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We study the problem of random trapping on a linear chain when a random walker moves under
the influence of a dichotomously disordered field to a neighboring site. The transition probability
for moving to the right at each site is chosen with equal probability to be %( 1+E)or %( 1—E). We
find that the long-time survival probability has the form S(t)~ A(c,E)t %“E where
b(c,E)=2In[1/(1—¢)]/In[(1+E)/(1—E)], c is the concentration of the traps, and 4 is a constant.
For short times our theory suggests that the survival distribution is log-normally distributed, i.e.,
S (t)~exp[ —d (Int)?]. These results are supported by numerical simulations.

A problem of considerable present interest in the phys-
ical sciences is that of transport in disordered media. "
The results find application in a wide variety of fields
exemplified by solid-state physics,® reaction kinetics,*
and chromatographic processes.> Most analysis of trans-
port in a random medium make the assumption that the
medium is infinite and calculate quantities like the mean-
square displacement, {r%(¢)), as a function of time. It is
generally believed that if one understands transport in an
infinite medium, the results can be used to deduce the
dependence of properties like first passage times to ab-
sorbing boundaries in finite media on the underlying pa-
rameters. In this paper we present results of a study of
the classical trapping problem® in one dimension for ran-
dom walks on a line in which a given site of the underly-
ing lattice has an associated transition probability for
moving to the right equal to 1(1+E) or 4(1—E), each
occurring with probability I, where E < 1. Some proper-
ties of random walks such as the mean-square displace-
ment on such disordered lattices have been given by
Sinai,” and a more complete analysis is found in a paper
by Kesten.® It is shown, in the present work, that the
asymptotic form of the survival probability is not readily
predicted on the basis of transport properties in infinite
medium. Rather, our results suggest that the asymptotic
form of the survival probability is dominated by a partic-
ular configuration of transition probabilities, as well as
the large trap-free regions. This particular configuration,
which is dominant in the calculation of the survival prob-
ability, does not affect the mean-square displacement as
found by Sinai. The analysis of this model suggests a
novel power-law time dependence for the asympotic sur-
vival probability and leads to a phase transition with
respect to the behavior of the mean first-passage time.

The trapping problem on a translationally invariant
lattice has been studied by a large number of investiga-
tors whose main focus of interest has been the survival
probability S (2) of a diffusing particle (or random walker)
at time t. One asymptotic result is known rigorously for
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diffusion in translationally invariant spaces. This is due
to Donsker and Varadhan,’® and states that for ¢
sufficiently large

—InS ()~ {In[1/(1—¢)]}¥/2+DyD/D+2) | (1)

where D is the spatial dimension and c is the concentra-
tion of randomly distributed, uncorrelated traps. A simi-
lar result has been found by scaling arguments and simu-
lations for trapping on fractals!®!! with the ordinary di-
mension D replaced by the fraction dimension,'> d;. We
consider the problem of finding a similar asymptotic ap-
proximation for a random walk in one dimension when
the transition probabilities are dichotomous random vari-
ables whose values are chosen as described earlier. That
method of choosing the transition probabilities ensures
that the random walk will be symmetric on the average.

It is straightforward to study the survival probability
in the trapping problem in one dimension since the pres-
ence of (perfect) traps divides the line disjoint segments.
An analytic argument somewhat similar to that given by
Grassberger and Procaccia'® permits us to suggest an
asymptotic form for S(z). Let S(L,t) be the survival
probability of a random walker whose initial position is
uniformly distributed on an interval consisting of L
points. There are 2% possible configurations of transition
probabilities, each of which, in general, leads to a
different survival probability. We follow Grassberger and
Procaccia in assuming that the asymptotic form of the
overall survival probability will mainly be determined by
random walks on the largest intervals. A second approxi-
mation consists in the assumption that the survival prob-
ability for a given L can be determined at long times by a
single dominant configuration of transition probabilities.
This configuration, shown in Fig. 1, leads to the longest
survivals among all possible configurations by tending to
concentrate the random walkers into the central part of
the segment rather than at the ends of the interval in the
vicinity of the traps.

Our strategy in estimating the form of S(L,¢) for this
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FIG. 1. The configuration with oriented fields which leads to
the largest survival among all possible configurations. The ar-
rows indicate the preferred direction for particle movement.
This direction is characterized by a probability P =(1+E)/2.

particular configuration is to calculate the mean first-
passage time to either absorbing point, ¢*, and appeal to
the result of Newell'* to infer that S(L,t), for large
enough L and ¢, is expressed

S(L,t)~exp(—t/t*) . (2)

A standard calculation'® of t* shows that the leading-
order term in the expression for this quantity, neglecting
some unimportant constants, is

t*=Texp{(L/2)n[(1+E)/(1-E)]} , (3)

where T is a constant of order 1 with the dimensions of
time. The survival probability is obtained by averaging
over all values of L. Since only large L is of interest we
may replace the probability distribution for L by a proba-
bility density ¥(L) given by

W(L)=AL exp(—AL) , @)

where A=In[1/(1—c¢)]. Thus, the asymptotic form of
the survival probability can be calculated from the in-
tegral

S(t):kaOwL exp{ —(t/T)exp[ —b(E)L]
—Me)L)dL , (5)
where
b(E)=(1n[(14+E)/(1—E)] .

