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S. Havlin* and R. Nossal
Physical Sciences Laboratory, Division of Computer Research Technology,
National Institutes of Health, Bethesda, Maryland 20205

B. Trus
Computer Systems Laboratory, Division of Computer Research Technology,
National Institutes of Health, Bethesda, Maryland 20205
(Received 10 September 1984; revised manuscript received 17 June 1985)

We present a cluster growth model for trees (random aggregates without loops). The intrinsic dimension
dj and fractal dimension dy are adjustable. We study the ‘‘skeletons” of trees embedded in d =2, and find
that the intrinsic dimension of a skeleton is df=1 for d;=< df = 1.65, and df= 1+ d,— df for d;= df. Thus,
for 1= d;= df these trees are finitely ramified, and for df < d;= 2 infinitely ramified. The possibility that
structures are fractals in / space and compact in r space is also discussed.

The geometrical and topological characteristics of random
aggregates are of great interest. Systems such as percolation
clusters and lattice ‘‘animals’’ and diffusion-limited aggrega-
tion are studied extensively, especially for the purpose of
finding those exponents which characterize the physical
properties of the systems.!"® Recently, the usefulness of the
intrinsic exponent d;, which indicates how the mass M scales

with the chemical distance [, M ~ ld’, has been recog-
nized.>*8% However, the manner in which loops, branches,
and dead ends affect physical properties of random aggre-
gates still is not clear. Thus, in order to isolate the effects
of branches and dead ends from those of loops, we intro-
duce in this Rapid Communication a cluster growth model
for trees (clusters without loops) for which d; is adjustable,
and study their fractal dimension. Recently, also, the con-
cept of the ‘“‘skeleton’’ has been introduced.” The skeleton
of a cluster is defined as the ensemble of sites belonging to
the shortest paths from a chosen site to the sites in a shell
at chemical distance L. Skeleton substructures are impor-
tant in characterizing physical properties such as-diffusion,
elasticity, and resistivity.

An important parameter for characterizing skeletons is the
exponent df, defined in the limit that L — oo, and calculat-

S
ed through M ~ Id’ , where M; is the mass of the skeleton
lying within the /th shell. It has been found® that the
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FIG. 1. Trees grown by the cluster growth procedure described in the text (L = [, = 300).

skeletons of percolation clusters at criticality are chemically
linear for all d, i.e., df=1, which provides a quantitative
measure for the qualitative property that a structure be fi-
nitely ramified. The question arises® whether there exist
random tree structures which are infinitely ramified, for
which df > 1. The growth model which we now consider
enables us to generate planar trees which can have any arbi-
trarily chosen value of d;=2. We study properties of the
skeletons of these trees and find df > 1 if 4, is greater than
a critical value df=1.65. Also, we infer that it is possible
to obtain compact random stuctures in real space r which
are fractals in the chemical-distance / space.

The general model is as follows. We choose a site on a
d-dimensional lattice as the seed of the tree and then select,
randomly, B(1) nearest neighbors of the seed to be occu-
pied. The other nearest-neighbor sites are taken to be
blocked. These occupied sites represent the first chemical
shell, and their chemical distance to the seed is /=1. Simi-
larly, we grow the next shell by examining the nonoccupied
and nonblocked nearest neighbors of the sites in the first
shell. Of the latter, B(2) are then randomly occupied, -the
sites being chosen with the restriction that a new site can be
occupied only if it has but one nearest-neighbor already oc-
cupied site. (If the site has more than one nearest-neighbor
occupied site, it is regarded as blocked.) This restriction

©
(a) d1=1.3, (b) d1=1.5, (C) d1=18
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df=1, as is evident in (a) and (b), in which branching occurs only for / >> 1 where
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FIG. 2. Skeletons of the structures shown in Fig. 1. (a) d;=1.3, (b) d;=1.5, (c) d,=1.8. For d; < 1.65 the trees are finitely ramified; i.e.,
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end effects,”” caused by proximity to the boundary

shell L =300, are significant. For d; > 1.65 the trees are infinitely ramified, i.e., df > 1. Branching occurs almost immediately and continu-

ously for / > 1 (see also Fig. 3).

prevents the occurrence of loops in the clusters.
order shells are grown in a similar manner. In order to gen-

erate figures of predetermined dimensionality, we choose

B()=By*,

from which it follows that M (/) is given as

M= 3 B ~p+i=ft,

I'=1

(1a)

(1b)

where 4 is the intrinsic dimension of the cluster.

