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Abstract

We examine the detrended "uctuation analysis (DFA), which is a well-established method for
the detection of long-range correlations in time series. We show that deviations from scaling
which appear at small time scales become stronger in higher orders of DFA, and suggest a
modi2ed DFA method to remove them. The improvement is necessary especially for short records
that are a4ected by non-stationarities. Furthermore, we describe how crossovers in the correlation
behavior can be detected reliably and determined quantitatively and show how several types of
trends in the data a4ect the di4erent orders of DFA. c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In recent years, the detrended "uctuation analysis (DFA) invented by Peng et al.
[1] has been established as an important tool for the detection of long-range (auto-)
correlations in time series with non-stationarities. It has successfully been applied to
such diverse 2elds of interest as DNA [2–4], heart rate dynamics [5–14], neuron
spiking [15,16], human gait [9,17], long-time weather records [18–20], cloud structure
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[21,22], economical time series [23–26], and even solid state physics [27,28]. While
the spectral analysis (Fourier transform) and the recently developed wavelet transform
modulus maxima (WTMM) method [29–31] analyze the time series directly, the DFA
is based on the random walk theory [32,33], similar to the Hurst rescaled-range analysis
[34] (see also [35]) and similar to another method based on the wavelet transform
used, e.g. in [18,19]. Since the time series are summed up in the methods based
on the random walk theory (including the DFA), the noise level due to imperfect
measurements in most records is reduced. The fano factor [36] and the allan factor
[37], see also [8], have been employed in a similar context, but these methods do not
remove trends in the data.

For the reliable detection of long-range correlations, it is essential to distinguish
trends from the long-range "uctuations intrinsic in the data. Trends are caused by
external e4ects—e.g. the greenhouse warming and seasonal variations for temperature
records—and they are usually supposed to have a smooth and monotonous or slowly
oscillating behavior. Strong trends in the data can lead to a false detection of long-range
correlations if only one (non-detrending) method is used or if the results are not
carefully interpreted. It is the advantage of the DFA that it can systematically eliminate
trends of di4erent order (like the method based on wavelet transform that has been
applied, e.g. in [18,19]). In this way, we can gain an insight into the scaling behavior
of the natural variability as well as into the trends in the considered time series.

In this paper, we study systematically di4erent orders of the DFA technique, that
allow to eliminate di4erent orders of trends. The paper is organized as follows: in
Section 2, the method is described. In Section 3, we suggest a straightforward exten-
sion of the DFA that eliminates DFA speci2c deviations from scaling at small time
scales. We describe how crossovers in the observed long-range correlation behavior can
be detected and detail how the crossover time can be determined reliably. Finally,
we show how several types of trends in the data a4ect the di4erent orders of DFA.
We summarize the results in the fourth section of the paper.

2. Long-range correlations and the detrended �uctuation analysis

We consider a record (xi) of i=1; : : : ; N equidistant measurements. In most applica-
tions, the index i will correspond to the time of the measurements. We are interested
in the correlation of the values xi and xi+s for di4erent time lags, i.e., correlations
over di4erent time scales s. In order to get rid of a constant o4set in the data, the
mean 〈x〉= 1=N

∑N
i=1 xi is usually subtracted, Mxi ≡ xi −〈x〉. Quantitatively, correlations

between x-values separated by s steps are de2ned by the (auto-) correlation function:

C(s) = 〈 Mxi Mxi+s〉 =
1

N − s
N−s∑
i=1

Mxi Mxi+s : (1)

If the xi are uncorrelated, C(s) is zero for s¿0. Short-range correlations of the xi are
described by C(s) declining exponentially, C(t) ∼ exp(−s=s×) with a decay time s×.
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For the so-called long-range correlations, C(s) declines as a power-law:

C(s) ˙ s−� ; (2)

with an exponent 0¡�¡ 1. A direct calculation of C(s) is usually not appropriate
due to noise superimposed on the collected data xi and due to underlying trends of
unknown origin. For example, the average 〈x〉 might be di4erent for the 2rst and the
second half of the record, if the data are strongly long-range correlated. This makes the
de2nition of C(s) problematic. Thus, we have to determine the correlation exponent �
indirectly.

