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A self-consistent cluster approximation is developed for the wave-vector (@) -dependent spin-
spin correlation in Ising models describing magnetic and ferroelectric systems. The method is
particularly suitable for describing systems with competing short-range interactions. The self-
consistent approximation for the {-dependent susceptibilities with clusters of size N is found to
be ;1 (@) =CITIMI (@) - (1-O)], v=1,2, ... N, where M, ! (q) are the eigenvalues of
the Fourier transform of (M ‘1),-1- where Mj; is the pair-correlation matrix of spins within the
cluster calculated by the exact Hamiltonian of the cluster. The constant C is the ratio of the
number of nearest neighbors inside the cluster to the total number of nearest neighbors. The
method is applied to calculate scattering intensities in potassium-dihydrogen-phosphate-type
hydrogen-bonded ferroelectrics. We find a strong anisotropy in the § dependence of the inten-
sity, exhibiting a strong suppression of fluctuations along the easy (z) axis. The results are
found to be in good agreement with neutron scattering data in KD,PO,. We also investigate the
ice-rule limit of our results. In that case a singularity of the type X~1(q) = x71(0) + B(T) g}/
(qu +q22) for ¢ —0 is found, similar to that generated by long-range dipolar forces.

I. INTRODUCTION

In recent years, there has been great progress in
understanding critical phenomena using scaling ideas
and renormalization-group techniques.' However,
simple analytical approximations are useful in under-
standing thermodynamic properties of specific sys-
tems, in particular, for temperatures and length scales
outside the critical region. While the Curie-Weiss
mean-field approximation usually provides a starting
point for qualitative understanding of the phase tran-
sition, in many cases a significant improvement is
achieved by using cluster approximation methods,
in which the effect of fluctuations is incorporated in a
self-consistent way. This is particularly true for sys-
tems which possess competing short-range interac-
tions, which give rise to strong fluctuations in the ef-
fective interactions which are not accounted for in
the simple mean-field treatment.” Another example
is hydrogen-bonded systems in which the strong
correlations between the neighboring hydrogens are
adequately taken into account by cluster methods.”®
In fact, in ice-rule systems where the number of hy-
drogens in each vertex is fixed, the results of the
cluster method for the value of the transition tem-
perature T, and some of its critical properties agree
with the known exact solutions.!® It should be also
noted that self-consistent cluster methods may be a
useful starting point for renormalization schemes,
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especially in real-space renormalization-group
methods.!!

In the present work, we construct a self-consistent
cluster approximation for -dependent correlations in
spin systems. This is done by extending the @ =0
cluster method of Strieb ef al.* to nonuniform
(@ #0) cases. The main advantage of the present
method is that it yields a simple general expression in
closed form for any cluster size. Our results are ex-
pressed in terms of the inverse of the spin-spin corre-
lation matrix within the cluster, thus revealing the
basic physical content of the cluster approximation,
i.e., the renormalization of the bare short-range in-
teractions by the short-range correlations. We treat
explicitly spin systems described by the Ising Hamil-
tonian although our results can be generalized in a
straightforward way to other spin models.

The method is applied in detail to calculate the
scattering intensity for potassium-dihydrogen-
phosphate (KDP)-type hydrogen-bonded ferroelec-
trics. We show that the anisotropic correlations
between the hydrogen bonds produce strong anisotro-
py in the @ dependence scattering intensity quite
similar to the anisotropy generated by long-range di-
polar force. Qualitatively similar anisotropy has pre-
viously been found using a simple mean-field approx-
imation.!> However, the temperature dependence
predicted by the mean-field results is known to be in-
correct even for ¢ =0 and certainly cannot be used
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for quantitative comparison with the scattering data.®
The present results are found to be in good agree-
ment with the available neutron scattering data for
KD,PO,.!*1* This agreement indicates that the origin
of the observed anisotropy in this material is the
short-range hydrogenic interactions, rather than
long-range electrostatic forces that were previously
suggested.!’* This view is supported by recent scatter-
ing results in another hydrogen-bonded system, viz.,
copper formate tetrahydrate.!> We also investigate
the q-dependent scattering intensity in the ice-rule
limit. In this case, our results predict a dipolartype
singularity at ¢ =0, in agreement with the recent cal-
culations of Youngblood and Axe!’ as well as with
the exact results in a particular 2D (two-dimensional)
six-vertex model.!®

