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We present a general relationship between the diffusion exponent d,, and the fractal exponents of trees
(i.e., clusters without loops), d,, = (d; /d;)(2+d;—df). The exponents dy, d;, and df are the fractal dimen-
sion, the intrinsic dimension of the tree, and the intrinsic dimension of its skeleton, respectively. This new
result is supported by scaling arguments and numerical data.

Transport properties of random systems, such as dif-
fusion, elastic response, and electrical conductivity, current-
ly are being intensively studied.!> Considerable effort has
been devoted to finding relations between static and dynam-
ical properties of cluster aggregates.3>-5 Recently, the static
intrinsic dimension® d; has been recognized as being useful
for characterizing the dynamic properties of lattice animals.’
In this Rapid Communication we argue that the general re-
lationships between dynamical exponents and static ex-
ponents for trees (clusters without loops) are

d,=2+d,—df, d,=(d;/d)Q2+d—df) ,
- )
d=2d,/(2+d,—df) ,

where d,, is the diffusion exponent, dl, is the chemical dif-
fusion exponent,® and d is the fracton dimensionality. The
exponents d; and df are the intrinsic dimensions of the clus-
ter and its skeleton, respectively, they relate the cluster
mass M or skeleton mass M; to the chemical size / as

- s

M=1" and M, = 1%, The chemical distance / is the shor-
test path of occupied sites linking two points on a cluster.
The skeleton of a cluster whose chemical radius L is defined
as the subcluster, which contains only sites belonging to the
shortest paths from a chosen site to its Lth chemical shell
(see Fig. 1). This definition implies that all dead ends, ex-
cept those terminating at the L th shell, do not belong to the
skeleton.

The results given in Egs. (1) can be obtained from the
following arguments. We define p,(/) as the total resis-
tance between a chosen site 4 on the tree and all the sites
in the /th shell surrounding that site, and define the resis-

tivity exponent, Z;, by pii=1 Y Let p1(!) be the resistance
between site 4 and one site in the /th shell. Then p(/)
can be related to p;(/) by

poll) =p (/T 1= )

a’ .
The quantity / '~! represents the effective number of paths
connecting the origin 4 to shell . We next make use of the

3

relationships
dy=vd,, d=vd;, [=9C , 3)

where the exponent v is the exponent which expresses the
radius of gyration of a cluster in terms of its chemical size,
i.e., R =1I°. Thus, we obtain from the Einstein relation,®°®
d,= df+z, the equivalent expression in / space,

dy=d+(; . 4

Since there are no loops in a tree (by definition), it follows
that p,(/)=1/ and, from Eq. (2), one finds {;=2—d}.
Then, by using Egs. (3) and (4) and the definition*® of the
fracton dimension d = 2d, /dw = 2d, /d!,, we obtain Egs. (1).

The results given in Eqgs. (1) are general for diffusion on
trees. For the special case of finitely ramified trees, for
which df=1, we obtain the results

diy=di+1, dy=d;(1+1/d), d=2d;/(1+d)) .

These results were applied recently’ to lattice animals, which
are assumed to be finitely ramified since they can be gen-
erated from percolation clusters.'? ‘
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FIG. 1. (a) Example of a tree generated by a cluster growth

model (Ref. 11) (see text). (b) The skeleton of the tree shown in
(a). For clarity of illustration we have chosen a small tree
(L =30), but much larger trees (L =400) were used when deter-
mining the exponents described in the text (see Fig. 2).
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In the following we present two examples of trees for
which these laws may be shown to be valid.

(i) Trees without dead ends. A model for trees without
dead ends can be constructed as follows. Let p (/) be the
probability that a bond in shell / — 1 will grow to two bonds
in shell /, and let 1—p (/) be the probabilty that it will grow
into only one. Thus, the expected number of bonds that
grow from a bond in the (/—1)th shell is given by
2p(U)+1[1=p()]=14+p (), and the total number of
bonds B (/) in the /th chemical shell will be

1
B(H=TI +p()] . (5)

I'=1
If we choose p (I') = a/!’, we obtain )
B()=|*, 6)

from which it follows that the mass M (/) is given as

1
MWU)= 3 BU)=a+1=" ™

'=1

As a result of the way they have been constructed, these
trees do not have dead ends. They can be embedded in any
spatial dimension d = d,.

We now show that, for this model, d),=2. The probabili-
ty that a random walker at the /th shell will, on a given
step, move to shell / + 1 rather than / — 1 is

B(l+1)

B(+1)—B({)
BU+1)+BW)

B(+1)+B({)

]

=1+ 5 +ell) .

®

From our definition of the present model we see that, con-
ditional on B (/), the random variable B (/ +1) has a bino-
mial distribution with the properties

(BU+1)=BU)(1+a/l) ,
¢
(B*(1+1)) —(BU+1))?=B)(a/1)(1+a/l) .

An analysis based on the binomial distribution indicates
that, to lowest order in /,

(e(DN|BU))Y =a/4l . (10)

In order to calculate (/,2), where l,=u;+u,+ - - - +u, is
the sum of the individual steps, we have
(D =n+23 3 (u-u) , an

i#=j

since each step is of unit length. Let us next evaluate a typ-
ical term in this sum by saying that the i/th step starts from
shell /’ and the jth step starts from shell /"’. By using an ar-
gument similar to that which led to Eq. (10), it may be
shown that, for large /' and I”’

(uiruy) =4(e(Nel")) = a¥al'l" 12)

so that the second term on the right-hand side of Eq. (11)
can be at most of the order of 2a?(Inn )2. But this implies
that dj, = 2.

The result d}, = 2 is consistent with Eqs. (1), since for this
model d;=df. (Owing to the absence of dead ends, the
skeletons of the trees are identical to the trees themselves.)
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FIG. 2. The expected chemical distance (/) traveled by a ran-
dom walk of n steps (open circles) on a tree of size L =400, which
was generated according to the rules described in the text (Ref. 11).
Also shown is 1/P(0,n), where P(0,n) ~n~9/2 is the probability
of returning to the origin after n steps.

It is interesting to note that, for this case, Egs. (1) can be
written as

di=2, d,=2d;/d, d=d, . (13)

These equations are a generalization of the case of diffusion
on linear chains,* which are obtained when one substitutes
d;=1 in Eq. (13). Also, note that the fracton dimension* d,
in this case, is equal to the intrinsic dimension dj.

(i) Trees with dead ends. A cluster growth model'! was
used to generate trees which have dead ends. We chose the
origin on a square lattice to be the seed of a tree. The first
nearest neighbors of the seed, representing the shell /=1,
were chosen randomly to grow or be blocked. A similar
procedure was used for successive shells. For any given
value of d;, the number of sites grown in a shell was deter-
mined by B(1)=dM/dl=1""". Only those sites which
would not create loops were allowed to grow. .After thus
choosing the occupied (growing) sites, the remaining
nearest-neighbor sites were blocked.

The exponent d’, had been calculated by performing exact
enumeration®!? of random walks on trees, with. d;=1.9.
We found dl,=2.48 £0.05 and d4/2=0.75 +0.03 (see Fig.
2). The intrinsic exponent df of the skeleton of these trees
was calculated and found to be df=1.30+£0.05. These
results are in very good agreement with Egs. (1).

In conclusion, we have presented general relationships
between dynamic exponents and static geometric exponents
for systems for which df=1, i.e., which are infinitely rami-
fied. It would be interesting to study the intrinsic dimen-
sion of the skeleton for aggregation models such as
diffusion-limited aggregation and cluster-cluster aggregates.
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