Often experimental data are a4ected by non-stationarities. Such trends have to be
well distinguished from the intrinsic "uctuations of the system in order to 2nd the
correct scaling behavior of the "uctuations. This task is not easy, since, e.g., subtracting
some kind of a moving average with a certain bin width  would arti2cially introduce
the time scale  into the data, thus destroying a possible scaling over a wider range
of time scales. Hurst rescaled-range analysis [34] and other non-detrending methods
[36,37] work well if the records are long and do not involve trends. But if trends are
present in the data, they might give wrong results. Very often, we do not know the
reasons for underlying trends in collected data and—even worse—we do not know
the scales of the underlying trends. DFA is a well-established method for determining
the scaling behavior of noisy data in the presence of trends without knowing their
origin and shape [1,2,6].

The DFA procedure consists of four steps. In the 2rst step, we determine the pro2le:

Y (i) =
i∑
k=1

xk − 〈x〉 ; (3)

of the record (xi) of length N . The subtraction of the mean 〈x〉 is not compulsory,
since it would be eliminated by the later detrending in the third step anyway.

In the second step, we cut the pro2le Y (i) into Ns ≡ [N=s] non-overlapping segments
of equal length s (see Fig. 1). Since the record length N need not be a multiple of
the considered time scale s, a short part at the end of the pro2le will remain in most
cases. In order not to disregard this part of the record, the same procedure is repeated
starting from the other end of the record. Thus, 2Ns segments are obtained altogether.

In the third step, we calculate the local trend for each segment � by a least-squares 2t
of the data. Then we de2ne the detrended time series for segment duration s, denoted
by Ys(i), as the di4erence between the original time series and the 2ts:

Ys(i) = Y (i) − p�(i) ; (4)

where p�(i) is the 2tting polynomial in the �th segment. Fig. 1 illustrates this procedure
for s = 100 and 200. In the example, quadratic polynomials are used in the 2tting
procedure, which is characteristic of quadratic DFA (DFA2). Linear, cubic, or higher
order polynomials can also be used in the 2tting procedure (DFA1, DFA3, and higher
order DFA). Since the detrending of the time series is done by the subtraction of the
2ts from the pro2le, these methods di4er in their capability of eliminating trends in
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Fig. 1. Illustration of the detrending procedure in the detrended "uctuation analysis. For two segment lengths
(time scales) s = 100 (a) and 200 (b), the pro2les Y (i) (dashed lines; de2ned in Eq. (3)), least squares
quadratic 2ts to the pro2les (solid lines), and the detrended pro2les Ys(i) (dotted lines) are shown versus
the index i.

the data. In nth order DFA, trends of order n in the pro2le and of order n− 1 in the
original record are eliminated. Thus, a comparison of the results for di4erent orders of
DFA allows to estimate the strength of the trends in the time series, as will be shown
in Section 3.3.

In the fourth step, we calculate—for each of the 2Ns segments—the variance:

F2
s (�) = 〈Y 2

s (i)〉 =
1
s

s∑
i=1

Y 2
s [(�− 1)s+ i] ; (5)

of the detrended time series Ys(i) by averaging over all data points i in the �th segment.
Finally, we average over all segments and take the square root to obtain the DFA
"uctuation function:

F(s) =

[
1

2Ns

2Ns∑
�=1

F2
s (�)

]1=2

: (6)

For di4erent detrending orders n we obtain di4erent "uctuation functions F(s), which
we then denote by F (n)(s). By construction, F (n)(s) is only de2ned for s¿n+2. We are
interested in the s-dependence of F (n)(s). It is apparent that the variance will increase
with increasing duration s of the segments. If the data (xi) are long-range power-law
correlated (see Eq. (2)), the "uctuation functions F (n)(s) increase by a power-law:

F (n)(s) ˙ s� (7)

for large s values, where the "uctuation exponent � is related to the correlation ex-
ponent �. A direct derivation of Eq. (7) for large s is given by Taqqu et al. [38]
in the appendix. For data without trends and zero o4set, Mxi = xi and Ys(i) = Y (i) for
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i 6 s. Then the mean-square displacement in each segment � can be calculated (with
Eqs. (3) and (1)]:

〈Y 2(i)〉 =

〈
i∑
k=1

x2k

〉
+

〈 j; k6i∑
k �=j
xjxk

〉
= i〈x2〉 +

j; k6i∑
k �=j
C(|k − j|) (8)

= i〈x2〉 + 2
i−1∑
k=1

(i − k)C(k) : (9)

For large i, the second term can be approximated (with Eq. (2)):

i−1∑
k=1

C(k) ∼
i∑
k=1

k−� ∼
∫ i

1
k−� dk ∼ i1−�

and

i−1∑
k=1

kC(k) ∼ i2−� : (10)