The resulting integral can be evaluated approximately by
using Laplace’s method, leading, finally, to

S(t)~K [In(t/T)+1n(b /1))t ~4"*, 6)

where K is a constant.

The interesting term in this last equation is
When b/A> 1 the mean first-passage time will be finite,
but when b /A < 1 it will be infinite. Hence there will be a
phase transition when the bias parameter E is sufficiently
large. The critical value of this parameter is

E.=[1—(1—¢)*]/[14(1—¢)*] )

so that when ¢=0, E,=0, and when c=1, E.=1. When
E > E, the mean first-passage time will be infinite, other-
wise it will be finite.

We studied this problem numerically using two
methods. The first is based on calculating the following
exact expression for the survival probability:

t—b/l.

oL

St)=c> 3 (1-o)¥(172Y) 3 s;(L",1) (8)

L'=1 i=1
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in which S;(L,t) is the survival probability for
configuration i. For large concentrations, ¢ —1, and for
large ¢, the sum in Eq. (8) converges rapidly. We have
used this equation by exactly enumerating the survival
probabilities S;(L,¢) for all configurations of size L up to
L=20. We chose values of the trap concentration ¢ and
the step number ¢ to ensure that Eq. (8) has converged
with a reasonable amount of computer time. The results
for S(t) for several concentrations and fields are plotted
in Fig. 2. The lines represent the theoretical predictions
of Eq. (6) and are in good agreement with the data. The
second numerical method for calculating survival proba-
bilities is based on generating random configurations of
traps and fields and using the exact enumeration method
described in Ref. 16. The results for large concentrations
coincide with the results found by using our first method.
Equation (6) describes the data quite well as may be seen
from Fig. 2. For small concentrations or at short times
we do not expect Eq. (6) to lead to a good approximation
to the survival probability and indeed large deviations are

-inS(t)
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FIG. 2. Plot of —InS(¢) as a function of Inz for E=0.5 and
large trap concentrations: ¢=0.995 (@), 0.99 (W), 0.985 (0O),
and 0.95 (A). The data were obtained using the first numerical
method described by Eq. (8). The straight lines support the
theoretical prediction of Eq. (6). The solid line represents the
theoretical slopes b /A in Eq. (6). The slight deviations from the
theory at large ¢ are attributed to the finite size of our lattice.
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FIG. 3. Plot of InS(¢) as a function of In for E=0.5 and
small concentration of traps: ¢=0.05 (@), 0.1 (H), 0.2 (@), 0.3
(A), and 0.4 (). The curves indicate deviations from the pre-
dictions of Eq. (6) at short times.

found from the prediction of Eq. (6). These deviations
are evident from the graphs in Fig. 3. An explanation for
these deviations is that in this range the dominant contri-
bution to S (L,t) does not come from the walkers concen-
trated in the centers of the line segment as is described by
the exponential survival probability shown in Egs. (2) and
(3). At short times we use a different argument to suggest
an analytic form for the survival probability. This ap-
proach is based on a result of Sinai’ that the mean-square
displacement scales as

(x%) ~(Int)* . 9)

We have accordingly conjectured the following form of
the survival probability for short times to hold in a trap-
free region of length L,

S(L,t)~exp[ —exp(—L'?)] . (10)

This form for the component survival probability was
indeed supported by the numerical simulations. On
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FIG. 4. Plot of S(¢) as a function of (Int)? for the data shown
in Fig. 3 on a double logarithmic graph. The slopes are 11+0.02,
in very good agreement with Eq. (11).

evaluating the integral in Eq. (5) with this form of S(L,?)
in the integrand we find for S (7):

S(t)~exp[ —d (Int)?] , (11)

where the constant d depends both on the trap concentra-
tion ¢ and the bias parameter E. Numerical data sup-
porting Eq. (11) are shown in Fig. 4.

An interesting feature of our analysis is the existence of
a new characteristic time t*, represented by Eq. (3),
which appears to dominate the long-time behavior of the
survival probability. This characteristic time differs from
the time calculated using Sinai’s result [Eq. (9)]. Only the
short-time behavior of S(z) is suggested by the mean-
square displacement property given in Eq. (9). Another
interesting feature of our analysis is the existence of a
“phase transition” in the average survival time from a
finite to an infinite mean time to trapping in the random
system, depending on the critical bias as given in Eq. (7).
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