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We study diffusion on hierarchical and random potential-well and barrier structures. In the
case of a power-law distribution of barrier size for d =1 where the transition rate follows a
Boltzmann distribution, we find ultraslow diffusion characterized by logarithmic time-dependent
displacements. This result is valid for both barriers and wells. For d >2 dimensions, we find a
universal slow logarithmic dependence for the case of wells independent of d. For the case of bar-
riers, we find that the logarithmic anomalous transport depends on the dimension of the system.

I. INTRODUCTION

The dynamics in one-dimensional systems have been
studied since the classical paper by Dyson.! The original
problem had been mapped onto several fields.>~> The
diffusion interpretation of Dyson’s equation was exten-
sively studied mainly by solving the complicated integral
equation or via the n-replica spin Hamiltonian. The
general diffusion equation can be written in matrix form
as

C,P,=WP, , (1

where P, denotes the probability of finding a particle at
time ¢ at site ; C, denotes the trapping rate at site » and
the transition matrix W is a Jacobian matrix allowing
hopping to nearest-neighbors (NN) sites, assuming
symmetrical transition rates. The elements W,, and C,
are random variables with given distributions. The ele-
ments C, represent the mass value, and W, the harmon-
ic force constants in Dyson’s equation. Here we study
two cases.

(i) W, is random and C, is an arbitrary constant,
therefore, T,, =T, ,, where T denotes the effective
transition rate, i.e., W, divided by C,.

(i) W, is an arbitrary constant and C, is random,
therefore, T, , . =T, ,_,.

The first case is known as random barriers (or hopping)
and the second is known as random wells (or trapping).
Dyson' showed that in one dimension these two cases
reduce to the same type of integral equation, and hence
to similar results. In the following we denote T, by W,.
The solution of the Dyson equation shows that there ex-

ist two classes, one for which { W~!) is finite, and the.

second for which ( W~!) diverges. For the first class,
the solution does not differ essentially from the solution
of the ordered chain, whereas solving the second class is
a very complicated mathematical problem which is gen-
erally not solvable. Indeed, concerning a power-law dis-
tribution P(W)~W ~% 0<a <1, it was shown that the
probability P,(t) of being at the origin and the mean-
square displacement {x2?) are both anomalous of the

form Po(t)~t—1/d'” and <x2)~t2/d‘”, where d,=(2

37

—a)/(1—a). Using the general Einstein relation be-
tween conductivity and diffusion,® anomalous behavior is
found for the dynamical conductivity. This solution was
found relevant to various physical systems such as quasi-
localization found in some one-dimensional (1D) su-
perionic conductors,® anomalous relaxation in spin sys-
tems,’ and biased diffusion in random structures.®

In this work we present a general scaling-type argu-
ment to solve (x?) in the 1D general case where
(W~!) diverges. We apply this method specifically to
the marginal case where a=1. In particular, we study
systems with a power-law distribution of potential bar-
riers or wells where the transition rates are given by
Boltzmann factors. We find in this case ultraslow
diffusion characterized by a displacement varying as a
power of In(¢) rather than of ¢, and that the conductance
decreases exponentially with the size of the system.
Moreover, since in 1D systems only ( W~!) is impor-
tant, or specifically how (W ~!) diverges, we suggest
that W be arranged in a certain order, say hierarchically,
and use an exact real-space renormalization technique to
find the flow line away from the fixed point.

In higher dimensions D >2, we find that the transport
properties of barriers is different from those of wells.
The reason for this is that the particle in the wells hops
to all its nearest-neighbor wells with equal probability
regardless of the well depth. On the other hand, in the
case of nearest-neighbor barriers, the particle has a
larger probability to hop over the lowest nearest-
neighbor barrier. Therefore, for the case of wells, the
particle might be trapped in deeper wells more often for
higher dimension, whereas for barriers, the high barriers
are systematically avoided.

The barrier problem is mapped to n parallel stripes of
random conductors in d dimensions. We assume an an-
isotropic model in the sense that the vertical conductors
are perfect. If the stripes are combined using Kirchoff’s
law, we find that the conductance exponent depends on
the dimension of the system.

For the case of wells, we find for d >2 a universal
slow logarithmic dependence, independent of d, i.e.,
d =2 is the upper critical dimension of the problem.

This family of transport laws exhibits the “freezing”
of the dynamics. A similar case treated previously gave
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rise to an interesting relaxation law in spin-glass sys-
tems.’

In Sec. II, we present a general hierarchical model.
Using the renormalization technique, we find the
diffusion law and the autocorrelation function in this
system. We study the corresponding problem with ran-
domly distributed wells and show the connection be-
tween the two systems. The analogue problem of ran-
domly distributed conductors is also examined.

In Sec. III we present a general treatment for systems
in d >2. For the well system, we find a slow logarithmic
diffusion law, independent of the dimension. For the
conductor and barrier systems we show that the loga-
rithmic transport law depends on the dimension of the
system.