The outline of the paper is as follows. In Sec. II,
we derive the general equation for the wave-vector-
dependent susceptibility in an N-cluster approxima-
tion for an Ising system. In Sec. III, the results for
KDP-type ferroelectrics are derived and compared
with experiment. In Sec. IV, the ice-rule limit is dis-
cussed.

II. CLUSTER APPROXIMATION FOR
SUSCEPTIBILITIES IN ISING MODEL

We consider a d-dimensional Ising Hamiltonian

H=— 3J,SiSi— SHS?, o))
(W) i

where the J; are short-range interaction constants
and H; are inhomogeneous external fields. Similar to
previous treatments of the homogeneous case,” %17
we construct a self-consistent N-cluster approxima-
tion of the spin-spin correlation functions of the
model (1) by writing the following self-consistent
Hamiltonian Hy associated with a cluster of N spins,
(S3 i=1, ...,N),

N

Hy=- z JySFSf— E[Hi+(z—zi)Ai]Siz . 0))

W<N im=1
The first term represents the exact interaction ener-
gies of the spins within the cluster. The second term
represents the interaction of the spins with their local
fields. These fields contain an internal contribution
(z —z) A, resulting from the interactions with the
neighboring spins outside the cluster. The contribu-
tion of each neighboring spin outside the cluster to
the effective field at site / is denoted by A;. The
quantities z and z; are, respectively, the number of
neighbors and the number of neighbors inside the
cluster of the ith spin. The fields A, are eliminated
through the self-consistency requirement that the
thermal average of each spin (S;) y, calculated via
Hy, be equal to the local magnetization generated by

the total mean field, Hyp=H; +zA,, at site i,

(S,’)N=tanh(BH,-+BzA;) . 3)

Using this form for Hyr implies that the average
internal field per spin generated by the spins inside
the cluster is equal to that of the spins outside it.
This ansatz is trivial in the uniform case ( {S?)

= (S7?)). However, in the nonuniform case (g #=0),

one has to take into account the different location of
these spins. In order to get a symmetric contribution
from the spins inside and outside the cluster, we use
an extended cluster which contains the reflection

(R——=R) of the original cluster about one of the N

original sites. An example of this construction for
two cluster in a 1D lattice and four cluster in a square
lattice is shown in Fig. 1.

Restricting ourselves to T > T, and small fields H;

and A;, (S7)y are given by

(S n=Tr(Ste ") /Tr(e V)

N
=B IM;X;, i=1,...,N , @)
J
where
Xi=H;+(Z—Z[)Ai 5 (5)
zQz\ 0 20z _3”19 0
My = (SiS}) n=Tr(SiSfe )/Zy , 6)
and
_BHO
HN=— 3 J;SiS;, ZN=Tre "V . @)
W< N
Substitution of (4) in (3) yields the following N
equations
N N
(S7)) =B IMyHzj/z + I My(S;)(1—z/2) , (8)
J- J

where the subscript N has been dropped from (S7).
Note that the summation over j in (8) stands for the
summation over the extended cluster defined above.
Depending on the structure of the lattice and the
cluster, z; may in general depend on i. We will deal

(a) (b)

- FIG._I. Extended cluster which contains the reflection
R — —R for (a) two cluster in one-dimensional lattice, (b)
four cluster in two-dimensional lattice.
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here only with the case

