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Abstract

We study the tolerance of a scale-free network (having a connectivity distribution P(k) ∼ k−�)
under systematic variation of the attack strategy. In an attack, the probability that a given node
is destroyed, depends on the number of its links k via W (k) ∼ k�, where � varies from −∞
(most harmless attack) to +∞ (most harmful “intentional” attack). We show that the critical
fraction pc needed to disintegrate the network increases monotonically when � is decreased and
study how at pc the topology of the diluted network depends on the attack strategy.
c© 2004 Published by Elsevier B.V.
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Many networks are characterized by a scale-free degree distribution [1,2] where the
fraction of sites having k connections follows a power-law distribution:

P(k) ∼ k−� ; (1)

with an exponent � usually between 2 and 3. Examples of such networks are social
networks, such as the web of sexual contacts [3], movie-actor networks [4], science
citations and cooperation networks [5,6]. Computer networks, both physical (such as
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the Internet [7]) and logical (such as the World Wide Web [4], email [8] and trust
networks [9]) are also known to obey scale-free degree distributions.

Two “attack scenarios” have been studied extensively on such networks. In the Drst
scenario, nodes are randomly removed [10,11], which corresponds to the common per-
colation problem studied well in lattice networks [12] or random graphs [13]. Scale-free
networks are more resistant to random attacks than random networks, where the distri-
bution of links obeys the Poisson distribution. Above a critical fraction pc of removed
links, the network loses its connectivity and a giant cluster of connected sites no longer
exists. For �¡ 3; pc approaches unity with increasing number of nodes N of the net-
work, indicating that the giant cluster survives even when almost all nodes have been
removed [11]. In the second scenario, under an “intentional attack”, the highest degree
nodes are removed Drst [10,14]. Since scale-free networks are highly fragile to such
targeted attacks and rely heavily on the presence of few nodes of high connectivity,
they can easily be destroyed when these nodes (hubs) are removed. Thus, the critical
concentration pc is quite low under an intentional attack.

Here, we study more general attack strategies, where the probability W (k) of choos-
ing a node to be destroyed with probability p depends on its degree k:

W (ki) =
k�i

∑N
i=1 k

�
i

; −∞¡�¡∞ : (2)

For �¿ 0 nodes with larger k are more vulnerable, while for �¡ 0, nodes with lower
k are more vulnerable. The limiting cases � = 0 and � → ∞ represent the random
removal case [10,11], where each node has the same probability to be removed and the
targeted intentional attack where only the most connected nodes [10,14] are attacked,
respectively.

In the numerical simulation, we Drst construct the scale-free networks. For a given
value of �, we employ a Molloy–Reed algorithm [15], where we Dx the number of
nodes N and assign the degree k (number of links) for each node by drawing a
random number from the power-law distribution P(k) ∼ k−�. The minimum number
of k (lower cutoH) is m=1. We do not impose any upper cutoH, so that a given node
(in principle) can be connected with up to k = N − 1 diHerent nodes. After having
speciDed the number of links for each node, we generate the links starting from an
unlinked network. In each step, we randomly choose two nodes. If each of both nodes
has at least one link available, we add a link between them. Otherwise, we choose
another pair of nodes and repeat this procedure. The selection of pairs and creation of
links is repeated until the entire network is created.

For each network conDguration, we remove a fraction p of its nodes chosen ac-
cording to Eq. (2), until we reach the critical point above which a spanning cluster
does no longer exist. When a node is removed all its links are destroyed. Some typical
conDgurations of the clusters at criticality are shown in Fig. 1. When � is large, most
hubs are removed and the structure is rather linear. In contrast, for “friendly” attacks
(�¡ 0) and random removal of nodes (�=0), most hubs remain in the largest cluster.
For �¡ 0, the low-degree nodes are preferentially removed and thus their number in
the spanning cluster is reduced compared with the random removal case �= 0.
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Fig. 1. Largest clusters at criticality, after diHerent attack strategies on the same network of N = 103 sites.
Left to right: � = 4:0; 0:0;−0:5. (network visualization was done using the Pajek program).
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Fig. 2. The ratio of non-spanning conDgurations vs the fraction of removed nodes p. Lines are simulation
data, from networks of N = 106 nodes, while the circles are the theoretical critical points for networks with
� = 2:5. Left to right: � = 4; 1; 0:5, and 0.

