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We study diffusion in lattices of arbitrary dimensions with a power-law distribution of waiting
times 7, P(1)~7%"%, a <1, 7> 1. Using general scaling arguments we find that the asymptotic be-

havior of the mean-square displacement of a random walker is given by (r2)~12/d"’, where
d,=d, fora<0and d,=d, |{1+d,a/[2(1—a)]} for 0La <1 and d, £2. Here d,, is the (conven-
tional) diffusion exponent for constant waiting times and d; is the fracton dimension of the sub-
strate. Our expression for d,. is general and holds for Euclidean lattices as well as for random and
deterministic fractals. We have also investigated scaling properties of the distribution function
P(l,t) and the corresponding moments {/?), where [ is the chemical distance the walker traveled
in time ¢. To test our theoretical expressions we have performed extensive computer simulations
on the incipient percolation cluster in d=2, using the exact enumeration method. The numerical

results agree well with the theoretical predictions.

I. INTRODUCTION

In recent years, the problem of anomalous diffusion in
random media has been investigated extensively.'”7 In
general, laws of diffusion in random systems have been
characterized by power-law relations of the form

(r2y g% (1)

where (r?) is the mean-square displacement of a ran-
dom walker in the system and ¢ is the time. In uniform
lattices d,, =2 and (1) reduces to Fick’s law of diffusion.
For random systems, d,, can accept values larger than 2.
This anomalous diffusion occurs in self-similar random
structures, e.g., in percolation clusters within the corre-
lation length,? or in Euclidean systems with singular dis-
tributions of hopping rates or waiting times.”® While

the behavior of d,, for each of both types of disorder is -

quite well understood, much less is known about random
media where both types of disorder are present. Such
systems are, for example, percolation systems with singu-
lar distributions of hopping rates or waiting times. Per-
colation systems with power-law distributions of hopping
rates are relevant for describing transport in continuum
percolation (random-void model).’~!' In this case, exact
analytical expressions for d,, are not known, but upper
and lower bounds for d, have been derived.”~!" For
percolation systems with a power-law distribution of
waiting times 7,

P(r)~71%"2 a<l, r>1 )

rigorous results have not been derived. In previous calcu-
lations, either approximative methods were used, such as
the continuous-time random-walk approximation,'? or
deterministic fractals were considered, where renorma-

lization-group approaches have been performed.'?

In this paper we concentrate on the general problem of
diffusion in Euclidean or fractal networks, with the
waiting-time distribution (2). Using general scaling argu-
ments we derive the following result for the transport ex-
ponent d,,:

d,, —owo<a<0
- ds a
d,={d, |14+— , O<a<l, d;<2 (3)
2 l—a
d,/(1—a), O<a<l, d;>2

where d, =d,(— ) is the transport exponent for con-
stant waiting times, and d; is the fracton dimension. We
believe that (3) is rigorous and holds for arbitrary dimen-
sions d, including fractals. For special cases (Euclidean
lattices and deterministic fractals) (3) reduces to the es-
tablished results.”®!>'* To show explicitly that (3) holds
also for random fractals we have performed extensive
computer simulations of random walks on the incipient
infinite percolation cluster in d =2 for several values of
a. Our results support strongly the validity of (3).

In addition, we have considered the distribution func-
tion P(l,t) as well as the corresponding moments of the
random walk on percolation clusters. We have found nu-
merically that the scaling form for P(l,¢) recently suggest-
ed by Havlin et al!® for constant waiting times can be
used successfully also to describe systems with waiting
time distributions. In particular, the moments (/%)) for
— o0 <q < + oo can be described by the exponents d; and
d; only.

II. THE DIFFUSION EXPONENT

After N steps of the random walker, the elapsed time ¢
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is given by
t=NT , 4)

where 7 is the average time the walker stays in one site.
Since the mean-square displacement {72) as a function of
N steps of the random walker does not depend on how
long the walker has to wait in a given site before he can
jump, it scales as for constant waiting times, i.e.,

(r2y ~N% (5)

For a distribution of waiting times, 7 depends on N.
From the number S of distinct visited sites we can evalu-
ate 7,

=

v~
I Mu

= Tmax . 6
= J " drP) ©6)

1

For a <0, the integral in (6) converges to a finite value
when N and 7, tend to infinity. Consequently, 7 is con-
stant for large N; we have 1t ~N and the asymptotic be-
havior of the diffusion process is not changed by the dis-
tribution of waiting times, i.e., d, =d,,.