Zj

— =

V4

independent of i. Equation (8) now yields

(1=¢) (S7) = 3, (M) ;(S7) —BHic ©)
J

where M~ is the inverse of the matrix M. In order

N
(1-0)(2)al(@) =(52) 3, (M) ycoslT- (R, —R))1a} () — BeH %al (T) .
J

The factor cos[q - (fi, —R)1 results from the sum of
the two contributions (in the extended cluster)
expl+iT- (R;—R,)] of each bond (ij). Thus,
choosing a’, () to be the eigenvector of the matrix

MN(T) = (M) coslT- (R,—R))] (12)
with eigenvalue A, (T),
(M) y(@al (@) =2(al(T), v=1,...,N,
(13)
we obtain from (11) the following result
X(T) =(S)Y/H=cB/IN(T)—(1-0)] ,
v=1,....,N (14)

for the N @-dependent staggered susceptibilities. If
the interactions Jj; are identical to each other, then
the existence of N susceptibilities is a spurious conse-
quence of the enlargement of the unit cell by the
cluster treatment. In such a case, all the susceptibili-
ties are related to each other by appropriate shifting
of the wave vector. However, when not all the J; are
equal, there will be n-independent modes, where » is
the number of nonequivalent spins in the cluster. Fi-
nally, it is instructive to compare the result (14) with
the corresponding mean-field result!® X, (@)
=B/[1-BJ,(T)], where J,(q) is the eigenvalue of
the original interaction matrix J;cos @ - (R -R ,)
Hence, the essence of the cluster approximation is to
replace the original bare interaction J;; by the self-
consistent renormalized value given by the correla-
tions My = (S;S;) . We now present two examples
of the method.

1—a

T+ a cosmq
M_]((I)=A 2

cosmq 0

— —1
1+a 1+a
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to solve (9), we have to specify the fields H;, We
write

H;=H}exp(ig-R)ai(7) ,
(87 = (8)exp(iT-R)ai(T) ,

(10)

where ai (q) (v=1, ... ,N), which will be deter-
mined later, are associated with the phases of the N
normal modes of the cluster. Substituting (10) in (9)
yields

aan

T
A. One-dimensional Ising model

We apply a two-cluster approximation for the 1D
Hamiltonian (1) with only nearest-neighbors interac-
tions J;=J. For that case, the matrix M reduces to

0 tanhBJ
M= tanhgJ 0 ’ (1s)
leading to
M-(g) = 1 —tanhBJ cosqa
sechZBJ —tanhpJ cosqa 1 ’
(16)
where a is the lattice constant. Thus,
AL2(q) —-Tﬁj(l FtanhBJ cosqa) , an
and
x1(q) = B/(cosh2BJ —sinh2BJ cosqa) . (18)

It is readily shown that (18) holds for any size clus-
ter, and therefore is also the exact value of the g¢-
dependent magnetic susceptibility for the 1D Ising
model.’® In this case, X2(q) is simply X;(g +m/a).

B. Two-dimensional Ising model
on a square lattice

We calculate the magnetic susceptibility of a 2D Is-
ing Hamiltonian (1) with only nearest-neighbor in-
teractions J; =J in a four-cluster approximation with
the cluster shown in Fig. 1(b). Consider for simplici-
ty the case @=1(q,9). Then,

(19)
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with
A=(1+6a+a?)(1—a)/16a

and a =exp(—BJ). Thus, using the eigenvector
(1,1,1,1), we obtain

qm

—|| -1t .

(20)

1+6a +a?

-1 -
X9 =T 2a(1+a)

a + (1 —a)sin?

Equation (20) at ¢ =0 gives the condition
al+4a.,—1=0, where a. =exp(—g.J) for T.* It
should be noted that X(g) of (20) has a maximum as
a function of T above T, for a fixed g greater than
qo, Where ¢ is given by

2907 54+2a.+a?
2 10+a2+2a,+al2+2a"

sin =0.15 . (21)
It is of interest to compare this result with a two-
cluster approximation consisting of two nearest-
neighbor spins in the x direction for the 2D case.