If the data are long-range power-law correlated with 0¡�¡1, this term will dominate
for large i, giving:

〈Y 2(i)〉 ∼ i2−� : (11)

Thus, the mean-square displacement 〈Y 2(i)〉 of the pro2le increases faster than linearly
in i, which corresponds to superdi4usion. A similar approximation for F (n)(s) using
Eq. (11) 2nally leads to:

F (n)(s) ∼ s1−�=2 (12)

for large time scales s (see the appendix of [38] for an exact derivation for DFA1).
Thus, comparing Eqs. (7) and (12), we 2nd:

�= 1 − �=2 for 0¡�¡1 : (13)

If the data are uncorrelated or short-range correlated (C(s) decays exponentially or
�¿ 1 in Eq. (2)), the 2rst term in Eq. (9) will dominate for large i, and we 2nd
〈Y 2(i)〉 ∼ i (corresponding to regular di4usion) and hence F (n)(s) ∼ s1=2. Thus, the
"uctuation exponent �= 1

2 indicates the absence of long-range correlations.
Practically, we can plot F (n)(s) as a function of s on double logarithmic scales to

measure � by a linear 2t. For uncorrelated or short-range correlated data, we expect
� = 0:5, while �¿ 0:5 indicates long-range correlations. In this case, we can deter-
mine the correlation exponent � by measuring the "uctuation exponent �. Fig. 2 shows
two examples for the application of the DFA method to long-range correlated data
(Fig. 2a,b). An example for uncorrelated arti2cial data (Fig. 2c) is also shown, con-
2rming �= 1

2 .
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Fig. 2. Detrended "uctuation analysis of long-range correlated data with (a,d) �=0:2 (�=0:9), (b,e) �=0:7
(�=0:65), and uncorrelated data (c,f) with �=0:5. The scaled common DFA "uctuation functions F (n)(s)=s1=2

are plotted versus the time scale s in (a–c), while the corresponding modi2ed DFA "uctuation functions
F (n)

mod(s) are shown in (d–f). The symbols correspond to the di4erent detrending orders n, DFA1 ( ), DFA2
(◦), DFA3 (�), DFA4 (�), DFA5 (�), and DFA6 (+). The arti2cial long-range correlated data have been
generated by the Fourier transform method, see e.g. [35,39]. The deviations from scaling occurring in F(s)
for small time scales s in parts (a–c) are drastically reduced by dividing by the correction function obtained
from shuPed data in the parts (d–f). The results have been obtained by averaging over 100 arti2cial series
of length N = 200; 000 for each part.

3. Results

3.1. The correction function and a modi:ed version of the DFA

Figs. 2a–c show that small deviations from the scaling law Eq. (7), i.e., deviations
from a straight line in the log–log plot, occur for small scales s. These deviations
are intrinsic to the usual DFA method, since the scaling behavior is only approached
asymptotically. The deviations limit the capability of DFA to determine the correct
correlation behavior in very short records and in the regime of small s. DFA6, e.g., is
only de2ned for s¿ 8, and signi2cant deviations from the scaling law (7) occur even
up to s ≈ 30. They will lead to an over-estimation of the "uctuation exponent �, if
the regime of small s is used in a 2tting procedure. Previously, an attempt was made
to improve the scaling by modifying the prefactor in the de2nition of F(s) in Eq. (6)
[2], but it is valid for DFA1 only and it still contains some approximations. Here, we
suggest a di4erent approach, which can also be applied for higher order DFAs.

For long arti2cial series of uncorrelated (�= 1
2) and long-range correlated data (with

�=0:9) we have determined the deviations of F (n)(s) from the expected scaling behavior
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Fig. 3. The DFA correction functions K (n)
� (s) for uncorrelated data (� = 1

2 , small 2lled symbols) and for
long-range correlated data (�=0:9, large open symbols) are shown versus s. The symbols correspond to the
di4erent detrending orders of DFA (see Fig. 2 for the de2nition) and the functions are shifted by multiples
of 1.3. The dashed lines indicate the asymptotic behavior. K (n)

� (s) → 1. In the numerical procedure, K (n)
� (s)

has been obtained by averaging over 100 arti2cial series of length N = 200; 000. The long-range correlated
series have been generated by the method of Fourier transform, see e.g. [35,39].

