Scaling Behavior of Heartbeat Intervals
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A major problem in biology is the quantitative analysis of nonstationary
time series generated under free-running conditions [1-3]. A central question is
whether such noisy fluctuating signals contain hidden dynamical patterns essen-
tial for understanding underlying physiological mechanisms. Here we analyse
the properties of human cardiac activity by means of a wavelet transform and
analytic signal approach designed to address nonstationary behavior. We find a
homogeneous scaling function for the distribution of the variations in the beat-
to-beat intervals for healthy subjects. However, such a scaling function does
not exist for a group with cardiopulmonary instability due to sleep apnea. This
scaling form allows us to express the global characteristics of a highly heteroge-
neous time series of interbeat intervals of each healthy individual with a single
parameter. We find also that the observed scaling represents the Fourier phase
correlations attributable to the underlying nonlinear dynamics. The present ap-
proach has the potential to quantify the output of other biological signals with
nonlinear behavior.

Time series of beat-to-beat (RR) heart rate intervals (Fig.la) obtained from digitised

electrocardiograms are known to be nonstationary and exhibit extremely complex behavior
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[4]. A typical feature of these signals is the presence of “patchy” patterns which change over
time (Fig.1b). Heterogeneous properties may be even more strongly expressed in certain
cases of abnormal heart activity. Traditional approaches — such as the power spectrum
and correlation analysis [5,6] — are not suited for such nonstationary (patchy) sequences,

and do not carry information stored in the Fourier phases (crucial for determining nonlinear

characteristics).
To address these problems, we present an alternative method — “cumulative variation
magnitude analysis” — to study the subtle structure of physiological time series. This

method comprises sequential application of a set of algorithms based on wavelet and Hilbert
transform analysis. First, we apply the wavelet transform (Fig.1c), because it does not
require stationarity and preserves the Fourier phase information. The wavelet transform

[7-9] of a time series s(¢) is defined as
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where the analysing wavelet ¢ has a width of the order of the scale a and is centred at #,.
For high frequencies (small @), the ¢ functions have good localization (being effectively non-
zero only on small sub-intervals), so short-time regimes or high-frequency components can be
detected by the wavelet analysis. The wavelet transform is sometimes called a “mathematical
microscope” because it allows one to study properties of the signal on any chosen scale a.
However, a wavelet with too large a value of scale a (low frequency) will filter out almost
the entire frequency content of the time series, thus losing information about the intrinsic
dynamics of the system. We focus our “microscope” on scale a = 8 beats which smooths
locally very high-frequency variations and best probes patterns of specific duration (& % —1
min) (Fig.2). The wavelet transform is attractive because it can eliminate local polynomial
behavior in the nonstationary signal by an appropriate choice of the analysing wavelet
[10]. In our study we use derivatives of the Gaussian function: (™ = d /di"e= 2%,

The wavelet transform is thus a cumulative measure of the variations in the heart rate

signal over a region proportional to the wavelet scale, so study of the behavior of the wavelet



values can reveal intrinsic properties of the dynamics masked by nonstationarity.

The second step of the cumulative variation magnitude analysis is to extract the instan-
taneous variation amplitudes of the wavelet-filtered signal by means of an analytic signal ap-
proach [5,11] which also does not require stationarity. Let s(Z) represent an arbitrary signal.
The analytic signal, a complex function of time, is defined by S(t) = s() +3(t) = A(t)e®),
where $(t) is the Hilbert transform [12] of s(¢). The instantaneous magnitude A(t) and
the instantaneous phase of the signal ¢(f) are defined as A(t) = 4/s(t) + $%(1) and
4(t) = tan~ (3(1)/s(1)).

We study the distribution of the amplitudes of the beat-to-beat variations (Fig.1d) for a
group of healthy subjects (N = 18; 5 male, 13 female; age: 20—50, mean - 34) and a group of
subjects [13] with obstructive sleep apnea [14] (N = 16 males; age: 32 — 56, mean - 43). We
begin by considering night phase (12pm-6am) records of interbeat intervals (& 10* beats) for
both groups to minimize nonstationarity due to changes in the level of activity. Inspection
of the distribution functions of the amplitudes of the cumulative variations reveals marked
differences between individuals (Fig.2a). These discrepancies are not surprising given the
underlying physiological differences among healthy subjects. To test the hypothesis that
there is a hidden, possibly universal structure to these heterogeneous time series, we rescale
the distributions and find for all healthy subjects that the data conform to a single scaled
plot (“data collapse”) (Fig.2b). Such behavior is reminiscent of a wide class of well-studied
physical systems with universal scaling properties [15,16]. In contrast, the subjects with
sleep apnea show individual probability distributions which fail to collapse (Fig.2d).

