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We propose a new cluster-growth model for branched polymers which are highly unusual
in that they are ‘‘chemically linear.”” The cluster grows by adding a constant number of sites
in each successive ‘‘chemical shell.”” We find that these chemically linear clusters (where
branches and loops are allowed) are in the same universality class as geometrically linear
chains (where loops and branches are not allowed). We argue that this result is general in
that for any chemically linear cluster, loops and branches can be neglected.

PACS numbers: 82.35.+t, 05.40.+j, 05.70.Jk

Considerable attention has focused recently on
cluster-growth models.!> These models not only
are of relevance in describing real systems in nature
but also are useful in their own right in seeking to
isolate the key features of a disordered system that
determine transport properties. Until recently, the
main parameter used to describe cluster models was
the fractal dimension dy that describes the fashion
in which the cluster mass M scales with the cluster
radius R, M ~RY. There is, however, a second
parameter—the chemical dimension d,—which
describes how cluster mass depends on the ‘‘chemi-
cal length” [, M ~1d‘; here the chemical length
between two sites is the minimum number of bonds
connecting these sites.®

While static critical exponents—if suitably
normalized—can be expressed in terms of the
geometrical exponent dg, it is believed that transport
properties (such~as the diffusion and resistivity ex-
ponents d,, and {) are related in some way to fopo-
logical properties of the fractal.” In order to better
understand the role played by the chemical dimen-
sion dj, it is of interest to construct well-defined
fractal models which can be studied exhaustively.
To this end, we introduce here a family of growth
models for which d;=1 by construction. We find
that these chemically linear clusters (where branches
and loops are allowed) are in the same universality
class as geometrically linear chains (where loops and
branches are not allowed). We argue that this
result is general in that for any chemically linear
cluster, loops and branches can be neglected.

The clusters are grown by the following mecha-
nism. At time t=0, we place a seed particle at the
origin of a lattice of coordination number z;. At
t=1, we randomly choose B of the z; neighbors of
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the origin and occupy them; these sites constitute
the first “‘shell,”” and have a chemical distance /=1
from the origin. The remaining z; — B sites will be
regarded as ‘‘blocked” for the duration of the
growth process. At t=2 we consider the z, nonoc-
cupied unblocked neighbors of the sites belonging
to the first shell, we randomly occupy B of these,
and block the remainder. This process is continued
until a cluster with /., chemical shells has been
generated.®

Figure 1 shows typical clusters grown with B=1,

FIG.

1.
chemically linear: (a) B=1; (b) B=2; (c¢) B=3; and
(d) B=4. One main point of this Letter is that all chem-
ically linear clusters belong to the same universality class
as linear polymers. This result is certainly surprising at
first sight, in view of the seemingly different structures
present in Fig. 1.

Examples of branched polymers that are
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2, 3, and 4 on a square lattice; each cluster has
Imax=200. Clearly the case B=1 cannot have
branching or loops and is, of course, geometrically
linear. The cases B=2, 3, 4 have branching and
loops but are chemically linear, since the cluster
mass increases linearly with the chemical distance
from the origin:

M ~ Bl (1)

We found that loops were extremely rare, which is
surprising at first because there is certainly nothing
in the algorithm that would seem to eliminate
loops. We will argue below that loops and branch-
ing do occur, but are irrelevant since they occur
only on small scales.

To determine the fractal dimension dy, we calcu-
lated the rms radius of gyration R of the cluster at
each stage of growth (i.e., at each successive value
of /). We show in Fig. 2 a log-log plot of R vs |,
and we see the curves for different values of B are
parallel. Since

RY~ M~ ()
we find
d;=147+005 (B=1-4). 3)

We note in passing that the special case B=1 is
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FIG. 2. Dependence of radius of gyration ( R?) on the
‘“‘chemical size’’ of the cluster.

in the same universality class as two models of
growing linear polymers, the biased self-avoiding
walk (BSAW)? and the kinetic growth walk
(KGW).* Whereas the perimeter sites in the
present model are blocked from growing during the
growth process, they are not blocked in the BSAW
and the KGW. However, this blocking is a ‘‘short-
range effect”” and hence does not affect the univer-
sality behavior. Indeed, our result (3) for d; is the
same as for the BSAW and the KGW. The intrigu-
ing feature of this new model is that even when
branching and loops are allowed (i.e., B > 1), the
universality class does not change—as will be dis-
cussed next.