Eq. (7). Fig. 3 shows the results for the correction function

K (n)
� (s) =

〈[F (n)(s)]2〉1=2s′�
〈[F (n)(s′)]2〉1=2s� for s′�1 ; (14)

where, again, n denotes the DFA detrending order, and 〈· · ·〉 denotes the average over
di4erent con2gurations. Practically, s′ has to be large (s′¿50), but it must remain
signi2cantly smaller than the record length N ; s′ ≈ N=20 seems to be a reasonable
number. If we divide the DFA "uctuation functions F(s) by the corresponding cor-
rection function K (n)

� (s), the deviations from scaling for small s are eliminated. The
crucial point is that the correction function K (n)

� (s) depends only weakly on � (see
Fig. 3). Therefore, practically, the correction function for uncorrelated data, K (n)

1=2(s),

can be used in all cases. K (n)
1=2(s) can be obtained most easily by analyzing the cor-

responding shuPed data, where all long-range correlations have been destroyed by
randomly shuPing the record of measurements.

Thus, in order to improve the scaling of the DFA "uctuations on short scales s, we
suggest to divide F (n)(s) by K (n)

1=2(s) to obtain the modi:ed "uctuation function:

F (n)
mod(s) =

F (n)(s)

K (n)
1=2(s)

= F (n)(s)
〈[F (n)

shu4 (s′)]2〉1=2s1=2
〈[F (n)

shu4 (s)]2〉1=2s′1=2
for s′�1 ; (15)

according to Eq. (14). Here, 〈[F (n)
shu4 (s)]2〉1=2 denotes the usual DFA "uctuation function

(de2ned in Eq. (6)) averaged over several con2gurations of shuPed data taken from
the original record (xi) under consideration, and s′ ≈ N=20, again.

In Fig. 2, the numerical results for F (n)
mod(s) are compared to those for the common

F (n)(s). The improvement of the scaling behavior for small s can be seen clearly by
comparing the right and left parts of the 2gure. Only very weak deviations from the
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expected power-law dependence remain for strong long-range correlations (for large �,
see Fig. 2d). The suggested modi2ed method does only need additional computation
time, but the programming e4ort is not signi2cantly higher. Thus, it can easily be used
in most applications. The improvement is very useful especially for short records or
records that have to be split into shorter parts to eliminate problematic non-stationarities,
since the small s regime can be included in the 2tting range for the "uctuation
exponent �.

Note that there is another advantage in dividing by the DFA "uctuation function for
shuPed data: If the distribution of the x-values in the record is very broad, e.g., similar
to a Levy distribution, and the second moment 〈x2〉 diverges, systematic deviations from
the expected scaling behavior will occur already for uncorrelated data (see e.g. [40]).
Since these deviations are not eliminated by shuPing the data, they will cancel out
in F (n)

mod(s). Thus, the modi2ed DFA method indicates the correct correlation behavior
also in the presence of a broadly distributed data, where the common DFA fails to
distinguish long-range correlations from deviations caused by broad distributions.

3.2. Determination of crossovers

Frequently, the correlations of recorded data do not follow the same scaling law for
all time scales s, but one or sometimes even more crossovers between di4erent scaling
regimes are observed. For example, the data might become uncorrelated on large time
scales s¿ s×. In such a case, it would be useful to extract the crossover time s×
from the data also by means of DFA. In order to do this, we have to investigate how
crossovers in the correlation properties show up in the DFA "uctuation functions with
di4erent orders of detrending.

Arti2cial time series with a well-de2ned crossover at s× are most easily generated in
a modi2ed Fourier transform procedure: The power spectrum P(f) of an uncorrelated
random series is multiplied by (f=f×)−� with �=2�−1 for frequencies f¿f×=1=s×
only. The series obtained by inverse Fourier transform of this modi2ed power spectrum
exhibits power-law correlations on time scales s¡ s× only, while the behavior becomes
uncorrelated on larger time scales s¿ s×. An inverse crossover with long-range corre-
lations only for s¿ s× and an uncorrelated behavior below s× is obtained in a similar
way, if we multiply the power spectrum by (f=f×)−� for low frequencies f¡f×
only. Note that there is an alternative way to generate a series with a crossover in
the correlation behavior: We can divide the original long-range correlated series into
segments of length s× and shuPe the segments. This way, all correlations for s¿s×
are destroyed, but the correlations within the segments, i.e., for s¡s×, are preserved.
With this method, the crossover regime turns out to be much broader, so we use the
Fourier transform method in this paper.

