PHYSICAL REVIEW A

VOLUME 45, NUMBER 10

Photon migration in disordered media

S. Havlin, R. Nossal, B. Trus, and G. H. Weiss
National Institutes of Health, Bethesda, Maryland 20892
(Received 21 August 1991)

Numerical and analytical methods are used to study a model for the multiple scattering of photons in
the presence of randomly reflecting inclusions. The photons are injected into a semi-infinite medium
near its surface, and are absorbed by the surface or within the medium. In the medium the photons can
diffuse only through voids between the reflecting inclusions, where the void structure has been modeled
as a fractal object. Our analytical approach is based on an analogy between the kinetics of a
continuous-time random-walk model and the movement of random walkers on fractals. For the case of
nonabsorbing media, we find the survival of photons within the medium after n steps to be
S(n) c’tn_lﬂ/d"’ and the intensity profile at a distance p from the injection point to be I'(p)xp ¥,
where d, is the diffusion exponent for fractals. For the case of absorbing media, I'(p) scales as
w1 exp( —y,ul/d”’p), where p is the absorption coefficient of the fractal medium, 6 and A are exponents
related to the fractal dimensions, and y is a constant. We also calculate the mean time and the average
maximal depth of photons that emerge at a distance p.
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I. INTRODUCTION

In recent years much effort has been devoted to devel-
oping remote-sensing techniques that use light to
penetrate heterogeneous or locally disordered media. Ex-
amples are optically based medical diagnostic procedures
that measure blood flow or hemoglobin oxygenation
[1-7], and light detection and ranging (LIDAR) of the
atmosphere [8,9] and ocean [10,11]. Related techniques,
which do not involve light, are pressure-transient analysis
of reservoirs [12,13] and seismographic procedures which
depend on the propagation of sound waves [14]. Each of
the above-mentioned processes involves multiple scatter-
ing of probe radiations which enter a randomly struc-
tured medium and then are subsequently detected when
they are reemitted. Somewhat different technological
schemes which depend on the interaction of radiation
with multiple-scattering centers in inhomogeous media
include the capture of light within metal-insulator com-
posites [15,16] (used in solar-energy conversion devices)
and neutron irradiation of radioactive wastes [17]. The
random structure of the materials which are being probed
affects the spatial and temporal distributions of the
penetrating radiations. Because a high degree of multiple
scattering occurs, a useful model of radiative transfer is
that of the migration of localized packets of energy,
which in the case of visible light can be described as indi-
vidual photons [14,18].

In the present paper we investigate a model of photon
penetration and migration in a disordered medium. The
geometrical arrangement, which pertains to several
remote-sensing technologies, considers photons to be in-
serted at one point of an interface and then detected at
another point of that interface after having migrated
through the underlying medium (Fig. 1). Specifically, we
examine the properties of photon diffusion in a medium
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containing randomly distributed reflecting inclusions of
varying sizes. These inclusions are assumed to fill so
much space that they form an almost impenetrable bar-
rier to photon transit between the surface optodes. The
presence of such inclusions rules out the simplest ap-
proach to the analysis of such problems, generally based
on classical transport or diffusion theory. Therefore, to
allow investigation of more general random media, we
have modified and used analytic techniques for photon
migration that we previously developed to study laser
Doppler flowmetry and time-resolved absorption spec-
troscopy in biological tissues [19-22]. Our present model

Photon Photon
In Out

FIG. 1. Schematic representation of the model. Photons are
inserted at a point on the surface of a semi-infinite scattering
medium and emerge at a point p units of distance from the point
of insertion. Distances between lattice points are related to the
inverse of the bulk scattering cross section (see text). Shown is a
hypothetical path of a photon as it moves on accessible lattice
points (the “voids”). Shaded regions represent embedded
reflectors.
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considers photon transport within the medium in terms
of a random walk on a fractal structure.

