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Abstract. We present a simple analytical approach to studying diffusion on hierarchical 
and fractal structures. We show that hopping on one-dimensional hierarchical structures 
can be mapped onto diffusion on a family of loopless fractals. 

The problem of diffusion on hierarchical and fractal structures has recently been of 
considerable interest [ 1-81. In many disordered systems (glasses, spin glasses, proteins, 
etc), anomalously slow relaxation has been observed and attributed to the hierarchical 
or fractal space structure of the system. 

In this letter, we study the relation between two types of diffusion: hopping and 
walking on hierarchical (see figure 1)  and fractal structures (see figure 2). The hopping 
process is the diffusion of a particle hopping from cell to cell on the backbone of the 
structure with hierarchical energy barriers determining the transition rates. The walking 
process is a nearest-neighbour random walk on the entire structure including backbone 
and dead ends. We find that both types can be studied by the same analytical approach 
and that hopping on a one-dimensional hierarchical structure can be mapped onto 
diffusion on a family of loopless fractals. 

We first consider hopping on a one-dimensional lattice with energy barriers dis- 
tributed in a hierarchical way as shown in figure 1 .  A particle can hop from site k to 
site k * 1 with transition rates W k , k * l =  Wk.t] ,k  which are inversely proportional to the 
barrier heights: 

w k k + l =  R' O < R s l  

k(mod 2') = 2I-I 
(1) 

I > 0, integer. 

R 3  

I I I 

Figure 1. Hierarchical barrier structure. The particle can hop from a cell to its nearest- 
neighbour cell with transition rates inversely proportional to the height of the barrier, R-'. 
The index k represents the cell number and n represents new cells determined by k = 2"+'. 
This hierarchical structure is generated from an ultrametric tree with two sons, m = 2. 
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Figure 2. A loopless fractal embedded (a )  on a square lattice and ( b )  on a Cayley tree 
lattice. The coordinate number is z = 3 and the fractal dimension is d,= log 3/log 2. 

This model has recently been studied using renormalisation group techniques [2-41. 
Here we use a simple analytical derivation to calculate the diffusion exponent d ,  
defined by (x')- t 2 ' d w  where (x') is the mean square displacement of the random 
walker on the hierarchical structure. 

Following Zwanzig [9], the diffusion constant D can be written as 

where N is the number of distinct sites visited by the random walker. New cells are 
denoted by n and defined by k = 2"+' (see figure 1). For the new cells, one can write 
a recursion relation 

where 
1 1 2n-1-1 

(4) 
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Equations (2)-(4) lead to 

where nmax is related to x =  k-(X2)'I2 by X-2"m=+l 
nmax >> 1, one may distinguish two cases [3]: 

t /X2= D-' = R/(2R - 1) R > f  

~ - 1  = f( 1/2n)"mnx-l R=Z$ 

d,=2 R > ;  

from which follows 
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( 5 )  

In the limit of large x, i.e. 

( 6 )  

(7) 

These results are consistent with the exponent Y = 1/ d, found for the autocorrelation 
function Po( t )  - t-" by several authors [2,3]. Note that similar results are obtained 
in one dimension with random bamers [3,10] distributed as P( w )  - w - O  where 
a = 1 -In 2/11n RI. In this case, d, = (2 - a) / (1  -a); writing (Y in terms of R yields (7). 

Next we consider walking on the hierarchical structure where the barriers represent 
dangling ends, and a random walker can walk (unit steps) on the entire structure, 
including backbone and dangling ends. The size of the dangling ends is given by the 
height of the barrier, i.e. R-'. It was shown [ 111 that the average time spent on a dead 
end is inversely proportional to its length. Therefore, Wk,k+l will represent the inverse 
of the average time a random walker spends on the dead end between cells k and 
k + 1. Equation ( 5 )  can be rederived by similar arguments, the only difference being 
the value of nmax. The value of nmax is now determined by the span of the diffusion 
along the y direction. The diffusion in the x and y directions are related by 

(8) t - y 2  - X d W .  

This result stems from the fact that the only anomaly occurs along the x direction. 
The effective diffusion span in the y direction is related to nmax by y - R-("mari1) which 
yields from (8) 

(9 )  R-("max+l) - XdJ2. 