In contrast, in the range O<a <1, 7 diverges as
f~Thax for To., going to infinity, and the diffusion ex-
ponent is changed. To see how 7,, depends on S (and
N) let us consider first how the waiting times 7 are
chosen from random numbers x, O <x < 1. Since the
random numbers x are homogeneously distributed, we
have P(7)d r=dx. This yields r~x '~ Now consid-
er S random numbers x. The minimum value of the S
numbers scales as x;,~1/S. Accordingly, the max-
imum value 7,,, chosen from the distribution (2) scales
as

1/(a—1) —1/(a—1)
Tmax ~ X min ~S

and we obtain from (6)
F~Sa/ti=a (7)

Taking into account that S~N%" for d;<2 and S~N

for d; >2, where d; is the fracton dimension®'® (6), we
obtain
Ndsa/[Z(l—a)]+l’ d. <2
t=Ni~ 8)
Na/(l—a)+], d522 .
Using (5) we get
<r2>~t2/z?w
where
dw7 — <a§0
d,=ld, 1+ O<a<l, d, <2 9)
w= | 2 1—a |© 9SS
d,/(1—a), O<a<l,d;>2.

Equation (9) is the basic result of the paper and holds for
Euclidean lattices as well as for fractal structures. For
Euclidean lattices in two and higher dimensions one has
ds; >2,d, =2 (Refs. 6 and 16), and (9) reduces to the con-

ventional result d,=2/(1—a).® In one dimension,
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d;=1, and (9) yields again the exact result d,
=R2—a)/(1—a), 0La<1.” For fractal structures one
has® d; =2d;/d,, and (9) becomes

dy,, —w<a<0
dy, = a (10)
dy+df——, O<a<l.
l—a

For the Sierpinski gasket and the Van-Koch curve, (10)
reduces to a result, which has been recently derived by
Robillard and Tremblay'® using a renormalization-group
approach. But since our scaling arguments do not rely on
any details of the fractal structure we believe that (10) is
valid in general, for deterministic as well as for random
fractals. For fractal structures, (10) differs considerably
from the result of the continuous-time random-walk ap-
proach,'?

- dy,
YT dy/(1—a), O<a<l

—w<a<0
(11)

which can be thought of as a mean-field approximation
where memory effects are neglected. Indeed, above the
marginal dimension d; =2 Eq. (9) reduces to the mean-
field result Eq. (11)."> In (9) and (10), the diffusion ex-
ponent sticks at its conventional value d,, for a <a,=0.
The cross over value a, =0 has a simple physical interpre-
tation. Only for a < a. there exists a stationary equilibri-
um distribution

P{} = lim P(r,t) .

t— o

Detailed balance!” requires
1 N
lim — ¥ PUr;)~7

S—oe D i

and hence [see Eqs. (6) and (7)] the stationary distribution
function can be normalized only for ¢ <a,=0. Accord-
ingly, the diffusion exponent d,, is only changed by the
distribution of waiting times if a stationary equilibrium
state does not exist.

In order to check the validity of (10) for random frac-
tals, we have investigated random walks on the incipient
percolation cluster in d =2. We have performed com-
puter simulations using the exact enumeration method.'?
In this method, the distribution function P(r,z) of a ran-
dom walker in a given system is calculated exactly for a
fixed starting point ry of the walker. P(r,t) is defined as
the probability of finding the walker in a distance r from
its starting point r, at time ¢.

First, using the Leath algorithm,!® we generated a per-
colation cluster on a square lattice at criticality starting
from the origin ro=0. The transition rates w, from each
site r to one of its neighboring cluster sites are chosen ac-
cording to

wr:%Rl/(l—a) (12)