II. ONE-DIMENSIONAL SYSTEMS

A. Hierarchical potential wells

Consider the following hierarchical potential well
structure (see Fig. 1). The depth of the kth well A, is

A,=R!, R>1 (2a)
where [/ is determined by
k(mod2)=2'"', 150, integer . (2b)

The transition rate between two neighboring wells, k and
k1, is assumed to be given by the Boltzmann factor
—BA

B 3)

Defining new renormalized cells n according to k =2"*1,
we can write a recursion relation for the transition rates

1 2

Wik1=e

— BR"
= +e , (4)
Wn Wn —1
where
1 1y 1
= _—. (5)
Wn k§1 Wk,k +1

Following the general formalism of Zwanzig,'® the
diffusion constant for  — oo can be written as

N
—-t—z-z *l=__1_ _____1__, (6)
(x?) N 2 Wik 41
k 1 2 3 4
! R
RZ
R3

FIG. 1. Hierarchical well structure. The particle can hop
from one well to the nearest-neighbor well with a transition
rate given by W, , ., =e P where A, =R'is the depth of the
kth well.

where N is the number of distinct sites visited by the
hopping particle. Equations (4)-(6) lead to

, (7)

.. n +1
where the upper limit n,,, scales as (x2)1/2.~2"ma""

Equation (7) can be written as

n
1 max oo (BRn)I
D _—;‘ 2 27
n=0 /=0
A L ®)
2 1=0 l' n=0 2 znmax'*'1

Thus, the main contribution to the sum comes from the
deepest well. In the limit of large displacement,
(x2)172, i.e., Ny >> 1, Eq. (8) yields

<x2>~(lnt)21n2/lnR . 9)

For the general case of hierarchical structure generat-

ed by an ultrametric tree with coordination number z,
Eq. (4) becomes

u‘/ - Wz 4+(z—1)ePR" (10)
n n—1
and

nmax~<x2)l/2~zk+l . (]1)
Therefore,

(x2) ~(Ing )*Imz/InR (12)

Thus, the diffusion is anomalously slow, characterized by
a logarithmic dependence for the displacement. Using
scaling arguments'' we can derive P,(z). We expect
Py(t)~{x?)~1/% and therefore Py(t)~ (Inz)~n2/nk

B. Random potential wells

In the following we compare the above results with
the problem of diffusion in a one-dimensional system
with randomly distributed wells'> whose depth A is dis-
tributed as

P(A)~A—0FD) (13)

The transition rates are W ;. ~e P*¥ from which it
follows that their distribution is

dA 1
PIW)~PA)—~—— . (14)
dw W |lnw |'t7
Applying the same formalism as in (6), we obtain
N W
p=Ll sy L _g% ___dW ___
Nk=l Wk,k+l Wain W |anl Ty

The lower limit W, is the lowest transition rate
within a system of N sites and approaches to zero as
t—ow, or {x?)— . In order to obtain the asymptotic
behavior of the diffusion, one must know how W ..
scales with (x2). The upper limit which corresponds to
the case of the shallow wells does not contribute to the
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integral, but rather deals with the case of normal
diffusion or conduction.

Evaluating the main contribution to the integral, we
find

‘D_ﬁl"’[VVmin“nI'Vmin|I+y]ﬁ1 . (16)

Averaging over different initial conditions corresponds
to the calculation of the average value of W ;. This is
done by calculating A ,, which is the average maximum
depth of a well in a system of size X=(x2)!/2. We
choose a homogeneous random variable v so that
P(A)dA~dv from which follows v ~A~". Since v is
homogeneous, the average of vg,~1/X and thus
Apax~X'7 and W, ~exp(—X'/7). Thus, for X >>1,
we obtain

D '=t/X*~exp(X'/7) an
or, asymptotically,
(x2) ~(Int)* . (18)

Here, the main contribution to the integral is from the
lower limit W, which corresponds to the deepest well
as in the case of hierarchical wells. These two cases of
hierarchical and random wells coincide in one dimension
as expected, because y can be related’®> to R by
¥ =InR /Inz.

The analogue of the distribution of conductors o

Plo)m—— (19)

o |lno |7

. . o
can be calculated using a similar approach. The conduc-
tion X is given by

L o
s-ley Lop [ By, (20)
i=19i min O
Evaluating this integral yields
S leexp(L!7). (21)

III. TRANSPORT IN d >2 SYSTEMS

A. Potential wells

To study transport in a d > 2 system with the distribu-
tion of transition probabilities given by (14), we use (6)
where N is the number of distinct sites visited by the
hopping particle. The validity of this equation for
higher dimensions has been justified analytically'* and
numerically.!> The difference between one-dimensional
case and higher dimensions appears only in the cal-
culation of W_; . As before, we choose v to be a ho-
mogeneous random variable but here v, ~1/{(x?),
since the number of distinct sites visited in d >2 is pro-
portional to (x2). Hence A, ~(x?)? and W,
~exp[ —{x?)!/7]. Therefore