The result is similar to the 1D case except for the
value of ¢ which is now %, yielding

x~1(g) =2T(cosh2BJ —sinh28J cosqa — %) , Q2)

which gives for 7., cosh2B.J —sinh28.J =% and for
q0

i 2 qoa 1
sin’—— = 5 (1 —tanhg.J) =0.25 . 23)
Comparing (23) and (21) shows that the value of g,
decreases as the size of the cluster increases. Indeed,
it was found by using series expansion methods?® and
by renormalization-group theory?! that X(q) has a
maximum value as a function of T for any fixed
value of ¢ #0. It should be noted that in contrast to
the present theory, a simple mean-field theory does
not predict any maximum for x(q).

III. WAVE-VECTOR-DEPENDENT
SUSCEPTIBILITIES FOR KDP-TYPE
FERROELECTRICS

The static and dynamic properties of KDP-type fer-
roelectrics are reasonably well described by a pseu-
dospin Ising Hamiltonian of the form (1) (Refs.
7,8,17) in which the exchange interactions J;;
represent the short-range interactions between neigh-
boring hydrogen bonds, and S7= *1 stands for the
position of the proton in the double-well potential
along its bond. The smallest cluster which is compat-
ible with the structure of KDP-type crystals is a clus-
ter of four pseudospins representing the four bonds
surrounding a single PO, group (see Fig. 2). Indeed,

FIG. 2. z-axis projection of the hydrogen bonds connect-
ing K-PO, groups showing the different labels of the four
pseudospins.

the ¢ =0 four-cluster method has been shown to lead
to a good approximation for the uniform static and
dynamic response of these systems.”!7 This is par-
ticularly true for systems which are near the ice-rule
limit (see Sec. IV), such as KD,PO,, since in that
limit the cluster treatment gives the exact value of T,
as well as the critical behavior of the susceptibility
and polarization. This indicates the dominant role of
the strong short-range correlations among the four
neighboring hydrogens. Here, we extend this ap-
proximation to the ¢ # 0 case.

The four pseudospin Hamiltonian H, given in (7),
for KDP-type crystals has the form

HY =— V(S{S3 + 5353 + 5357 +S351)
- U(S18% +8353) , (24

as illustrated in Fig. 2. The energies U and V are re-
lated to the Slater energy levels €y, €; of the PO,
groups through

4U=—261+2€0 ’

(25)
4V=2€1'—€0 .

Note that since €; >> € in KDP, U and V are
strongly competing interactions with U <0, V >0,
U+V << V.

The matrix My = (SZS7){ given in (6) is readily
found to be

Z,/2 1-2a+d 1-d 1-d

, [1-2a+d zy2  1-d4  1-d
M=711-¢ 1-d  z,2 1-2a+d
1-d  1-d 1-2a+d Z,)2
(6)

B‘]

>

where Z,=2+4a +8b+2d, a =e PO po¢”
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-Bl4e, ~2¢)) .
d=e " 177 Since ¢ >> €, the Boltzmann factor

d of the two highest levels may be ignored in the fol-
lowing. The matrix

M;'(g) =M cosq - (R, —K))

is given by
Cy Ci C, C3
o Z, Cy Co C4 Cs
M (Q)—T C2 C, CO C6 B (27)
Cy; Cs C¢ Cy
where

Co=a, Ci=ycosmqy ,
Cy=bcosym(gx—gy+a:)
C3=8cos—;-7r(qx+qy+q,) , (28)
C4=8cosl7r(q,,+qy——qz) ,

Cs=38cos5 La(ge—ay—4s), Cs=ycosmq, ,

and

a=%(2a +6b +4ab +8b2), y=%(a—b +2ab) |

4 (29)
—;(a +b), R=64b(a+b)(1+b) .

