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Abstract

We investigate the local cumulative phases at single sites of the lattice for time-dependent
wave functions in the Anderson model in d = 2 and 3. In addition to a local linear trend,
the phases exhibit some 
uctuations. We study the time correlations of these 
uctuations using
detrended 
uctuation analysis. Our results suggest that the phase 
uctuations are long-range
correlated, decaying as a power law with time. It seems that the exponent depends on the degree
of disorder. In d=3, close to the critical disorder wc = 16:5, the correlation exponent exhibits a
maximum value of � ≈ 0:6 which is signi�cantly above random 
uctuations (�=0:5). c© 1999
Published by Elsevier Science B.V. All rights reserved.
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The Anderson model is the standard model for transport in weakly disordered solids,
e.g. compounds, amorphous semiconductors or semiconductors with impurities [1].
Anderson wave functions are known to be always localized in d = 2, while there
is a localization–delocalization transition in d=3 at the critical disorder wc ≈ 16:5 [2].
The wave functions were found to be multifractal at the critical point [3,4]. The local-
ization behavior and the multifractality also show up in the behavior of time-dependent
wave functions, e.g. when considering a di�using wave packet [5,6]. But up to now
only the probability densities | n(t)|2 at site n have been investigated, not the phases of
the time-dependent wave functions. In this paper, we investigate, for the �rst time, the
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local phases ’n(t). We �nd that they are long-range correlated in time. The correlations
seem to be most pronounced at the critical point in d= 3.
We consider the Schr�odinger equation in tight-binding approximation for the wave

function of a quantum particle on (a) a regular square lattice and (b) a simple cubic
lattice. The wave function amplitudes  n for the lattice sites n satisfy the tight-binding
equation E n=�n n+

∑
� Vn;n+� n+�, where the sum runs over all nearest-neighbor sites

n+� of site n, and E is the eigenvalue. The local potentials �n are chosen randomly in
an uncorrelated way from the interval [−w=2; w=2], where w is the disorder parameter.
Here, we consider the time-dependent tight-binding Schr�odinger equation, i(d=dt)

 n(t) = �n n(t) +
∑

� Vn;n+� n(t). The choice ˜ = 1 determines the unit of time. We
assume no hopping disorder, Vn;n+� = 1 for nearest-neighbor sites n and n + � and
V = 0 elsewhere. We numerically calculate the local amplitudes  n(t) for the wave
function by integration of the time-dependent equation using a Rung–Kutta method.
The complex functions  n(t) can be separated into their absolute amplitudes and their
phases,  n(t)=| n(t)|exp[i’n(t)]. We are interested in the phases and their dependences
on time. In order to avoid the (somehow arti�cial) jumps in the time dependence of the
phases ’n(t) due to the restriction of their values to [0; 2�] we consider the cumulative
phases here. The cumulative local phases are continuous functions of time since their
values are not taken modulo 2�. The results for the integration of the time-dependent
Schr�odinger equation are similar for di�erent kinds of initial conditions if equilibrium
is reached and the disorder is not too strong. Therefore, we set | n(t = 0)| = const:
for all sites n, since equilibrium is reached relatively fast in that case. The phases
’n(t = 0) are taken randomly distributed, and the constant is chosen according to the
normalization condition

∑
n | n|2 = 1.

Fig. 1 shows typical results for the local phases ’n(t) as function of time. In addition
to the linear trend the phases exhibit large 
uctuations. The linear trend is trivial: If we
disregard the hopping terms in the time-dependent Schr�odinger equation the remaining
diagonal term gives just this linear time dependence, ’n(t) = ’n(0) − �nt. Thus, the
slope of the linear increase is directly related to the local potential �n. The 
uctuations
of the local phases, in contrast, are not trivial, since they are due to accumulation of
phase from di�erent paths through the system. Now the question arises whether these

uctuations are just random, i.e. the deviation of ’n(t) from the linear trend is like a
random walk, or whether the 
uctuations are somehow correlated?
In order to answer this question we have investigated the correlations of the phases

using the detrended 
uctuation analysis (DFA) that can systematically overcome the
linear trend in the phase data. Descriptions of the DFA can be found elsewhere [7–9].
The correlation of the detrended phase shifts �n(t) = ’n(t) − ’n(t − 1) + �n at time
scale � is characterized by the (auto)correlation function C(�) = 〈�n(t)�n(t + �)〉 =
[1=(T − �)]