’

where R is a random number between O and 1. By this
procedure we generated a distribution of waiting times ac-
cording to Eq. (2). The time evolution of P(r,t) was cal-
culated as follows. At time =0 the walker starts in the
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J T ) r T T T T T TABLE 1. The diffusion exponents d, and d ! extracted
i A from Figs. 1 and 2, compared with the theoretical prediction, Eq.
2 | (10).
102}~
Numerical Numerical Numerical Theory
- ] a dw dl, dl/d, d.
A — o 2.83%0.1 2.4+0.1 0.85 2.87
N: - © 0 3.0 £0.2 2.5+0.2 0.83 2.87
v ol e /M_ L 4.7 £0.2 4.0+0.2 0.85 4.76
. 3 — ° 2 6.2 +0.6 5.2+0.5 0.84 6.66
e 0 ° ] 3 8.0 +0.8 6.610.6 0.82 8.56
Ao o =]
a o
i l L L 1 L A | .
103 10 10°

FIG. 1. Plot of {r2(z)) vs time t for various values of a ob-
tained from our computer simulations. The solid lines have the
slope displayed in Table . A: a=—; ® a=1; 0: a=3;

0: a=0; A: a=1.

origin, i.e., P(r,0)=8,;0. At time t=1, the walker steps
with probability wy to each of his neighboring cluster sites
8. Therefore

Wwo, r==46
P(r,1)= [1— Y wy, r=0
5

0, else.
By iterating this procedure we find P(r,2), etc: From
P(r,t) we obtain the mean-square displacement
(riy)= 3 rP(r,1) (13)
r

of the random walker with starting point at the origin for
the given cluster. In order to obtain the corresponding
configurational averaged quantity we have to average over
many clusters. Another interesting quantity is the proba-
bility P(1,¢) to find the walker in a chemical distance /
from his starting point. The chemical distance / between
two points in the cluster is defined as length of the shor-

T T T T T T
. //
=z 10 ]
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v
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a2 a °
N 5 o ® o |
o
109 L | . | ! l | I
10° 104 10%

FIG. 2. Plot of {I(¢)) vs time t for various values of @. The
solid lines have the slope displayed in Table I. A: a=—; ®:

a=1;0: a=3; 0: a=0; A: a=12.

test path between them.?’ To each cluster site r a chemi-
gal distance [/ is attributed. Consequently, P(r,z) and
P(l,t) are related by

P,t)= 3" P(r,1), (14)
r

where z(r” denotes a sum over all sites with the same
chemical distance ! from the origin. From P(l,t) one can
calculate the mean chemical distance (/(z))

(U(t)y= S IP(I,1) (15)
!

the walker travelled at time ¢. The asymptotic behavior of
(1) is described by the exponent d /,,

17d},

(U(t)) ~t (16)

i
For constant waiting times we define (/) ~¢'/%. It is
known that d} ~0.88d, (Ref. 20) for d =2 pt?rcolation.

Analogous to (5) we have generally (/) ~N 4w Substi-
tuting this result into (8) we find
dl, d!
—~=—-0.88, (17)
d, duw

irrespective of the waiting time exponent a. Eq. (17) can
serve as useful test of numerical calculations.

For our actual computations we have generated clusters
of up to 120 shells and averaged (#2) and (/) for each
value of a, over 400 clusters. The results for (r2?) and
(1) as function of time for a=— o0, 0, 1, 2, and I are
shown in Figs. 1 and 2. For a=2% and % the asymptotic
regime was not yet reached. Here we obtained the trans-
port exponents d,, and d ! by calculating the successive
slopes of the curves as function of 1/t and by extrapolat-
ing the results to 1/t=0. The numerical results for the
exponents are compared with our theoretical predictions
in Table I. The agreement between theory and simulation
is very good.

III. DISTRIBUTION FUNCTIONS AND MOMENTS

Next we are interested in the distribution functions
P(r,t) and P(l,t). Following suggestions of Havlin et
al.’® for constant waiting times we write analogously

—d;/d, do—1 1/d,,
P(r,t)~t S Cf T g —alr/t wyr , (18a)
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FIG. 3. Numerical results for (/%)) as a function of ¢ for
azé and different values of g. In order to show the data
points for different values of g in one figure, we have multiplied
the results for (/%)) in (a) for each value of g by an appropri-
ate factor C. (a) A: g=2, C=10"% A: g=4, C=10""; @:
g=6,C=10"° () 0O: ¢g=—-0.8; O: g=—1.2; A: g=—2;
A: g=—4;@ g=—6.
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FIG. 4. Plot of 7, as a function of ¢ for a=— « (A) and
a=1 (@). For a= — «, the slope 7, has been measured in the
vicinity of time ¢#=2000; for a=1/2, 7, has been measured
near ¢t =50000. The solid lines are our theoretical predictions,
Egs. (22) and (23). The inset shows 7, for a=1 measured in
the vicinity of t =25000 (A) and 1 =50000 (@).
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= —dy/dl, dj—1 Vs
P(l,t)~t V0T g bl R (18b)