The analysis represents an initial effort to examine
qualitative features expected in this class of models that
might differ from those predicted by a diffusion theory.
Inclusions within the medium are modeled in terms of a
distribution of reflecting points on a lattice. Photons can-
not move onto the reflecting sites, but they execute a ran-
dom walk on the other lattice points (the “voids”), which
therefore constitute a fractal object. A particularly useful
case for simulations is a model based on a random walk
on a square or cubic lattice. In this case, the probability
that a given site is a reflector is equal to ¢, so that the
concentration of sites on which the particles move is
p=1—c. The motion of the photons on the void sites is
equivalent to transport on a percolation system. When p
is less than a critical concentration p,, only finite clusters
of voids exist and the motion of the photons is regionally
restricted. We are interested in values p >p_., where a
spanning cluster of connected void sites exists, allowing
photons that are launched on a such a cluster to move
over long distances. This spanning cluster is character-
ized by a correlation length £ such that, for distances
smaller than £, the system can be regarded as a fractal
medium. As p approaches p., the correlation length
diverges (§— ), and the system is fractal on all length
scales. The critical concentrations for simple cubic lat-
tices in two and three dimensions are p,=0.593 (D =2)
and p.=0.311 (D =3) [23].

We use both numerical and analytical techniques in
this study. The analytical approach is based on an analo-
gy between movement on fractals and the evolution of
probability densities in a continuous-time random-walk
model. Results derived from the theory are, in all cases,
shown to be compatible with numerical data.

The function of principal interest is the joint probabili-
ty, ['(p,n), that a random walker will emerge from the
surface of a semi-infinite medium at a distance p from the
insertion point at step n (see Fig. 1). Throughout this pa-
per we often refer to the migration of “photons” because
of our interest in the multiple scattering of light, in which
case ['(p,n) represents the intensity profile of diffusely
reemitted light. In terms of a model of light propagation,
we can identify p as p=2Z.d, where d is the actual
geometric distance on the surface, and 3, ! is the dis-
tance between points on an equivalent isotropic scatter-
ing lattice [19]. The number of steps, n, can be related to
real time as n =2 c,t, where ¢ is the speed of light in
the medium. The interfacial surface here is considered to
be totally absorbing, so every photon that reaches the
surface leaves without reflection. It has been shown,
analytically, that when the medium is homogeneous and
the interface is only partially reflecting, the result for
I'(p,n) will be virtually unchanged unless the reflection is
nearly total [24]. We assume this to be true as well in the
present case. In homogeneous biological tissues, where
photon-diffusion models seem to yield good representa-
tions of data [25], scattering primarily is caused by cell
boundaries and interior organelles. Familiar examples of
large biological entities that contain extended internal
nonuniformities are bone and lung.
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Initially we neglect internal absorption. In this case we
find that I'(p,n) has a form whose p dependence differs
for short and long times [Eq. (14)]. In both time regimes
the concentration profile is non-Gaussian, in contrast to
the functional form found for a uniform homogeneous
medium [19,22,25]. The effect of the fractal nature of the
inclusions is to concentrate the reemitted photons near
the point of insertion [Eq. (15)]. Derivations of these and
related results are given in Sec. II. Effects of internal ab-
sorption are considered in Sec. III. In addition to profiles
of diffuse surface emission, we calculate the expected
length of path (n|p) for photons that are trapped on the
surface at a distance p from the entrance point. We also
compute the average depth of photons that emerge on the
surface at a distance p from the entrance point, {z|p).
Finally, in Sec. IV, we consider the case where a
diffusionlike theory is applicable, exemplified by percola-
tion for p>p, and p>¢§, but where the diffusion
coefficient depends on the density and nature of the in-
clusions.

II. PHOTON MIGRATION,
NEGLECTING INTERNAL ABSORPTION

We model the medium as a semi-infinite three-
dimensional system, and the interface as a planar absorb-
ing surface (see Fig. 1). The material properties of the
medium are assumed to be isotropic, and the coordinate
system is chosen to be {x,y,z}, with x and y parallel to
the interface, ranging from — o to + «. The surface is
specified by z =0, and positive values of z refer to points
inside the medium. Because of the isotropy, the coordi-
nates x and y will not appear separately, but only in the
combination p=(x2+y?)!”2. The point at which radia-
tion is injected into the medium is designated as (0,0,1).
The medium contains reflecting inclusions, distributed in
such a way that photons move in a fractal space or in a
percolation system.