For studying how pc depends on �, we have determined, for each p value, the
fraction of non-spanning conDgurations Fns(p). For very small values of p, all conDg-
urations are spanning and Fns(p)=0, while for p very close to one, all conDgurations
are non-spanning and Fns(p) = 1. Fig. 2 shows the functional form of Fns(p) for a
network with � = 2:5, for diHerent � values. It is natural to associate the intersect of
Fns(p) with the line 0.5 as pc.

We have determined pc as a function of � and �. Representative results are shown in
Fig. 3, where, for Dve attack strategies with �= 4; 0:5; 0;−0:5;−1; pc is plotted versus
the network parameter �. We show also the results of a mean-Deld-type analysis that
will be published elsewhere [16].

The analytical results are in good agreement with the simulations. The deviations
from the asymptotic limit (N → ∞) are more prominent in the case of low � values
and/or negative � values.
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Fig. 3. Values of pc vs � for diHerent � values: (bottom to top) � = 4; 0:5; 0;−0:5;−1. Symbols represent
simulation data (N=106 nodes) from 100 to 300 runs. Solid lines are the theoretical predictions for Dnite-size
networks, while dashed lines correspond to inDnite-size networks.

Next, we study the topology of the networks right at the critical point, as a function
of � and �. For given � and �, we determined, for each pairs of nodes, the shortest
topological distance between the nodes on the diluted network. The shortest topological
distance is the minimum number of links, by which the pair is connected. The mean
shortest distance 〈‘〉 is related to the cluster size Nc by Nc ∼ 〈‘〉d‘ where d‘ is the
topological (“chemical”) dimension of the network. For random removal and 3¡�¡ 4,
it has been suggested [17] that

d‘ =
�− 2
�− 3

; 3¡�¡ 4 ; (3)

while for intentional attacks d‘ should be identical to 2 for all � values.
Fig. 4 shows 〈‘〉 as a function of the network size Nc at criticality, in a double-

logarithmic presentation. For �=0:0 and �=3:5, the slope is consistent with d‘=3. For
�= 2:5 and �6 0, there is no theoretical prediction, but it is plausible that 〈‘〉 scales
as lnNc. Indeed, the lower symbols in Fig. 4 do not seem to follow a straight line. The
same data, plotted in a semi-logarithmic fashion, are closer to a straight line, but due
to uncertainties in the data, a deDnite conclusion cannot be extracted. For �¿ 0, we
can see that the data scale quite nicely, both for �= 3:5 and 2.5 and yield a slope 1=2
or d‘=2, as theoretically predicted for the �=∞-case, independent of �. Thus for the
same network, with �=3:5 for example, the topological structure of the diluted network,
characterized by the chemical dimension, depends on the way criticality is reached. We
can also see that, even by relaxing the “intensity” of the intentional attack by lowering
�, the topology of the network at criticality remains the same. This means that for
all positive �-values, the network structure is similar to the network structure under
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Fig. 4. Mean shortest chemical distance 〈‘〉 between any two nodes of the giant cluster at criticality, as a
function of the cluster size Nc. The results correspond to networks of initially N = 104; 105, and 106 nodes.
1000 diHerent conDgurations have been used for each N , except for N = 106 (100 conDgurations). The data
have been logarithmically binned. The values of � and � are shown in the plot. The upper line represents
the theoretical slope of 1=2, while the lower line has a slope of 1=3.

the most intentional attack, where the biggest hubs are removed Drst. This behavior is
reKected by the considerable gap between the critical points for �=0 and �¿ 0:5 (see
Fig. 3).
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Science Foundation.
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