where d, and d,; are the fractal and the chemical fractal
dimension® of the percolation cluster; a and b are con-
stants. Concerning the exponents ¥ and & there is not
much known up to know and we will come back to this
point later. From now on we will mainly concentrate on
P(l,t) since, as mentioned before, it contains the same
information about the dynamical properties of the sys-
tem as P(r,t). From the distribution one can calculate
all its moments {/9(¢)) via

=)

(1)Y= 3 19P(L,1) . (19)

=1
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FIG. 5. (a) Plot of ~ln[tdf/d“’rlidfP(r,t)] vs time ¢ for
a=1, r=50 (A: solid line), a=1, r=40 (A: dashed line),
a=1, r=40 (@; solid line) and a=2, r =30 (@: dashed line).
=50
40 (@:

! —d, ~
(b) Plot of — In[¢/"“®1'"P(1,1)] vs time ¢ for a=1
(A: solid line), a=%, 1 =40 (A: dashed line), a=%, !
solid line), =2, I =30 (®: dashed line).

I
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The time dependence of each moment is described by an
exponent 7,

(J98)) ~1™0 . (20)

Assuming P(l,t) to have the form (18b) the moments can
be written as

(191)) ~7 % [

di+q—1 _ .6
, ! e bx .
—l/dw

dx x 21

t

g1
with x=1/ t"%%. For ¢ going to infinity the lower bound
of the integral tends to zero. For g > —d;, the upper limit

of the integral is dominant and we find
Te=q/d y, 9>—d;. (22)

In contrast, for g < —d; the lower limit contributes to the
integral and we obtain

r,=—d;/dl,, q<—d,. (23)

To check these predictions, we have calculated the mo-
ments (/9t)) for several values of @ and many values of
g by the exact enumeration method. Figure 3 shows the
results for a representative value of @, a=1, and a few
values of g. From the slopes of these curves we obtain the
exponents 7,. In Fig. 4 the numerical results for the ex-
ponents 7, as a function of ¢ for a= — o and a=1 are
compared with the theoretical predictions Egs. (22) and
(23). For ¢ = —3 and g R — 1 the theory fits very well the
numerical data, only the crossover in the vicinity of
g = —d; is smeared out in the numerical results. As can
be seen from the inset of Fig. 4, this effect decreases when
t is increased. Therefore, we believe that in the long-time
limit our numerical data will converge towards a sharp
cross over as predicted theoretically; however our numeri-
cal data cannot exclude the case that this smeared cross
over may remain for large ¢ which would cause the distri-
bution to be of multifractal nature.

Finally we consider the exponents ¥ and 8 which ap-
pear in the distribution functions, Eqgs. (18). It was sug-
gested by several authors?"?? that ¥ =d,, and 8=d/ and
by others®>! that y is related to d,, by

dy

w—1

Y= p (24a)

which directly leads to'®
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di

8:
dl—1

(24b)

From numerical studies for constant waiting times it has
been proposed'’ that (24) is not rigorous but the correct
values of the exponents are somewhat higher. To deter-
mine ¥ and § for a= 7 and % we have plotted in Fig. 5

de/d, 1—d
—-—ll'l[t f Yy fP(r7t)]
as a function of ¢ for two different values of » and

- B
d,/dwll~d1P(l’t)]

— In[t
as a function of ¢ for two values of /. Our numerical data
follow very accurately straight lines. The slopes deter-
mine ¥y and 6. We find

du
y=1.4£0.15 | =—"—=1.2740.02
w1
and
‘71
8=1.4340.15 | ———=1.3340.03
di,—1

for a=1 and y=1.25%£0.15 (1.24+0.03) and &=1.37
+0.15 (1.24£0.04) for a=2%. Accordingly, our numeri-
cal values for ¥ and § are considerably smaller than d,,
and d/,, and somewhat larger than those predicted by
(24) which seems to support the conclusion of former nu-
merical studies.!> However, the errorbars of our results
are too large to exclude the validity of (24).
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