In Fig. 1 we show trees grown in d=2 with d4,=1.3, 1.5,
and 1.8. The fractal dimension dy of these trees was calcu-

lateddaccording to the followidnd scheme. Since M ~Id’
~ R/, it follows that R~ /""f. Thus we numerically

evaluate the radius of gyration R (/) of the clusters,

R(H~7F,

and use the identity ¥ = dj/d;. Results for # and dy for dif-
ferent values of d, are given in Table I.
d; > 1.8 are especially interesting. For example, the fact
that dy=2.0 for d,=1.9 suggests that a cluster can appear
to be compact in the geometrical space r, even though it is
fractal in the chemical-distance space [ This distinction is

The results for

)

important when considering various transport properties.? !

TABLE 1. Exponents of trees and skeletons.
for the fractal dimensionality dp, ratio f/=d,/df, and skeleton intrin-
sic dimensionality df, for clusters having intrinsic dimensional 4.
The error bars were determined by calculating the extreme slopes

Calculated values

when fitting linear curves to the corresponding quantities.

d ds v d§
1.3 1.71 £0.03 0.76 £0.02 1.0+3%
1.5 1.82 £0.03 0.82 +0.02 1.043%
1.6 1.86 £0.03 0.86 +0.02 1.0%33

1.7 1.91 £0.03 0.89 £0.02 1.1 £0.05
1.8 1.95 £0.03 0.92 £0.02 1.2 £0.05
1.9 2.0%803 0.95 +£0.02 1.27 £0.04
2.0 20483 1%8%, 1.37 £0.03

Higher-

The skeletons of the clusters presented in Fig. 1 are
shown in Fig. 2. The structures shown in Figs. 2(a) and
2(b) (d=1.3 and 1.5, respectively) do not branch appreci-
ably until / is relatively close to L, whereas in Fig. 2(c)
(dj=1.8) we observe that branching occurs for values of
| << L. The number of sites B5(/) in the /th shell of such
skeletons, averaged over 100 samples, is shown in Fig. 3.
We calculated the intrinsic dimension df from these and
other curves, and the numbers thus obtained are given in
Table I and Fig. 4. It is interesting to compare our results
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FIG. 3. logB%(]) vs logl, where B5(/) is the expected number of
sites in a skeleton as a function of the chemical distance / from the
seed (see text). Two types of behavior are indicated: d;=1.5 < df
and d;=1.9> df, where df=1.6510.05 is the critical value of dj,
below which trees are finitely ramified and above which they are in-
finitely ramified. (For convenience, the value of B here was taken
to be 4. Results do not differ significantly when By=1 [see Eq.
(la)]. Circles, L =200, triangles, L =400; squares, L =600. The
lowest curve (diamonds) corresponds to d,=1.5, L =600, By=1.
Note that up to / =300 one observes that B5(/) =1, which substan-
tiates our argument that in this case the skeleton is linear (df=1).
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FIG. 4. Skeleton intrinsic dimensionality df for clusters having
intrinsic dimensionality d;. The critical dimensionality is believed to
be approximately df=1.65 +0.05.

for df with the result for percolation. Here, for 4, < 1.65,
we obtain df=1 as found for percolation clusters at criticali-
ty;® however, for d,>1.65 we find df> 1. The exponent
df— 1 characterizes the exponent of ramification of the clus-
ter;!0 thus, for df < 1.65 these trees are finitely ramified (the

ramification exponent is zero), and for 4, > 1.65 the trees
are infinitely ramified.

Recently it has been shown,!? using analytical methods,
that similar structures generated on a Cayley tree yield
df=1 for =2 and df=d,— 1 for dyj= 2. These results, to-
gether with the results as represented in Fig. 4, are con-
sistent with the following relationship between d; and dJ,

2

df=1 for d=df,

3
df=1+d—df for d=df, ®

where df is a critical value.!> Because Eq. (3), with df=2,
has been proven analytically for trees grown on a Cayley lat-
tice (which represents growth in high dimensions) and be-
cause it seems to hold numerically, with df=1.65, for
d=2, we surmise that it may be valid (with appropriate df)
for trees constructed in any dimension.

We note that df=2 is equal to the value of the intrinsic
dimensionality d; of percolation clusters grown on a Cayley
tree. Similarly, the value inferred in the present study,
df=1.65 £0.05, is close to the value d;=1.64 which charac-
terizes incipient percolation clusters in d=2.> Thus, we
conjecture that df in our tree-growth model is equal to d; for
critical percolation clusters generated in the same dimen-
sion.

In summary, we have presented a tree-growth model for
which the intrinsic dimension d; can be varied. We find
that, for d;= df, the skeletons of the clusters are linear (i.e.,
df=1) and, for d,> df, the skeletons are nonlinear (.e.,
df>1). It would be interestng to study the skeletons of
other treelike models such as diffusion-limited aggregation!4
and screened growth aggregates.!’
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