The transport properties for these fractals can
also be calculated. We will give two arguments. (i)
The first is physically more transparent, but in-
volves the assumption that loops (which are rare)
can be neglected for finite B.!® In this case, the
chemical path is the only path connecting two sites
at distance R, so that the resistivity between two
sites separated by R, p—~ R®, scales in the same

fashion as / — R™/. Hence

Using Eq. (4) and the known result!! d, =+ dy,
we obtain d,=2d;. These results are known for
linear geometrical chains!'! without loops or
branches. Hence the fracton dimensionality d
=2d/d,, is exactly 1.

(ii) We now argue that any cluster with d;=1
(chemically linear) is in the same universality class
as geometrically linear chains; i.e., loops and
branches can be neglected. The argument is based
on the following reasoning. The chemical diffusion
exponent d., is defined by

!
f~ R~ ™ (5a)

where /is the average chemical distance traveled by
the random walk and ¢is the time. Since

M~ R~ [, (5b)
it follows that
]
M~ t(d,/dw) _ tdf/dw _ tds/Z‘ (50)

We have the following bounds: (a) d!, =2 (the
walk cannot be faster than when performed on Eu-
clidean lattices); (b) d;=1 (from d,,=ds+{ and
{=<dy), that is dy/dl, = +. Since in our case d;=1
we have d,<2. From (a) and (b) follow the
equalities

d,=2, d=1, d,=2d, (6)
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FIG. 3 Diffusion on fractals (chemically linear
branched polymers) generated by our model for the case
B =3. Dependence on time of (a) (r?) and (/) and of
(b) Py(1t), the probability of returning to the origin.

for any chemically linear cluster.

All three expressions of Eq. (6) are identical for
geometrically linear chains, and so we see that
chemically linear clusters belong to the same
universality class as geometrically linear chains, i.e.,
loops and branches can be neglected. Using (4) and
(6) and the values found for dr, we can evaluate
the transport exponents; the results are summarized
in Table 1.12

In order to check our predictions d,=2d,,
dh=2, and d,=1 in d=2 we performed exact
enumerations'® of random walks on our branched
clusters with B=2, 3, and 4. The results shown in
Fig. 3 yield d,=2.86+0.10, d,=2.1+0.1, and
%ds=0.49 +0.02, confirming the predictions of
Table I. Since all the static and dynamic exponents
are the same as the geometrical linear chain, we ar-
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TABLE 1. Fractal dimensions found for the present
model of chemically linear branched polymers.

d dy d Z d,, T4 d,
1 1 1 1 2 T 2
2 1.47 1 1.47 2.94 3 2
3 2 1 2 4 5 2

gue that any chemically linear cluster is in the same
universality class as geometrically linear chains; i.e.,
loops and branches can be neglected. In other
words, the fact that the clusters are chemically
linear implies that the statistical weight of closed
loops and branches is going to zero in the large-
system limit.

We wish to thank Z. Djordjevic, S. Alexander,
and R. Nossal for helpful discussions. The Center
for Polymer Studies is supported by the Office of
Naval Research, the National Science Foundation,
and the U. S. Army Research Office.

@Permanent address: Department of Physics, Bar-
Ilan University, Ramat-Gan, Israel.
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that the modern era of growth models was initiated by
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Witten and L. M. Sander [Phys. Rev. Lett. 47, 1400
(1981), and Phys. Rev. B 27, 5686 (1983)], which has
dp=f(d). It appears that d,=d; for all d (P. Meakin,
1. Majid, S. Havlin, and H. E. Stanley, to be published).
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available sites [I. Majid, N. Jan, A. Coniglio, and H. E.
Stanley, Phys. Rev. Lett. 52, 1257 (1984)]. It appears to
describe the configuration of a polymer in a 8 solvent at
the coil-globule transition (A. Coniglio, N. Jan, I. Majid,
and H. E. Stanley, to be published).

5A growth model analogous to the Eden model but
with a power-law screening has been found to have a
continuously tunable fractal dimension, d; (P. Meakin,
F. Leyvraz, and H. E. Stanley, to be published). A
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FIG. 1. Examples of branched polymers that are
chemically linear: (a) B=1; (b) B=2; (¢) B=3; and
(d) B=4. One main point of this Letter is that all chem-
ically linear clusters belong to the same universality class
as linear polymers. This result is certainly surprising at
first sight, in view of the seemingly different structures
present in Fig. 1.



