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Nonuniversal transport exponents in quasi-one-dimensional systems
with a power-law distribution of conductances
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We study transport in quasi-one-dimensional systems consisting of n connected parallel chains
of length L with a power-law distribution of bond conductivities P(c) ~07% a<1, c<1. When
the transverse bonds are perfect conductors, we find that the conventional law for the transport
exponents in one-dimensional systems is not universal but depends sensitively on n. For n finite,
there exists a critical value of @, a.=1—1/n. For a=<a,, the resistivity exponent ¢ and the dif-
fusion exponent d,, stick at their classical values =1 and d,, =2. For a> a., both exponents vary
continuously with n: £=1/n(1 —a) and d, =1+1/n(1 —a). These values represent lower bounds
if the transverse bonds have the same power-law distribution. In the case of n =1, the transport
exponents accept their well-known one-dimensional values. In the two-dimensional limit n ~L, we
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obtain =0 and d, =2, irrespective of a.

In recent years, the problem of transport in one-
dimensional systems with a broad distribution of resis-
tances has been studied extensively (see, e.g., Refs. 1-4).
For a power-law distribution of bond conductivities

P(c)~0c"% a<l1, 61, 1)

the transport exponents d,, and £ depend sensitively on a.
The exponents d,, and  are defined by (x2)~1¥% and
p~L*, where (x?) is the mean-square displacement of a
random walker, p the resistivity, and L the system length.
It was found that £ and d,, vary with a as'~*

1 fora=0,

Z= (2a)
fora>0
l1—a
and
2 fora=0 , (2b)
dvw=12-a fora>0 .
1—a

The theoretical results (2a) and (2b) were found useful
to describe several physical systems. For example, (1) the
temperature dependence of the dynamical conductivity ex-
ponent observed in the one-dimensional superionic conduc-
tor hollandite can be understood* from Eq. (2). (II) Con-
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tinuum random systems such as the random-void model
can be mapped’ onto random percolation networks with
the distribution (1) of bond conductivities. Employing the
“one-dimensional” nature of the backbone of the percola-
tion cluster, bounds for the transport exponents have been
derived®’-® from (2). (III) The problem of biased dif-
fusion in random structures such as those described in
Refs. 9 and 10 can be mapped on biased diffusion in a
linear chain with a power-law distribution of transition
rates. In this case, the parameter a depends on the bias
field and a dynamical phase transition occurs. (IV)
Anomalous relaxation in spin glasses can be interpreted in
terms of stochastic motion (in phase space) with a power-
law distribution of transition rates.'!-12

In this paper we study how the transport properties are
affected by the power-law distribution (1) if the system of
interest is quasi-one-dimensional, consisting of n connected
parallel linear chains (see Fig. 1) of length L. For finite n,
in the limit L — oo, the system is one dimensional. How-
ever, we will show that both ¢ and d,, depend sensitively on
n and thus (2) is not universal for one-dimensional sys-
tems.

We consider the case where the horizontal bonds have
conductances o;; which are distributed according to Eq.
(1). The index j labels the chains, j =1,2, ... ,n, while the
index i labels the bonds along one chain, i =1,2,...,L.
For simplicity we first assume that the vertical bonds are
perfect conductors. The total horizontal conductivity X, is
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FIG. 1. A quasi-one-dimensional system of length L consist-
ing of n =3 connected linear chains. The vertical bonds are per-
fect conductors while the horizontal bond conductances are
chosen from the distribution (1).

given by Kirchhoff’s law

L

- 1

=3 , 3)
" S oiitoiat Yo

where o+ 02+ -+ +0;,=X is the conductivity of the
n parallel conductors in the ith segment of the chain.

For n =2, the singular part of the distribution of con-
ductivities = =o0;,; + 0, 7 is given by

z
d
F2) =~£) prrT

where B (x,y) is the B function. The generalization of Eq.
(4) for n parallel conductors is

=B(l—al—a)z' 7% @4)

n—1 .
P,X)~T] Bk —a)l—a)z"~17"e~x7% (5)
k=1
where @a=na — (n —1). We must distinguish between two
regimes of a. For a<a.=1—1/n, a is negative and the
sum in (3) is linear in L; we recover the conventional re-
sult for uniform bond conductivities

Sit~L/n . 6)

For a > a., a positive, one can use Eq. (2) by substituting
@ instead of a. Thus, for finite n the corresponding con-
ductivity exponent £, £, ' ~L¢ is given by

_ {1 fora<a. ,

1/n(1—a) fora>a, . (7a)
The corresponding diffusion exponent d,, is
2 fora=<a. ,
" l1+1/n(1 —a) fora> a. . (7b)

Consequently, only for the special case n =1 do our results
for Eq. (7) reduce to the well-known' relations (2). For n
finite, the system is still one dimensional, but the transport
exponents depend on n and therefore they are not univer-
sal. The physical reason for the n dependence can be un-
derstood as follows. The dominant contributions to the to-
tal resistivity in Eq. (3) come from those terms where in
one column i all conductances are close to their minimum
value. If, for example, in one column of n conductors
n —1 conductors have very small conductivity but one has
unit conductivity, then the current will predominantly flow
along the good conductor and the resulting conductivity of
the considered column will be governed by the good con-
ductor. The probability that all conductors in one column
have small conductances decreases if the number n of the
conductors in one column increases. Therefore, for the
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FIG. 2. Phase diagram of the dynamical phase transition in
the (a,n) space. Below the critical line transport is normal,
while above the critical line transport is anomalous.

same value of a, the transport exponents ¢ and d,, decrease
with increasing n. Correspondingly, the critical value a,
above which anomalous transport occurs, increases mono-
tonically with increasing n (see Fig. 2).

In the two-dimensional limit n ~L, there is no critical
value of a and we find the normal transport behavior of
two-dimensional systems, i.e.,

=0, d, =2, (8)

irrespective of a. This result follows directly from Eq. (6).

So far, for deriving our main results (6) and (7), we
have considered a system of vertical and horizontal bonds
where only the horizontal bond conductances were chosen
from a power-law distribution (1), but the vertical bonds
were perfect conductors. By distributing the horizontal
conductors according to Eq. (1) the conductivity of the
system can only decrease. Thus our results for ¢ and d,,
are rigorous lower bounds for the general case in which all
bonds horizontal and vertical are distributed according
to (1).

Our results can be applied to quasi-one-dimensional
random mixtures of singly and multiply connected bonds.
If the concentration ¢ of singly connected bonds is finite,
then according to (7) the singly connected bonds dominate
the transport behavior and the exponents are given by Eq.
(2). It is interesting to note that also in more complicated
random systems, such as the percolation backbone, the sin-
gly connected bonds seem to dominate the transport for
large values of a.%1314

Note added in proof. After this manuscript had been
submitted we learned that related results have been de-
rived by I. Webman (unpublished).
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