Fig. 4 shows the results for the modi2ed DFA "uctuation function F (n)
mod(s), see

Eqs. (6) and (15), for arti2cial data with a crossover in the correlation behavior. The
crossover is clearly visible in the results, but it occurs at times s(n)× that depend on the
detrending order n and that are di4erent from the original s× used for the generation
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Fig. 4. Modi2ed DFA of arti2cial series with a crossover from long-range correlated behavior ((a): �= 0:2,
� = 0:9; (b): �= 0:7, � = 0:65) for s¡ s× = 200 to uncorrelated behavior for s¿ s×. The scaled modi2ed
DFA "uctuation functions F (n)

mod(s)=s
1=2 are plotted versus the time scale s for DFA1 to DFA5. In part (c)

the results for data with an inverse crossover from uncorrelated behavior (for s¡ s× = 200) to long-range
correlated behavior (�= 0:2, �= 0:9 for s¿ s×) are shown. For comparison, part (d) shows the usual DFA
"uctuation functions F(s) for the arti2cial series already considered in part (b). The long-range correlated
series with a crossover have been generated by the modi2ed Fourier transform method described in the
text, and the results for 100 series of length N = 200; 000 have been averaged. The symbols correspond to
the di4erent orders of DFA (see Fig. 2 for the de2nition). The dotted 2ts in part (a) illustrate the proce-
dure used to determine the observed position of the crossover s(3)

× , while the dashed vertical lines indicate
the real position of the crossover s× = 200.

of the data. This systematic deviation is most signi2cant in the DFAn with higher
order detrending. It occurs independent of the values of the "uctuation exponents and
independent of the direction of the crossover (from small to large exponents or vice
versa).

The deviation of the crossovers is systematically investigated in Fig. 5, where the
position of the original crossover s× used for the data generation is plotted versus
the position of the observed crossover s(n)× for DFA1 to DFA5. The plot can be used
to determine the real crossover position s× from the s(n)× estimated with the modi2ed
DFAn. If several orders of DFA are used in this procedure, several estimates will be
obtained which can be checked for consistency or used for an error approximation.

3.3. Monotonous trends

Records from real measurements are often a4ected by trends, which have to be well
distinguished from the intrinsic "uctuations of the system as discussed in Section 2.
To investigate the e4ect of trends on the DFA "uctuation functions, we have generated
arti2cial series (x′i) with smooth monotonous trends by adding polynomials of di4erent
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Fig. 5. Systematic investigation of the crossover detection with the modi2ed DFA1 to DFA5. For arti2cial
data with a crossover from long-range correlated behavior (� = 0:4, � = 0:8) for s¡ s× to uncorrelated
behavior for s¿ s× the crossover times s(n)× have been determined from the intersection of linear 2ts done
on both sides of the crossovers (as illustrated in Fig. 4a). The original crossover time s× is varied and
plotted versus s(n)× for all 2ve types of DFA. Note that the results also hold for inverse crossovers and for
other values of �, although the 2tting procedure will be less accurate if � is close to 0.5. They also hold for
the usual DFA for s×¿ 200, since K (n)

1=2(s) ≈ 1 for large s. The dashed line corresponds to s(n)× = s×, and
its position shows that the estimated crossovers are always larger than the real s×. The long-range correlated
series with a crossover have been generated by the modi2ed Fourier transform method described in the text.
For each point, the results for 200 time series of length N = 100; 000 have been averaged, and the error
bars have approximately the size of the symbols. The symbols correspond to the di4erent orders of DFA
(see Fig. 2 for the de2nition).

power p to the original record (xi) generated with the Fourier transform method:

x′i = xi + Ax
p with x = i=N : (16)

Fig. 6 shows the e4ect of trends of di4erent (integer) order p on the "uctuation
analysis (FA) and DFA "uctuation functions F (n)(s). For the conventional FA, the
variance F2

s (�) for segment � of scale length s is determined by the mean square
deviation of the (non-detrended) pro2le Y (i), i.e., Eq. (5) is replaced by

F2
s (�) = [Y (�s) − Y (�s− s+ 1)]2 : (17)

