,t|n) be the normalized distribution of the displacement at time ¢

of a RW 1n the 1’th realization, conditional on there having been exactly n steps
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at that time. It follows that

N

(u? _%ZZU (r,tn). (5)

n=01:i=1

However, the definition of the model used 1 this analysis implies that the pro-
pogator for being at a given displacement i1s known once the number of steps 1s
known, i.e., one may write P! (r,t|n) = P(r,n) which depends neither on i nor on

t. 1t therefore follows that (for large )

(01 ) = 7 D2 Nt () ~ 32 @B (). (6)

Equation (6) can be simplified by noting that the restriction indicated in
Eq. (2) is equivalent to the statement that the limit ¢ — oo also implies n — oo.
An appeal to the central limit theorem allows us to conclude that w(r,n) can be

approximated 1n this limit as a Gaussian, hence 1n the large ¢ limit we have

u(r, n) ~ exp (_ i ) . (7)

20°n

The long time form of the ¢’th power of this function, in turn, can be expressed

as the rather simple expression

ul(r,n) ~ u(ry/q,n). (8)

This asymptotic relation allows us to express {u?(r,t)) as

[e.0]

W, 0)) ~ Y u(ry/g, ) ®a(t) = {u(ryg,1). (9)

Thus the q’th moment of u(r,t) is related to the first moment of this function
with a shifted argument. This result 1s independent of dimension and vahd for
quenched or annealed disorder.

We now find an expression for the histogram N (log 1/u), i.e., the distribution
of u over the different realizations, for given r and ¢. For this purpose, we use the

alternative expression for the moments

(ul(r,t)) = /OOO N(log 1/u)uld(log 1/u) . (10)
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Identifying Eq. (10) with Eq. (9) we find

2
N(ogl/u) = @ _,

: (B)——. 11
m( )(log 1/u)? (1)
Let us now discuss the implications of these results. For systems in which the
diffusion is regular, i.e., (r?) = Dt for large t and the averaged probability density
is a Gaussian (u(r, 1)) = exp(—g—zt), it follows from (9) that

(! (r, 1)) = (w(ry/q, 1)) = (u(r1))". (12)

This 1s what we will term a regular scaling of the moments. An example for this
situation 1s a CTRW model in which the pausing time probability density ¢(t)
has a finite first moment (t). In the large ¢ limit, n is also large, allowing us by
a renewal-theoretic argument!! to replace it by ¢/{t). With this substitution we

derive the expected Gaussian approximation (u(r,t))

(u(r, 1)) ~ exp (— (222?) = exp (-%) , (13)

in which we have set p = r/o and 7 = t/{t). Moreover, in this case ®,(t) may
be calculated exactly, and has the form ®,,(¢) = t"e~*/n!, and it therefore follows
from (11) that the distribution of u takes the form

tf'z/(logl/u)e—t P2

L(r2/(log 1/u) + 1) (log 1/u)?

On the other hand, when the diffusion is anomalous, i.e., (r?) = D2/ dw and

N(log 1/u) =

(14)

futrs ) ~exp |- (7) | (15)

where d,, and § = %, it follows from (9) that

(u?(r ) = {ulry/g, 1)) = {u(r, )77 (16)

1.e., there 1s non-trivial scaling of the moments. This behavior i1s called
multifractality®=?. An example for this situation is furnished by a CTRW model
with 9 (t) ~ T%/t**t!, where 0 < o < 1. For this case the probability density is

known!? to have the form (15) with § = %
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Let us now derive an expression for @, (¢) in this case, and thus find the
histogram N (log 1/u) and also confirm the result (16) explicitly.
We define a dimensionless time 7 = ¢/T. The Laplace transform of ¢(7) can

be shown to have the small-s expansion

=%

L{P(r)} = (s) ~ 15" ~ e (17)

The Laplace transform of ®,(7) is known to be

L{®(7)} = Puls)

<=
3
~—
n
~—

(18)

which, in the limit s — 0, 1s approximated by

B, (s) ~ 52" LeTmsT (19)

Thus the long time behavior of @, (¢) can be found by inverting this transform.