Substituting (9) into ( 5 )  leads to d, = 2, for R > 5, and the following self-consistent 
equation for d, for R S ; and nmax >> 1, 

d,,, ln(2R) 
2 In R 

d,=2+-- 

which leads to 

d ,  = 4 In R/ln(R/2). (11) 

This result agrees with its analogue-diffusion on a random comb with a power law 
distribution p (  I) - l-"+"), ( O S  y d 1) of the dead-end length. In this case, it was found 
[ 121 that d, = 4/(1+ y ) .  The relation y = log 2/) (log R )  I then leads to (1 1). It should 
be noted that it follows from (8) and (9) that the random walker does not visit all sites 
along the dead ends. This is the reason for the difference between (7) and (11) (see 
also [12]). 
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It is seen that hopping and walking on hierarchical structures are of a similar 
nature, with the only difference resulting from a different cut-off in (5). In order to 
map between the processes of hopping and walking (such that both cut-offs will be 
the same), we introduce the fractal structures shown in figure 2. This fractal is embedded 
in the square lattice with coordination number z = 3 and with fractal dimension 
df= log 3/log 2. Note the similarity in the structure between the teeth and the backbone. 
We will show that diffusion on this fractal can be regarded as a particular case of 
hopping on hierarchical structures. 

The self-similarity property of the fractal shown in figure 2 yields that the average 
time the random walker spends on the n tooth scales in the same way as the time 
spent on the fractal until reaching that tooth when starting from the left-hand corner 
of the fractal. Thus, 

k = 2"+'. (12) 
1 1 -= f: - 

wn k = l  W+k+l  

Using (3) and (12) leads to the following recursion relation: 

1 3  
wn wn-1  

- 

This equation can be interpreted as hopping on a hierarchical structure with R = f. 
Therefore, diffusion on the above fractal can be mapped onto hopping on a hierarchical 
structure with R =$. 

In contrast to the previous case, because of the self-similarity nature of the fractal 
the random walker now visits all sites on the dead ends of the fractal, and (8) is no 
longer valid. Hence we expect nmax to scale with x as 2"max+ '  - x. Using (9, we obtain 
(7) and, for our particular case R = f, 

d ,  =In 6/ln 2. (14) 
This mapping can be generalised to other values of R and to their corresponding 

coordination number z. In figure 3, we present a fractal with coordination number 

IO1 ( b l  

Figure 3. A loopless fractal embedded (a )  on a square lattice and ( b )  on a Cayley tree 
lattice. The coordination number z = 4 and the fractal dimension d,  = 2. Note that the 
fractal is compact. Fractals with higher coordination numbers can be embedded only in 
higher dimensions or on a Cayley tree. 
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z = 4. In this case, the similarity between the teeth and backbone yields 

leading to 

1 4  
wfl w n - I  

-=- 

which identifies R to be f and thus 

For a general value of z, the diffusion exponent d, for this family of fractals is 

In z 
In 2 

d , = l + - .  

(16) 

This result can also be obtained [13] using the Einstein relation for the diffusion 
on loopless aggregates, d, = d,-(l+ l/d,). Since df = d, = In z/ln 2 for these families, 
(18) follows immediately. Equation (18) was also tested numerically for z = 3 and 4 
using exact enumeration methods [14]. Results are shown in figure 4. From these 
plots we find d, = 2.60rt 0.05 and z = 3, and d, = 3.0 f 0.1 for z = 4 in excellent agree- 
ment with (17). 

It should be noted that whereas the diffusion exponent d, is identical for hopping 
on a one-dimensional hierarchical structure and diffusion on the above fractal, the 
properties of the autocorrelation function Po(?) are different. This is due to the fact 
that the fractal dimension plays an important role [15] in determining Po(?). Indeed, 
P, ( t )  - t - d s / 2  where d,/2 = l /dw for the hopping case and d,/2 = dJd, is the diffusion 
on the fractal case. It is also interesting to note that for the case of walking on 
heirarchical structures, d,/2 is neither l/d, nor df/d, but takes the value [ 121 d,/2 = 
(3 - y) /4= (3 (log R 1 -log 2)/4(10g R 1. 

Figure 4. Plot of (x') as a function of f for diffusion on the fractals shown in figures 2 
and 3 with coordination numbers z = 3 (0) and z = 4 (*). 
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Our results for diffusion on hierarchical structures, can be extended to diffusion on 
a generalised family of hierarchical structures. This family is obtained from ultrametric 
trees with coordination number m + 1 (or m sons). In this case a = 1 -In m/lln RI 
and (3), (7) and (11) read, respectively, 

Iln RI dw=l+-  
In m 

41n R 
In( R /  m) * 

d, = 

It is seen that the anomaly decreases with m, as expected, since the relative number 
of low barriers increases in these structures. 

To summarise, we have shown that hopping on hierarchical structures is identical 
to walking on a family of certain fractals. We have also presented a simple derivation 
for the diffusion exponent for hopping on hierarchical structures (equation (7)) and 
have shown that walking on a hierarchical structure can be treated similarly. 

We gratefully acknowledge financial support from the US-Israel Binational Science 
Foundation (BSF), Jerusalem. After this paper was submitted we received a related 
preprint of C P Bachas and B A Huberman. 
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