To see how the fractal properties of the medium might
influence the diffusion of radiation, we here neglect inter-
nal absorption. In this case, in the absence of an absorb-
ing surface, the probability for the displacement of a ran-
dom walker on a fractal, P(r,n), has been determined by
studies based on exact enumeration and scaling theories
[26,27]. The probability of migrating a distance r as a re-
sult of an n time-step walk can be written in scaled form
as [26,28]

P(r,n)=—ﬁg(u) , (1)
n

where d represents the fractal dimension of the medium
through which the random walker moves and d,, is the
diffusion exponent defined by the mean-square displace-
ment {r2)=n""%_ The dimensionless spatial variable u
is defined as u =r /{(r?)1/%, and g(u) is given as

g(u)oiexp(—aud‘”) , u<<l (2a)
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or

glu)<exp(—Bud), u>>1 (2b)

where §=d,, /(d,—1) and a and B are constants that re-
late to the detailed structure of the lattice and the ran-
dom walk. There is extensive evidence, based on simula-
tions [29], for the form shown in Eq. (2b) (¥ >>1), but
much less for the complementary regime (¢ <<1) which is
of principal importance in our study. Equation (2a) is
substantiated, here, by exact enumeration of a random
walk on a two-dimensional Sierpinski gasket of nine gen-
erations. (The exact enumeration method is explained in
detail in Ref. [26].) Results are shown in Fig. 2, where
P(r,n), as given by Eq. (1), is demonstrated for both of
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the asymptotic regimes of u. In general, the expression
given in Eq. (1) relates to an average over all possible
realizations of the random walk.

To derive an expression characterizing photon migra-
tion in the presence of an absorbing surface, we relate our
problem to a model of an anomalous random walk on a
lattice which has been solved earlier [30]. This model, for
which an exact analytical solution has been obtained, is a
continuous-time random walk (CTRW) on a uniform lat-
tice [31] where, at each site, the random walker remains
for a variable time 7 chosen according to the probability
density (7). If we assume that, for large 7,
Ylr)<77@t D with 0<a <1, then one obtains anoma-
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FIG. 2. Numerical results for P(r,n) on a Sierpinski gasket of nine generations using the exact enumeration method: (a) Plot of
In{—In[P(r,n)/P(0,n)]} vs Inr for n =500 in the regime u << 1. The slope is 2.31, in agreement with d, =In5/In2=2.32, as indicat-
ed in the r exponent in Eq. (2a). (b) Plot of In[ —InP(r,n)] vs Inn for r=8. The slope is —1.0, in agreement with the time depen-
dence in Eq. (2a) for u << 1. (c) Plot of In[ —InP(r,n)] vs Inn for » =256 in the regime u >>1. The slope is 0.78, in agreement with

6/d,=1/(d,—1)=0.76 from Eq. (2b).
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correspondence between the CTRW and a random walk
on a fractal can be established, in that the mean-square
displacement {72) for both processes has the same
mathematical form [32] and a value of a can always be
chosen to yield the value of d,, associated with a specific
fractal. P(r,n) (in the regime u >>1) is also known to
have a similar structure in both theories, and the CTRW
has been applied successfully to describe transport in
amorphous solids [33,34] and transport on fractals
[26,35].

One can also show by the method of images that
Pcrrw(p,z,n), which is defined as the probability density
(in the continuum limit) for the position, in the semi-
infinite medium z <0, of the random walker at step # in
the CTRW model in the presence of absorbing surface at
z=0, is given as [30]

Pcrrw(p;z,n)

wp U

1/d

w

(p2+(z_zo)2)l/2 ]

n

—g (3)

(pP+(z+z5))'? ] ]

Ry

Here, z, is the depth at which the photons are injected.
To calculate the probability density p(p,z,n) for the posi-
tion of the random walker on a fractal in the presence of
an absorbing surface at z=0, we have to take into ac-
count the differences between the CTRW and the fractal
models. Anomalous diffusion in this CTRW model
occurs because the walker can stay at single sites of the
system for long times. On the fractal, though, movement
occurs at each time step, but the diffusion process is
anomalous because the motion of the walker is affected
by the self-similar nature of the matrix of the voids,
which are connected by narrow  pathways
(“bottlenecks”). Due to these differences, the probability
that a walker remains in the matrix differs in the two
cases. We assume that p(p,z,n) and pcrrw(p,z,n) are re-
lated as

1/7d
p(p,z,n) < Alplpcrrw(p;z,n) , p=n " 4)

and will show, later, that analytical expressions which
follow are in agreement with numerical simulations.