In (28) and in the following, we denote for simplicity
%n(qxﬁ,qyﬁ,q,E) as 0= (gy,,9y,9,) where @ and C are
the KDP lattice constants. Diagonalizing M~(q)
yields via (14) (with ¢ = -;—) four susceptibilities

X(@) =18/IN@) =51, v=1,...,4 . (30)

The corresponding eigenvectors a,(q) define four
distinct polarization fluctuation modes. The v=1
mode corresponds in the limit ¢ —0 to the B,
mode,”8 v=2,3 to the £ mode'” and v=4 to the 4
mode.?*? The B, mode susceptibility Xz,(Q) be-
comes critical when T — T, and ¢ —0.

The expressions for (@) for general  are rather
complicated and have been evaluated numerically. In
the following, we discuss the analytical results in the
special case of the plane (¢,4,4.). In this case, the
eigenvalues are

=—|a+
A1, 2(T) 3 o 2

Z, C3+C4;[(Ca—c4)2+4(cl+cz)2]1/2]

Z, —(C3+Cy) FI(C3—Co)*+4(C,—

X34(q)-—2— a+ 3

>

) oD

where @ =(q,9,9.). Since mode 1 is associated with the critical susceptibility, we examine it in some de-

tail. Along the T, and T, = T, directions, (31) yields

xl(q,)—ﬁ/ll;;(zl"j‘;)” b +sin’ —1}, 7=(0,04) , (32)
1+2a +4b _ ) _2_7_7__ _ =-_ .
x1(q) = B/{2(a+b)(l+b) (a +b) +(1 —a)sin 5 ” 1}, g=10(q,4,0) (33)

Equations (32) and (33) reduce for ¢ =0 to the
known expression of the electric susceptibility in the
longitudinal () direction x32.7'8 On the other hand,

(33) reduces at @ = %w to the known result of the
electric susceptibility in the transverse direction (X or
), Xg, confirming our previous identification of this
susceptibility with antiferroelectriclike ordering of
the hydrogen bonds.!” In Fig. 3, we present a plot of
X1(q) in the (q,¢,9,) plane using the known values
for the Slater energies in KD,PO4: €=92 K,

€, =907 K at T — T, =5 K, where T,=220 K.

In Fig. 4, the contour lines of X,(q) =const are
shown for the same temperature and energies. The
most marked feature of these results is the strong an-
isotropy, with X,(@) decreasing with increasing @

I
along (0, 0,q) direction much more rapidly than along
the perpendicular direction. Physically, the origin of
this anisotropy lies in the fact that polarization fluc-
tuations in the (g,,q,) plane involve only configura-
tions with low energies €y, whereas those along the g,
direction necessarily involve configurations with high
energies of the order €;. An estimate of this aniso-
tropy can be found by expanding (32) and (33) for
small ¢ and ¢,, ‘ '

xi'(q;) ~x7'(0) +4q¢2, T=(0,0,q,) ,

() ~x0) + B, G=(g00) ,  °Y
where
B/A=2b(1—a)/(a+b) , (35)
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FIG. 3. Plot of X;(q) in the (g,9,9,) plane using the
known Slater energies ;=92 K, €, =907 K for KD,PO, at
T-T,=5K.

which means B/4 << 1 (recall that b/a << 1). Us-
ing the above values for € and €;, we obtain

B/A ~0.02at T=7T,=220K and B/4 —0.03 at

T =300 K. Qualitatively similar anisotropy has been
found for the same model using a mean-field approx-
imation, although in that approximation the ratio
B/A is independent of temperature.'> However, due
to the use of the bare competing interaction constants
U and V, the mean-field treatment predicts a com-
pletely incorrect transition temperature and cannot be
used for comparison with the observed temperature
dependence of the susceptibilities. By contrast, the

0.5

0.4 ~

-05 04 -03 02 01 00 0i 02z 03 04 05
qx

FIG. 4. Solution of the equation X;(g) =const in the
(4y.4,) plane for different values of X;(g) at T— T, =5 K.
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FIG. 5. Plot of X;(q) along (q,,0,0) for different values
of temperature. The points are experimental data (Ref. 14).

present results [e.g., (32) and (33)] are known to be
in good agreement with the observed g =0 suscepti-
bilities in KD,POy4, and hence can be used with the
same parameters for comparison with the available

q # 0 scattering measurements. Indeed, neutron
scattering measurements for KD,PO, reveal a strong
anisotropy, in the (gx,q,) plane and give contour
lines'>'* which are closely reproduced by the theoret-
ical result which is plotted in Fig. 4.