We next analyse the distributions of the beat-to-beat variation amplitudes. For the
healthy group, we find that these are well fit by the Gamma form: P(z) = (0**'/T'(v +
1))z¥e™ where b = v/xg, I'(v + 1) is the Gamma function, z is the position of the peak
P = Pz, and v is the fitting parameter (Fig.3a). Although individual distributions have
different values of b, the homogeneous property of the functional form of P(z) leads to
reduction of the independent variable x and parameter b to a single scaled variable u = ba.

Instead of the data points falling on a family of curves, one for each value of b, we find the
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data points collapse onto a single curve given by the scaling function P(u) = P(x)/b. Thus,
it 1s sufficient to specify only one parameter b in order to characterize the heterogeneous
heartbeat variations of each subject in this group.

We also analysed heart rate dynamics for the healthy subjects during day-time hours
(noon — 6pm). Our results indicate that the observed, apparently universal behavior holds
not only for the night phase but for the day phase as well (Fig.3b).

To ascertain whether the observed scaling of the distributions for healthy subjects is an
intrinsic property of normal heart beat dynamics, we test the cumulative variation magnitude
method on artificially-generated signals with known properties. Our analysis of uniformly-
distributed random numbers in the interval [0,1] and of Gaussian-distributed noise with
and without long-range power law correlations shows that after the wavelet transform the
amplitude distributions follow the Rayleigh probability distribution (z/c?)e™**/". This
finding agrees with the central limit theorem, which can be expressed as a property of
convolutions (in our case wavelet transform): the convolution of a large number of positive
functions is approximately a Gaussian function, and the instantaneous amplitudes of a
Gaussian process follow the Rayleigh probability distribution [17].

We perform the same test on surrogate data obtained from a healthy subject by Fourier
transforming the original time series, preserving the amplitudes of the Fourier transform
but randomising the phases, and performing an inverse Fourier transform (Fig.4). Thus
both the original and surrogate signals have identical power spectra. Application of the
cumulative variation magnitude analysis on this surrogate signal results again in a Rayleigh
distribution, whereas the original time series has a distribution with an exponential tail. This
test clearly indicates the important role of phase correlations in the RR time series. The
presence of these correlations is most likely related to the underlying nonlinear dynamics.
Thus our procedure preserves collective phase properties of the original signal which cannot
be detected by power spectrum analysis.

This study uncovers a previously unknown nonlinear feature of healthy heart rate fluctu-



ations. Prior reports of universal properties of the normal heart beat and other physiological
signals were related to long-range correlations and power law scaling [18-20]. However, these
properties, detected by Fourier and fluctuation analysis techniques, ignore information re-
lated to the phase interactions of component modes. The nonlinear interaction of these
modes accounts for the patchy, non-homogeneous appearance of the heartbeat time series.

Our finding suggests that for healthy individuals, there may be a common structure to
this nonlinear phase interaction. The scaling property cannot be accounted for by activ-
ity, since we analysed data from subjects during nocturnal hours. Moreover, it cannot be
accounted for by sleep stage transitions, since we found a similar pattern during day-time
hours. The basis of this robust temporal structure remains unknown and presents a new
challenge to understanding nonlinear mechanisms of heartbeat control.

Additionally, we find that subjects with sleep apnea, a common and important instability
of cardiopulmonary control, show a dramatic alteration in the scaling pattern — possibly
related to pathologic mode locking associated with periodic breathing dynamics [21]. Thus,
the dual use of wavelet and Hilbert transform techniques may be of practical diagnostic and
prognostic value, and may also be applicable to a wide range of heterogeneous, “real world”

physiological signals.
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FIGURES