In Eq. 4), A(p) represents the ratio of the transition
rates of the two processes, i.e., A(p)=<1/Tcrrw> Where
Tcerrw 18 the mean time that a random walker stays at a
single site in the CTRW model. In order to estimate
Tcrrw> Which can be interpreted as the average time per
site transition, we note that the distance traveled on the
lattice in the CTRW model can be expressed in terms of
the number of site transitions, N, as {p?) < N, whereas
the distance scales with the number of time steps as

(p)%«n.  Consequently, Tcrpw=n/Nx<p™
which leads to
2—d
pp,z,n)=<p  “perrw(prz,n) . (5)

S. HAVLIN, R. NOSSAL, B. TRUS, AND G. H. WEISS 45

The intuitive arguments which lead to Eq. (5) are sub-
stantiated by numerical simulations that are discussed
later.

Let us next calculate the asymptotic survival probabili-
ty S(n) for a single photon. This quantity is the probabil-
ity that the photon is still within the material at the nth
step. The survival probability is calculated in terms of
p(p,z,n) in terms of a double integral

S(n)« fow fowp(p,z,n)pdfﬁzdpdz , (6)

. . d,—2 .
in which the term p / ~ accounts for the geometrical
structure of the fractal and in which p(p,z,n) is found by
combining Egs. (3) and (5). We first evaluate the integral
over z, finding

172

o ~d./d, r% | (p*+v?)
fo plp,z,n)dzxn 7 fzog[_% dv

@)

where the function g(u) is defined in Eq. (2). We next
take advantage of the fact that p?>>>z2 and that g(u) is a
smoothly varying function, which implies that the last in-
tegral can be approximated by

Z,
[ 8

Thus, we find that the asymptotic time dependence of the
survival probability for a photon on the fractal is deter-
mined from the integral

( 2'+‘U2)1/2

i (8)
n

dv <2z,8

Rz

S(n)e2zgn ~d,/d, fompdf~dwg(p/n 1/d, dp

—1+1/d
< p w

) 9

in the limit of large n. Note that to derive Eq. (9), only
the scaling form of p(p,z,n) is needed, and not its specific
functional form. Figure 3 shows results of numerical
simulations of the survival probability based on the exact
enumeration method, as a function of » on a log-log plot
for three fractals: percolation (two and three dimensions)
and the Sierpinski gasket. The results agree with the ex-
ponent calculated in Eq. (9), which also lends support to
the reasoning leading to Eq. (5).

We can contrast the expressions given by Eq. (9) with
the comparable result for the CTRW model in the pres-
ence of a trapping surface [30]:

~1/d,

Scrrw(n)<n (10)

A glance at these equations makes it clear that the two
survival probabilities, as indicated in Eqgs. (9) and (10),
differ considerably in their dependence on d,,. In the case
of fractals, Eq. (9) indicates that when d,, increases, the
survival probability decreases. In contrast, the survival
probability in the CTRW model, Eq. (10), increases as d,,
increases. To understand this difference, note that in the
problem presently considered the random walker moves
away from its position at every step, which is not the case

for the comparable CTRW. The variable (r2) «<n’’®
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FIG. 3. Plot of InS(n) vs Inn for three fractals obtained from
numerical simulations. The percolation clusters were generated
at criticality using the method of Leath [Phys. Rev. B 14, 5046
(1976)]. (a) Percolation clusters at criticality in d =2; the slope
is —0.62, in agreement with —1+1/d,=—0.64 from Eq. (9).
(b) Percolation clusters at criticality in d =3; the slope is —0.74,
compared with —1+1/d,,=—0.73. (c) Sierpinski gasket (SG)
in d=2; the slope is —0.75. [Note that for the SG, the in-
tegrand in Eq. (9) should be multiplied by pdf _l/p. Equation
(9) was derived by assuming that the dimensionality of the ab-
sorbing surface is d;—1 (such as in the case of percolation).
However, in the SG the absorbing surface is a one-dimensional
edge. This modification leads to S(n) < n Tty Ty /d"’, whose
exponent is 0.748, in agreement with the slope of the figure.]
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indicates the displacement away from any given point at
time n. In the case of the fractal, the displacement de-
creases because the photon is constantly “bumping into”
the inclusions and the probability of returning to and be-
ing trapped at the surface increases [see Eq. (9)]. In the
CTRW, in contrast, a slowdown in motion is accom-
plished by forcing the random walker to remain in the
same location, which means that the rate at which it ex-
plores its neighborhood and reaches the surface is dimin-
ished [36].