A quantitative comparison between the predictions
of (33) and the experimental results at several tem-
peratures is shown in Fig. 5. As can be seen, the
finite-g cluster results are indeed in good agreement
with the data.!* For comparison, we present in Fig. 6
the predicted decrease of X;(g) along the §, direc-
tions for the same set of temperatures.

In conclusion, the quantitative agreement between
the results of the present approach and experiment

0.32 T T T T T

AT=5K

008 130K B

X,(g,) (ARBITRARY UNITS)
[
®
T
1

0.04 50K -

o
-0.60 -0.40 -0.20 o 0.20 040 060

FIG. 6. Plot of X;(g) along (0,0,g,) for different values
of temperature.
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FIG. 7. Plot of X;(q), given in Eq. (30), in the plane
(9,9.q,) for the ice-rule limit, ¢g=92 K, ¢,=ccat T—T,
=5K.

strongly indicates that the short-range interactions,
rather than the long-range dipolar forces,!® may play
the dominant role in producing the strongly anisotrop-
ic fluctuations in KDP-type crystals.

IV. ICE-RULE SYSTEMS

Ice-rule systems are described by bond configura-
tions in which all the groups have exactly two hydro-
gens adjacent to them. This amounts to excluding all
the energy levels except for the two ground states
and the four levels with energy €, (see Fig. 2). The
ice-rule limit is included in the general model (24) by
taking ¥V — o0 and U + V =const or, equivalently,
€ — o0, €g=const [see (25)]. From the discussion in
Sec. 111, it follows that the anisotropy is expected
to be enhanced in this limit. In Fig. 7, we plot X;(§)
as given in (30) in the plane (q¢,q,q,) for the case
€=92K, ee=cat T—T.=5 K. Contours of X;(q)
for the same set of parameters are plotted in Fig. 8.
These results show a dipolar-type singularity near the
origin. The singular dependence on @ can be extract-
ed from (31), which yields for €; = o and small g,

a?

W , (36)

x71(q) =x71(0) +B

with x7'(0) =(a —5)/B and B = (1 +2a)

x (a~'—1)/2B. A similar singularity appears in the
mean-field treatment.!> However, in that case x7'(0)
diverges in the ice-rule limit, whereas in the cluster
approximation both B and X7'(0) remain finite. It

05 T T T T T T T T

04 -
03 —
02| .
ol -
0.0 - —
-0~ -
-02 |- -
-03 | -

-0.4+ —

05 TN TN DN SN NN N SN
-05 -04 -03 -02 -0f 00 Ol 02 03 04 0S5
qx

FIG. 8. Contours of X;(g) in the plane (g,q,q,) for the
ice-rule limit, =92 K, ¢j=w at T—-T,=5K.

should be noted that the predicted dipolar singularity
(36), in the ice-rule systems qualitatively agrees with
the exact result for the correlations in the special case
of a six-vertex model.!® Finally, the same type of
singularity has been observed in neutron scattering
measurements of copper formate tetrahydrate which
is known to satisfy the ice-rule constraints. Using a
different approach, Youngblood ef al. ' argued that a
singularity of the type given in (36) exists in ice-rule
systems. The present approach, however, provides a
systematic treatment of the anisotropy in both the
ice-rule systems and in systems for which these rules
are not strictly obeyed. Also, our predictions contain
both the ¢ =0 critical susceptibilities and the g-
dependent parts, thus enabling us to make a quantita-
tive comparison with the scattering data using only
the parameters which are determined via the uniform
static measurements. Finally, we obtain an explicit
expression for the susceptibility which is valid not
only in the asymptotic region @ —0 limit but for fin-
ite q as well.
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