We can write the inversion integral as

1 1 o
(I)n(T) ~ _/ e +STCZS

- -
27 Jp s

=5 ()7 [ emloane - olas, (20)

in which I' indicates the Bromwich contour, and €2 1s the parameter

Q= (—)T . (21)

In the regime €2 >> 1 we can evaluate the mtegral approximately by using

the steepest descent method. In this way we find

B, () ~ (”fj)ﬁ exp [—G (ﬁ)} . (22)

T T

It therefore follows from (11) that the histogram for this case takes the form

3o 1—4a 6 —3 T’E
N(log 1/u) ~ 720-2) ri=a (log 1 /u)20—=~) g (N — 23
(log 1/u) ~ 77057 155 (log 1/u) exp[ ((logl /W)] (23)

Note that since (22) is valid only for n >> 7 (23) is valid only for log 1/u << ;"—f,,

and cannot be valid for large log 1/u.



Let us now return to Eq. (11) which we approximate in the long time limit

as

oQ

(ul(r, 1)) ~ / u(r/q,n)®,(7)dn, (24)

0
where Eq. (22) is used to furnish an expression for ®,,(7). While the resulting
integral cannot be evaluated exactly, we can again appeal to the steepest descent
method to find the exponential term in the resulting approximation. The expo-
nential term in the integrand of (24) is

(e, ) ~ e [0 () - 22 (25)

2n

and the value of n that maximizes this exponent i1s proportional to q;:—g from
which follows that
In{u’(r, 7)) ~ == In{u(r, 7)), (26)

which agrees with our general result in Eq. (16) (applicable for all systems with
anomalous diffusion) for the CTRW case with (t) ~ T /t*+1.

Multifractal behavior of moments as indicated by Eqs. (16) and (26) have been
discovered for various simulated systems”®, but has been established analytically
only for some specific models®. This behavior indicates that there is no single
scaling exponent in terms of which all the moments scale and 1s reflected, for
example, in divergence of the relative fluctuations of u(r,t) as follows.

Using Eq. (16), the relative fluctuations of u(r,t) can be expressed in terms

of the first moment

(g)z (W2 ) = (u(r, 1) (u(r, )’ = (u(r, 1)
u (u(r. D) Wlroy

Since § < 2, for large r, where (u(r,t)) << 1, the second term in the nominator

(28)

can be neglected, and one obtains

(%) = e )

i.e., the relative fluctuations diverge as (u(r,t)) goes to zero, or r goes to infinity.

For the CTRW model discussed above, the form of {u(r,t)) is known explicitly!?,

and one finds



1.e., the relative fluctuations diverge stronger then exponentially as the distance
from the origin increases.

This expression corresponds to a measurable quantity. Consider N indepen-
dent diffusing particles in the presence of random potentials. Then, P(r,t) is just
the (normalized) density for particles to be found at distance r at time t. Equation
(29) then implies that the relative fluctuations of this quantity would diverge as r
Increases.

It has recently been suggested”®?  that such multifractal behavior is related
to the existence of an algebraic long-tail in the histogram N(log1/u). On the
contrary, we find that both Eq. (14) and (23) have an algebraic long tail behavior,
but while the histogram of Eq. (14) does not correspond to a multifractal behavior,
that of Eq. (23) does correspond to such behavior. This can be understood by
looking at Eq. (10) which can be rewritten as

(u?(r 1)) = /OOO N(log 1/u)e™ 118 /) d(log 1 /u) . (31)

In other words, (u?(r,t)) is just the Laplace transform of N (log 1/u), and therefore,
the asymptotic behavior of the latter, is related only to the behavior of (u?(r,t))
for small ¢. In particular, according to a Tauberian theorem, if N(log1/u) ~
(log 1/u)~2 for large (log1/u) (as in (14)), then (u?(r,t)) ~ 1 — Aglng ~ e=A¢
for small ¢ (excluding a logarithmic correction), i.e., only the small ¢ behavior is
non-multifractal. However, in such cases, this small ¢ behavior may indicate the
existence of a ¢4, 1n which a crossover between multifractal and non-multifractal
regimes occurs, such that for ¢ < ¢, the behavior of the moments i1s non-
multifractal. Such features have been found in other systems!?. Note that Eq.(16)
1s vahid only for large value of the argument in the exponent, and says nothing
about the behavior for small q. Therefore does not rule out the possibility of such

a Crossover.
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