It is easy to calculate the integrated surface flux,
defined as the total number of photons absorbed by the
surface per unit time. We immediately find, from Eq. (9),

Cn)=—38n)
dn

Another property of interest is the surface flux at a dis-
tance p from the entry point, I'(p,n). This quantity is the
probability density that a photon is absorbed at the sur-
face, at a distance p at step n. To calculate ['(p,n), we
start with the following expression [30]:

—-1/d,) (11

Cip,m)an”® 'pip,1,n), (12)

which has been derived for the CTRW. Equation (12) re-

lates the number of walkers absorbed by the surface at

the nth time step to the probability density just below the

surface (at z=zy,=1) at the (n —1)th step, p(p,1,n—1).

Due to the fractal nature of the accessible space, the

probability of being absorbed depends also on the factor
27d,—1 . . . .

“ . This factor is the fraction of time that a ran-
dom walker, which lies just below the surface, is on a site
which is a nearest neighbor to the surface (i.e., directly
connected), so that on its next transition it can be ab-
sorbed. (In a Euclidean space, for which d,=2,n" * !
is a constant whose value depends on the lattice [19].)

An expression for p(p,1,n) can be obtained from Egs.
(3) and (5) for p>z,, with different behaviors in the two
regimes of time indicated in Eq. (2). Hence, we find

—1—d,/d, _, % 1/d
plp )=t e, p/nT <l (13a)
1/d
n—1/(dw—1)—df/dwp6—dwe_C(p/n wys ?
1/d
p/n " ">>1, (13b)

where b and c are constants and §=d,, /(d, —1). Thus,
in accordance with Eq. (12), the quantity I'(p,n) is given
as

2/d,—2—d,/d, _, %w 1/d
F(pn)oc w f we bp /'l, p/n P! (14a)
’ n2/dw—8/dw—df/dw—1e_c(p/nl/dw)s a
17d
p/n " ">>1. (14b)

We note that the scaling behavior of the intensity
profile on the surface, after integration over all time, can
be derived from the scaling properties of Egs. (1), (3), (4),
and (14a) according to
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y(p)EZ‘n'pdfvzl"(p) o« fowpdf_zl‘(p,n )dn

« f oon2/dw~2—df/dwpdf-2
0

xg(p/n'“ydn ap” b .
(15)

The spatially integrated flux of walkers trapped by the
surface can be obtained, similarly, as

—-1/d,) (16)

© d,—2
I'(n)= L(p, 4 o«
(n) fo (p,n)p’ dpxn
Both results indicate the consistency of our arguments:
Eq. (16) agrees with Eq. (11), and Eq. (15) agrees with the
simulated numerical data shown in Fig. 4.
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FIG. 4. Data from numerical simulations of random walks
on percolation fractals. Plot of Iny(p) vs p for (a) d =2 and (b)
d =3 percolation at criticality. The slopes are 2.9 and 3.7, in
agreement with Eq. (15). In each diagram, the two symbol types
represent different times up to which y(p) has been calculated.
The upper symbols represent longer times, with better conver-
gence to a line having a slope of d,,, in accordance with Eq. (15).
(For percolation, d,, is known to be 2.87 and 3.8, in two and
three dimensions.)
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III. PHOTON MIGRATION
IN AN ABSORBING MEDIUM

The existence of internal absorption leads to significant
changes in several physically interesting properties. We
now modify the theory by assuming that, on each step,
the random walker, when moving on the fractal lattice,
has a finite probability of being absorbed. We designate
that probability as 1—exp(—pu). Hence, if T'(p,n|y) is
denoted as the intensity profile at the surface in this more
general case, we can relate F(p,n|u) to I'(p,n) [see Eq.
(14)] by

F(p,n|y)=l"(p,n)e_"” . (17)

To calculate the intensity profile I'(p) in the presence
of absorption, we integrate Eq. (17) over all values of n.
The presence of absorption tends to diminish the impor-
tance of photons that make long excursions. Consequent-
ly, only small values of the time are significant, which im-
plies that the results of principal interest come from the
regime p/n = “>>1. Therefore, we use the expression
for I'(p,n) given in Eq. (14b) and evaluate the following
expression:

Tp)= [

1/7d
w 2/d,=8/d,=d/d, = om0y

(18)