(x?)~(In)", O<y <o, d>2. (22)

Thus, we find a slower diffusion rate than for one dimen-
sion. This can be explained by a bigger chance of the

particle being ‘‘caught” in a deeper well, since it visits
more distinct sites than in the one-dimensional case.
Note that d =2 is the upper critical dimension since the
number of distinct sites for all dimensions d >2 has the
same scaling with (x?). Since Py(t)~(x?2)~1/2 the ap-
propriate autocorrelation function will be
Py(t)~(Int)~ 772,

B. Conductors

The problem of transport in d >2 dimensions with a
conductivity distribution given by Eq. (19) is more com-
plicated. Here we have to deal with two difficulties that
do not exist in the case of the wells. In the wells system
the particle has the same probability to enter any well
independent of its depth, where in the present case, the
current will flow mainly through the good conductors.
Secondly, here we cannot use Eq. (6) which is based on
the number of sites visited by a walker because the phys-
ical laws are now different. Therefore, we simplify the
problem by first solving the problem of n connected rows
of conductors and assume that the vertical conductors
are perfect (see Fig. 2). This implies that we get only a
lower bound for the conductivity exponent. Using
Kirchoff’s law for n rows of conductors, one obtains

I"I do;
o o i1 0, |Ino; |1FY
s g g el
min n min zai
i=1
Since
n ~1
1 © o
25 —fo exp —uiglai du , (24)
we can rewrite (23) as
n
s-l=L © in o exp(—uo)do
fo {fomin o |lno | F7
=L [“dul", (25)
where
sz o exp(—uo)do . 26)

%min o |Ing |1+

n=4

I\

FIG. 2. A quasi-one-dimensional system of length L with
n =4 connected linear chains. The vertical bonds are perfect
conductors, whereas the horizontal bonds are randomly distri-
buted according to Eq. (14).
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Equation (25) can be written as
37'=L [T e"Mdu . @7

For large n, we can apply the method of steepest des-
cent.

It can be shown that the main contribution to the in-
tegral I [Eq. (26)] comes from the ¥ —O0 limit. Calculat-
ing the integral I appearing in (25) by parts yields

_ —exp(—uo ) o exp(—uo)do (28)
Y l lnamin_l L4 Y 9 min l Ino ' g '

The second integral can be written as

Ino .o e~

“exp(—ue %)

f B dx
0 x?
_u)l —Ino . e—x(l+])
= dx&—
120 fo x?
(29)

using the substitution o =e ~*.
Using the incomplete ¥ function #(v,uu), defined by
f ou xY v>0 (30

we obtain

~le ~Mrdx =u "y (v,uu),

exp( —uog;y,)

- Y 'lnamin!y

1+1 Y lp(1—y, = +1)Ino ;)

(31D

for y < 1.
Since we are interested in the limit ¥ —0, we can ap-
proximate I by

exp(—uo py) (32)
Y l lnamin l v’
and, therefore,
3L [“dul"~ = N
0 I lnomin | ynnamin'}/n

Calculating the average o, in the case of n connect-
ed rows we must demand that o;, scales in the same
way for every row having size L. For one row we have
shown that

0min~exp( —L l/y) . (34)

Therefore, for n rows

n
1 O min=0min~exp(—L'/7) (35)

i=1

and, hence,

zn—l - CXP(LI/Y/n) (36)
L n~""L"n
For the two-dimensional case, n ~L and
—1 CXE(LI/Y_I)
2~ LLa-r 37
Since
L8
. e LS
Lll_l”nw —I:‘L—~e y 5>1 (38)
we get
exp(L'V771), y<1
~ LO, y 2% (39)
For d dimensions we can assume n ~L? ! and
2_1~ exp(L”" -1, (40)
[I—y(d —1)]
Hence the anomalous region is given by
: (41)

<2d-1 "

Note that for d =1, (37) and (39) reduce to the result
3~ !'—~exp(L'7) for 0<¥ < o obtained in Sec. II. Us-
ing Eq. (6) we find

L Y2Y.
(Int )27/[1-7(11-—1)]’

(r?) ~ (42)

Y <%
where y.=1/[2(d —1)].

The above results, Eqs. (39) and (42), are rigorous
lower bounds for the general case, in which all bonds are
distributed according to (14).

In summary, we find localization in all dimensions for
diffusion in the presence of a power-law distribution of
potential wells and Boltzmann transition rates. We
show that the upper critical dimension is d =2 with
(r?) ~(Int)?*" for all d >2. For the case of barriers, we
find that for any number of dimensions, {r?) scales as
power of In(¢) which depends on the dimension. More-
over, for any number of dimensions, we find a dynamical
phase transition'>!%!” from normal diffusion to logarith-
mic anomalous diffusion (localization). There is also a
critical distribution, characterized by y., below which
localization occurs.
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