∑T−�
t=1 �n(t)�n(t + �) for a time series of total length T . If the detrended

phase shifts �n(t) are uncorrelated, C(�) is zero for positive �. For short-range cor-
relations C(�) decays exponentially. Since a direct calculation of C(�) is hindered by
the nonstationarities in the data, we study the 
uctuation F(�) as function of the time
scale � instead. The 
uctuation F(�) is de�ned as the standard deviation of the phase
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Fig. 1. Cumulative time-dependent local phases ’n(t) for the Anderson model in d= 2 for eight (randomly
chosen) sites n. System size is 30× 30; and the disorder parameter is w=1. In addition to the linear trends
the phases exhibit large 
uctuations.

pro�les ’n(t) from linear �ts in segments of length � [7–9]. For the relevant case
of long-range power-law correlations, where C(�) ∼ �−
 with 0¡
¡ 1, the 
uctua-
tions increase by a power law F(�) ∼ ��. According to random walk theory (see e.g.
[10,11]) the exponent � is related to 
 by �=1−
=2. For uncorrelated data (as well as
for short-range correlations represented by exponentials C(�) ∼ exp(−�=�p) or 
¿1),
we have �= 1

2 . The data are long-range correlated if � is signi�cantly larger than
1
2 .

Our numerical procedure was as follows: First, we extracted phase records ’n(t)
from the time-dependent wave functions in the Anderson model for each site n. The
resonable time scales are limited by (i) di�usion time �D = L2=D and (ii) reoccurance
time. By Fourier transform of  n(t) we checked that reoccurance time is larger than
the time scales � considered. Then we calculated the 
uctuation F(�) for several time
scales � and determined the exponent � from the successive slopes of logF(�) versus
log �. The results for the Anderson model in d = 2 and 3 are shown in Fig. 2. We
�nd that the 
uctuations of the phase records are long-range correlated. The scaling
exponent � is signi�cantly larger than the value �= 1

2 for random data, but its precise
value depends signi�cantly on the disorder strength w. For time-dependent Anderson
wave functions in d = 2; � reaches its maximum � ≈ 0:57 for w ≈ 8, for which the
system size is approximately equal to the localization length of the wave functions.
In d= 3, the correlation exponent � reaches its maximum for w ≈ 18, which is quite
close to the critical disorder wc ≈ 16:5. Note that the maximum correlation exponent
� is still not reached in the �nite time series in Fig. 2b for large disorder (localized
modes), while � seems to decay for small disorder (extended modes).
In conclusion, the localization–delocalization transition in the Anderson model does

also show up in the correlation of the cumulative phases at single sites of time-dependent
wave functions. Analyzing the 
uctuations of the phases by DFA we �nd that maxi-
mum long-range correlations occur close to the critical point in d=3. Further research
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Fig. 2. Successive slopes �= dlogF(�)=dlog � for the 
uctuation F(�) of the local cumulative phases in the
Anderson model in (a) d = 2 and (b) d = 3. The linear system sizes are L = 60 in (a) and L = 20 in (b).
F(�) has been averaged over all sites and (a) seven and (b) four con�gurations. The symbols correspond to
di�erent degrees of disorder. �¿ 1

2 indicates long-range correlations in the phase time series. We checked
that the time scale � is always smaller than di�usion time and reoccurance time.

work is necessary to determine the physical origin of the long-range correlations we
�nd numerically.
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