For large p, the dominant contribution to this integral
comes from the neighborhood of that value of » that min-
imizes the absolute value of the exponent. Thus, the in-
tegral can be evaluated approximately by Laplace’s
method, which leads to the formula

l/dw

C(p)xulpre~1H “p (19)

where ¥ is a constant,

0=(d,+56/2—2)/8d, ,

and A=(6+1)5. Data from numerical simulations of
d =2 percolation at criticality, which are plotted in Fig.
5, tend to substantiate the prediction of this equation.
Note that this result is a generalization of the expression
given for a homogeneous medium [19],

T(p) e u'’p2exp(— 4pVp) ,

which is obtained from Eq. (19) by choosing d,=3 and
d,=2. For a fractal, I'(p) can exhibit a very different
dependence on p and u: For three-dimensional percola-
tion at criticality, for example, one has d r=2.5 and
d,, ~3.8, which implies that A=~1.0, §=0.23, and
I‘([))CC[LO'ZiDA‘I' O.Zﬁp) .
Until now we have concentrated on calculating the sur-
face intensity T'(p,n |u). Other parameters relating to the
photon path often are of interest [19]. One example is the
expected length of path for photons tkat are trapped on
the surface at a distance p from the entrance point,
(n|p). For a homogeneous medium, this quantity may
be calculated directly in terms of I'(p,n |) as

Oexp(—yp
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3,nT(p,n|u) fnwnr(p,nlu)dn
o«
2, T(p,nlu) fowl‘(p,nl,u)dn

In the case of a fractal medium, though, it is convenient
to calculate the expected path length in terms of the so-
called “chemical length” I, which is the shortest path
length between two accessible sites [26,37]. The chemical
length is related to the geometric distance p by p =17,
where, for the percolation cluster at criticality, v=0.88
(D=2) and ¥=0.75 (D =3) [38]. The analog of Eq. (14b)
for the quantity I'(/,n|u) can be shown [26] to have the
form

(nlp)= (20)

!
2/dy =8, /d},—d/dl =1 (17" %) —pyp
T(,nlp)<n e y

(21)

where d,=vd;, d,=vd,, and §,=d,,/(d,—1). When
we substitute this expression into Eq. (20) and evaluate
the resulting integrals approximately by using Laplace’s
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FIG. 5. (a) InI'(p) vs p for several values of u, for d =2 per-
colation at criticality: ©=0.05 (&), p=0.1 (0), u=0.2 (A),

and p=0.4 (+). (b) Plot of In[p*T(p)/u’] as a function of
pu . The scaling is in agreement with the prediction of Eq.
(19).
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FIG. 6. Plot of {nlp) vs. p/u " on a log-log scale for
©=0.1(1), 0.15 (+), and 0.2 (A). The scaling and the slope of
1.15 agree with Eq. (22b).

method, we find

(nll)frl/yl/a’ , (22a)
which, because p < %, is equivalent to
(nlp)<p!*/u'"™ . (22b)

Note that {n|p) no longer is proportional to p, as is
the case for a homogeneous medium. Simulated data
support the relation just given. For example, Fig. 6,
which has been obtained from numerical simulation, is a
plot, on a logarithmic scale, of {n|p) as a function of p
for the two-dimensional percolation cluster. The estimat-
ed slope 1.15 is in good agreement with the predicted
value 1/v~1.14 (Ref. [38]). Equation (22a) is similar in
form to an expression obtained for homogeneous media

10

<z|p>

100
P/Ll”dw

FIG. 7. Plot of {z|p) vs p/u'’™ for p=0.05 (C), 0.1 (x), 0.2
(0), and 0.4 (A). The scaling and the slope of 0.6 support Eq.
(23), where the predicted exponent is 1/2¥=0.57.
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[19], viz., {nl|p) <p/u'’? (for large p), in that the depen-
dence on distance is linear. On average, those photons
which reach the surface travel along relatively short
paths; photons having longer path lengths tend to be ab-
sorbed within the medium. In the homogeneous case, the
metric of shortest distance is the Euclidean distance p,
whereas on a fractal the shortest distances are the chemi-
cal lengths. Equation (22b) arises because the shortest
paths on a fractal are not linear in p, but vary proportion-
ally with [ <p!/%.

A second quantity of some interest is the average depth
along the trajectory of photons that emerge on the sur-
face at a distance p from the entrance point. This will be
denoted by (z|p). Using essentially the same argument
as in Ref. [39], one can show

2d!

1/2d] -
<z|p>°<ll/2/‘u wo:pl/ZV/lul/ w o (23)

Figure 7, which contains a logarithmic plot of {z|p) as a
function of p (obtained from numerical simulation), is in
good agreement with this formula, and the scaling of
different values of u also is in agreement with this predic-
tion.