FIG. 1. (a) Segment of electrocardiogram showing beat-to-beat (RR;) intervals. (b) Plot of
RR-time series vs. consecutive beat number for a period of 6h (& 2.5 x 10* beats). Nonstationarity
(patchiness) is evident over both long and short time scales. Although these patches clearly differ
in the amplitude and frequency of variations, their quantitative characterization remains an open
problem. (c¢) Wavelet transform T (RR) of the RR-signal in Fig.1b. Nonstationarities related
to constants and linear trends have been filtered. The first derivative of the Gaussian ¥ is
orthogonal to segments of the time series with approximately constant local average. This results
in fluctuations of the wavelet transform values around zero with highest spikes at the positions
where a sharp transition occurs. Thus, the larger spikes indicate the boundaries belween regimes
with different local average in the signal, and the smaller fluctuations represent variations of the
signal within a given regime. Since %) is not orthogonal to linear (non-constant) trends, the
presence of consecutive linear trends in the RR-intervals will give rise to fluctuations of the wavelet
transform values around different nonzero levels corresponding to the slopes of the linear trends.
¥ and higher order derivatives can eliminate the influence of linear as well as nonlinear trends in
the fluctuations of the wavelet transform values. (d) Instantaneous amplitudes A(¢) of the wavelet
transform signal in Fig.1c; A(?) calculated using the Hilbert transform measures the cumulative

variations in the interbeat intervals over an interval proportional to the wavelet scale a.



FIG. 2. (a) Probability distributions P(z) of the amplitudes of heart rate variations x = A(%)
for a group of 18 healthy adults. Individual differences are reflected in the different average value
and widths (standard deviations) of these distributions. All distributions are normalised to unit
area. (b) Same probability distributions as in Fig.2a after rescaling: P(z) by Pz, and z by
1/ Ppyqz to preserve the normalization to unit area. The data points collapse onto a single curve.
(¢) Probability distributions for a group of 16 subjects with obstructive sleep apnea. We note
that the second (rightward) peak in the distributions for the sleep apnea subjects corresponds
to the transient emergence of characteristic pathologic oscillations in the heart rate associated
with periodic breathing [14,21]. (d) Distributions for the apnea group after the same rescaling
as in (b). The absence of data collapse demonstrates deviation from the normal heart behavior.
We note that direct analysis of interbeat interval histograms does not lead to data collapse or
separation between the healthy and apnea group. Moreover, we find that the direct application
of the Hilbert transform yielding the probability distribution of the instantaneous amplitudes of
the original signal does not clearly distinguish healthy from abnormal cardiac dynamics. Hence
the cricial feature of the wavelet transform is that it extracts dynamical properties hidden in the
cumulative variations. We observe for the healthy group good data collapse with stable scaling
form for wavelet scale a = 2 up to a = 32. However, for very small scales (a = 1,2) the average of
the rescaled distributions of the apnea group is indistinguishable from the average of the rescaled
distributions of the healthy group. Hence very high frequencies are equally present in the signals
from both groups. QOur analysis yields the most robust results when a is tuned to probe the
collective properties of patterns with duration of & 2 — 1 min in the time series (a = 8,10). The
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subtle difference between day and night phases is also best seen for this scale range (Fig.3).



FIG. 3. (a) The solid line is an analytic fit of the rescaled distributions of the beat-to-beat
variation amplitudes of the 18 healthy subjects during sleep hours to a stable Gamma distribution
with » = 1.4 £ 0.1 (note that stable Gamma form has been used previously in the literature to
describe other processes — e.g. the spike activity of a single neuron [22]). (b) Data for 6h records
of RR intervals for the day phase of the same control group of 18 healthy subjects demonstrate
similar scaling behavior with a Gamma distribution and ¥ = 1.8 + 0.1, thereby showing that the
observed universality for the healthy heart dynamics is not confined to the nocturnal phase. Semilog
plots of the averaged distributions show a systematic deviation — crossover — in the tails of the
night-phase distributions, whereas the day-phase distributions follow the exponential form over
practically the entire range. Note that the observed crossover for the night phase indicates higher
probability of larger variations in the healthy heart dynamics during sleep hours in comparison with
the daytime dynamics. We find that the maximum difference between the cumulative distributions
of the individual subjects and the Gamma fit in point (a) evaluated with the Kolmogorov-Smirnov
test can serve as a good index to separate the healthy from the apnea group. Analysis of the first

and second moments of the individual distributions also shows clear separation for both groups.

FIG. 4. (a) Original RR-time series as a function of beat number. (b) Wavelet transform
Ty (RR) of this series. (c) Surrogate (RRg,y) signal after phase randomisation. (d) Wavelet trans-
form of the surrogate signal which is more homogeneous (less patchy) in comparison with (b). (e)
Probability distributions of the amplitudes of variations after wavelet transform of the original and
surrogate signals, as well as the theoretical Rayleigh distribution. The theoretical Rayleigh agrees

with the distribution of the wavelet transform of the surrogate signal with randomised phases.
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