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Abstract 

We study daily temperature fluctuations over more than 50 yr in two places on the globe that 
are separated by more than 3000 km. We analyze the temperature fluctuations Am with respect 
to the mean noon temperature (Ti) averaged, for each day of the year, over the whole year, 
ATi = T~ - (T~). We find that the AT~ are correlated and can be characterized for up to at least 
l 0  3 days by a power law correlation with an exponent ~ ~ 0.65. 

In recent years it was found that many complex systems in nature display anomalous 

fluctuations characterized by long range power-law correlations [1-6]. Prominent recent 

examples include DNA sequences and heartbeat intervals [6-9] .  The main difficulty 

in detecting these correlations is the nonstationarity nature of  the data. Several meth- 

ods have been applied to overcome this difficulty including the Detrended Fluctuation 
Analysis (DFA)  [10] and the wavelet [11] methods. 

In this paper we consider temperature fluctuations and address the question, whether 

the daily temperature variations are correlated and can be characterized by power-law 

correlations. Of  particular interest is the characteristic time in which the temperature 
variations are correlated. 

To deal with these questions, we have analyzed daily noon temperature data (at noon) 
taken from two weather stations (Pendleton and Huron) in the USA. Both stations are 
more than 3000 km apart, Pendleton is located in Oregon, while Huron is in Michigan. 

The data for Pendleton are from 1 January 1938 till 31 December 1994, while the data 

for Huron are from 1 January 1940 till 31 December 1994. All temperature data are 
measured in the Fahrenheit scale. 
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Fig. 1. The temperature landscape y(n), Eq. (2), for data taken from two weather stations: (a) Pendleton 
and (b) Huron. 

To overcome the natural nonstationarity of the temperature data due to season trends, 

we have studied the variations of the daily noon temperature with respect to the mean 

daily noon temperature (Ti} averaged over all the 57 and 55 yr, respectively: 

~ y ,  = ~ - (Ti>.  ( ~ )  
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To overcome linear trends left in the system (some years could be warmer or colder 

than the average year), we apply a DFA-type method, which is described below. 
For analyzing the correlations in A Ti we first plot, in Fig. 1, the function 

n 

y(n) = Z A ~ ,  (2) 
i=1 

which can be viewed as a landscape of the temperature fluctuations. The parameter n 

is the number of  days which runs, for example in the Pendleton case, from n -- 1 to 
n = N = 57 x 365 -- 20 805d. 

Next, we divide the abscissa (n-axis) into equal intervals of length I, i.e., into NIl 
intervals. In each interval we calculate the squared fluctuations F2(1) of y(n) with 

respect to a straight line, z(n) = an + b, connecting the two values of y,, at the end 
points of  the interval, 

( k + l ) l  

F2(l) = (1/l) Z ( y ( n ) - z ( n ) )  2, k -- 0, 1,2 .... ( N / I -  1). (3) 
n=kl+ 1 

Averaging F(l)  over the NIl intervals gives the mean temperature fluctuations (F(I)) 
as a function of l. 

If  the AT, were random uncorrelated variables or short range correlated variables, 
we would expect 

(F(I)) ~ l ~, (4) 

I An exponent ~ # ½ in a certain range of l values suggests the existence with c~ = 3 

of a power-law long range correlations in that range. 

Fig. 2 shows (F(1)) for the two temperature landscapes shown in Fig. 1. It is seen 

that for both temperature landscapes, the slope representing the exponent ~ is about 

~ 0.65 starting from about l = 20 d. From the data, we cannot see where this power 
law ends. The power law extends to at least 103d. This suggests the existence of 

long-range power-law correlations in the daily temperature fluctuations up to at least 

three years. It is possible that the correlations extend much further. However, for time 
scales above 103 d the data start to scatter, and we cannot rule out the possibility of  a 

1 smaller exponent including ~ = 3' 

We also tested how sensitive our result is to the assumption of the mean daily 
noon temperature as a reference frame. For this purpose we replaced (Ti) in Eq. (1) 

(a) by the daily noon temperature of a given (typical) year, and (b) by the mean daily 
noon temperature of  the first and the last five years and repeated all the analysis of 
Eqs. ( I ) - ( 4 ) .  We found that the results for (F(I)) are very similar to those of  Fig. 2 
supporting the previous results. 

To summarize, we have presented an analysis of  daily noon temperature fluctuations 
from two weather stations. Our results suggest the existence of long-range power law 
correlations in weather fluctuations in the range of at least 3 yr. However, we consider 
our results as preliminary, since we considered only two places on the globe. More 
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Fig. 2. Plot of the mean temperature fluctuations (F(I)) versus the interval length l on a double-logarithmic 
scale for the two daily temperature landscapes shown in Fig. 1. The straight line has a slope of 0.65. 

data and longer periods o f  times are needed to obtain more conclusive results and to 

confirm our finding. 
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