IV. MIGRATION IN A PERCOLATION SYSTEM
ABOVE CRITICALITY

When properties of the medium are strictly uniform,
one can represent the migrating photon either in terms of
a random walker or in terms of a diffusing particle. Both
approaches give similar results [19,25]. We here make
use of a modified diffusion theory.

Let p(r,t|r,) be the probability density for the position
of a photon at step n, given that it initially was at
ro [=(0,0,z4)]. This function satisfies the diffusion equa-
tion [25]

19 =D, Vp—2,p, (24)

cr Ot

where the parameter 2, represents the cross section for
internal absorption and, as before, cy is the speed of light.
The coefficient D,,, is given as D,, =(3Z )~! and has the
units of length. The solution to Eq. (24), subject to the
boundary condition

p(x,,0;1]0,0,z5)=0
together with the initial condition
p(r,0r))=8(r—r,) ,

is

2
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face intensity I'(p, ) to be given by

F(p,t)—“—‘Dach%g

z=0

20
8(7TDOPCT)3/2t5/2
p*+zj

———————3 crt
4D et 0T

Xexp (26)

[Note that, in Eq. (26) and the following, p and z, are
measured in terms of real spatial variables.]
The surface intensity I'(p) is found by integrating
[(p,t) over ¢,
1/2‘

L(p)= foml“(p,t)dt
D
op
3, (p*+z3)
(27)

Zo0
ZW(DOPCT)I/Z(p2+Z(2))

Xexp( —[2,(p*+23)/D,, 1'%} .

In the analysis which follows, we assume that p*>>>z3 and
p(2,/D,, )'”2>>1, which means that T'(p) can be
represented as [19]

I(p)=p~*exp(—pV'Z,/D,,) (28)
for large p. The only change in considering the same
problem in d dimensions is that the prefactor p 2 in this
equation is replaced by p~?* 1’2 but the form of the ex-
ponent remains unchanged (e.g., in two dimensions the
prefactor is p‘3/ 2). We expect, when the concentration
of sites on which the photons move (the voids) is greater
than p,, that the form of ['(p), for p>§, is like that
shown in Eq. (28) (or its equivalent in d dimensions), but
that the diffusion constant D,, would be replaced by a
function of p. By modeling the diffusion by a random

plr,tlr )=—l—exp —— 5 et
" 8(aD,ert)? 4D ert T

o (z—z¢)? (z+2()?

PN Dot | TP 4D ert

(25)

On identifying the reemitted radiation as the flux of pho-
tons through the surface, one finds the instantaneous sur-

0 o,
a
Bq
a
g
ﬂ“am
L]
— 107 P ota,
a 4 o g
: s 5 o,
~ a o g
a
& 4 o fg
c 4 Emm
— -201 -
a ©
°
a
-30 T T
0 10 20 30
P

FIG. 8. (a) Plot of Inp’I'(p) as a function of p for several
reflector concentrations c=1—p: ¢=0.1 (&), 0.3 (O), and 0.4
(A). The linear curves support Eq. (28).
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walk, using the method of exact enumeration [26], we cal-
culated I'(p) for several values of p. Results for InI'(p),
plotted as a function of p, are shown in Fig. 8. The near-
ly straight lines support our conjecture.

We expect that when p approaches p., the motion of
the walker will be severely restricted, implying
limp —p D(p)=0. For values of p close to p,, the fol-
lowing scaling argument yields

Y @9

2 2 2 _
Dochoc _<Lloci o« —dLo((p—pc)V(d"’
t t g w

which indicates how the effective scattering croisv(sdeclign
changes due to the inclusions [i.e., 2, <(p—p.) * ]
The exponent v(d,, —2) appearing in this equation is, for
the percolation model, equal to 1.16 in two dimensions
and equal to 1.54 in three dimensions.

[1] M. Stern, Nature (London) 254, 56 (1975).

[2] R. Bonner and R. Nossal, Appl. Opt. 20, 2097 (1981).

[3] Laser-Doppler Blood Flowmetry, edited by A. P. Shepherd,
Jr.and P. A, Oberg (Kluwer Academic, Boston, 1990).

[4] K. K. Tremper and S. J. Barker, Anesthesiology 70, 98
(1989).

[5]J. M. Schmitt, G. X. Zhou, E. C. Walker, and R. T. Wall,
J. Opt. Soc. Am. A 14, 2141 (1990).

[6] D. T. Delpy, M. Cope, P. van de Zee, S. Arridge, S. Wray,
and J. Wyatt, Phys. Med. Biol. 33, 1433 (1988).

[7] B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka,
R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M.
Yound, P. Cohen, H. Yoshioka, and R. Boretsky, Proc.
Nat. Acad. Sci. U.S.A. 85, 4971 (1988).

[8] F. G. Fernald, Appl. Opt. 23, 652 (1984).

[9] 3. D. Klett, Appl. Opt. 24, 1638 (1985).

[10] H. R. Gordon, R. C. Smith, and J. R. V. Zaneveld, Proc.
Soc. Photo-Opt. Instrum. Eng. 489, 2 (1984).

[11] M. A. Blizard, Proc. Soc. Photo-Opt. Instrum. Eng. 637, 2
(1986).

[12]J. Chang and Y. C. Yortsos, SPE Form. Eval. (March,
1990), p. 31.

[13] R. A. Beier (unpublished).

[14] B. White, P. Sheng, M. Postel, and G. Papanicolaou, Phys.
Rev. Lett. 63, 2228 (1989).

[15] S. Berthier and J. Lafait, Thin Solid Films 125, 171 (1985).

[16] S. Berthier, K. Driss-Khodja, and J. Lafait, J. Phys. (Paris)
48, 601 (1987).

[17] P. Grand, Nature (London) 278, 693 (1979).

[18] S. Feng and P. A. Lee, Science 251, 633 (1991).

[19] R. Bonner, R. Nossal, S. Havlin, and G. H. Weiss, J. Opt.
Soc. Am. A 4, 423 (1987).

[20] R. Nossal, J. Kiefer, G. H. Weiss, R. Bonner, H. Taitel-
baum, and S. Havlin, Appl. Opt. 27, 3382 (1988).

[21] R. Bonner, R. Nossal, and G. H. Weiss, in Photon Migra-
tion in Tissues, edited by B. Chance (Plenum, New York,
1989), p. 11.

[22] R. Nossal, R. F. Bonner, and G. H. Weiss, Appl. Opt. 28,

2238 (1989).

[23] D. Stauffer, Introduction to Percolation Theory (Taylor and
Francis, London, 1985); Fractals and Disordered Systems,
edited by A. Bunde and S. Havlin (Springer-Verlag, Ber-
lin, 1991).

[24] D. Ben-Avraham, H. Taitelbaum, and G. H. Weiss, Lasers
in the Life Sciences 4, 29 (1991).

[25] M. Patterson, B. Chance, and B. C. Wilson, Appl. Opt. 28,
2331 (1989).

[26] S. Havlin and D. Ben-Avraham, Adv. Phys. 36, 695 (1987).

[27] A. Aharony and A. B. Harris, J. Stat. Phys. 54, 1091
(1989).

[28] S. Alexander and R. Orbach, J. Phys. Lett. (Paris) 43,
L625 (1982).

[29] A. Bunde, S. Havlin, and E. H. Roman, Phys. Rev. A 42,
6274 (1990).

[30] G. H. Weiss and S. Havlin, J. Stat. Phys. 63, 1005 (1991).

[31] E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167
(1965).

[32] H. Weissman, G. H. Weiss, and S. Havlin, J. Stat. Phys.
57, 301 (1989).

[33] H. Scher and M. Lax, Phys. Rev. 137, 4491 (1973); 137,
4502 (1973).

[34] H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455
(1975).

[35] G. H. Weiss and S. Havlin, Philos. Mag. B 56, 941 (1987).

[36] The CTRW can be mapped onto a space of higher dimen-
sionality which has comblike features, and where transi-
tions occur at discrete time steps [26,35]. Thus, the
CTRW is a process in which the anomaly arises when the
number of accessible sites is increased, while the anoma-
lous motion of photons on fractal objects is accompanied
by a decrease in the volume of embedded sites.

[37] S. Havlin and R. Nossal, J. Phys. A 17, 1427 (1984).

[38] H. J. Herrmann and H. E. Stanley, J. Phys. A 21, L1169
(1988).

[39] G. H. Weiss, R. Nossal, and R. F. Bonner, J. Mod. Opt.
36, 349 (1989).