This procedure leads to similar results as the DFA, but trends are not eliminated. In
Fig. 6, the strong trends completely conceal the long-range correlations of the time
series. The slope �trend =1 is observed, which is the maximum for the FA, characteristic
of strong trends (or non-stationary time series). For the DFA, the trends in the data
can lead to an arti2cial crossover in the scaling behavior of F (n)(s), i.e., the slope �
is increased for large time scales s. The position of this arti2cial crossover depends on
strength A and power p of the trend. Evidently, no arti2cial crossover is observed, if
the detrending order n is larger than p. Thus, the order p of the trends in the data can
be determined easily by applying a di4erent DFAn. If p is larger than n, an arti2cial
crossover is observed, and the slope �trend in the large s regime strongly depends on
n. Thus, the arti2cial crossover can be clearly distinguished from real crossovers in
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Fig. 6. Investigation of the trend elimination and detection capability of the conventional "uctuation analysis
(FA, symbol −) and the (not modi2ed) DFA1 to DFA5 for trends Axp with integer powers p. For arti2cial
long-range correlated data (� = 0:7, � = 0:65) with added (a) linear, (b) quadratic, (c) cubic, and (d) 4th
order trends, the DFA "uctuation functions F (n)(s) are plotted versus the time scale s (A=104, p=1; 2; 3; 4).
The trends are completely eliminated if n¿p. This feature allows to determine the (integer) order p of the
trends using DFA. For n6 p, the trends lead to an apparent crossover at high s values as discussed in the
text. Only one series of length N = 100; 000 has been considered for each part of the 2gure. The symbols
correspond to the di4erent orders of DFA (see Fig. 2 for the de2nition).

the correlation behavior, which would result in identical slopes � and rather similar
crossover positions for all detrending orders n (see Fig. 4).

Fig. 7 shows the same type of results as Fig. 6, but for the modi2ed DFA and for
trends Axp with non-integer power p. Here, strong trends are not completely eliminated
by the DFA and can dominate the behavior of the "uctuation functions on very large
time scales s even if n¿p. If the trends are not too weak (as for the DFA5 in
Fig. 7a) or too strong (as for the DFA1 in Fig. 7c,e,f) an arti2cial crossover occurs.
The positions of the arti2cial crossover and the slopes �(n)

trend in the large s regime can be
used to determine the trend parameters A and p. Two main rules can be deduced from
the results shown in Fig. 7, and we have con2rmed these rules also for other parameters
�, A and p: (i) If a trend-related crossover is observed and the detrending order n is
suQciently small (n¡p + 0:5), the position of the arti2cial crossover depends only
on A, but not on p or � (compare Figs. 7c,e,f). This permits to determine strength A
of the trend for real data by a comparison to the results for arti2cial data with known
trend strength (see Figs. 7a–c). (ii) If a trend-related crossover is observed, the slope
�(n)

trend for large s (above this crossover) is the minimum of n + 1 and p + 1:5 (see
Fig. 7c–e). This permits to determine the order p of the trend, if n is chosen suQciently
large. The combination of both rules allows to determine A and p if the trend is strong
enough and several appropriate DFA orders n are employed. Note that the high order
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Fig. 7. Investigation of the trend elimination and detection capability of the modi2ed DFA1 to DFA5 for
trends Axp with non-integer powers p. For arti2cial long-range correlated data (�=0:7, �=0:65) with added
trends (as listed in the 2gure), the scaled modi2ed DFA "uctuation functions F (n)

mod(s)=s
1=2 are plotted versus

the time scale s. As expected, the trends are best eliminated by the higher order DFAs, but an apparent
crossover is still observed for large time scales s. The position of the crossover and the slopes of the curves
above the crossover can be used to determine strength A and exponent p of the trends (see text). The results
for 100 series of length N = 200; 000 have been averaged. The symbols are the same as in Fig. 6.

DFAs tend to become numerically unstable on small scales s for very strong trends
and weak "uctuations (see DFA7 for s¡ 30 in Fig. 7c,e,f).

3.4. Oscillatory trends

Sometimes the trends superimposed on the records of real measurements are not
monotonous. A quite common shape of trends is slow oscillatory behavior. It can be
either rather periodic and regular, e.g., for the seasonal trend in temperature "uctuations,
or rather irregular, e.g., for trends due to the southern oscillation (El Nino) e4ect.
In both cases, the e4ects of the trends have to be distinguished from the intrinsic
"uctuations of the system under consideration, and strong oscillatory trends can lead
to a false determination of the correlation behavior. In particular, it is of great interest
to know, how strong the oscillatory trends may become until they start to disturb the
correlation analysis.

In order to investigate the e4ect of oscillatory trends on the results of the DFA,
we have constructed arti2cial records of long-range correlated random numbers with
superimposed oscillatory trends of di4erent frequency and strength. The results for the
modi2ed DFA "uctuation function F (n)

mod(s) are shown in Fig. 8. The 2gure shows
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Fig. 8. Modi2ed DFA of a long-range correlated random data (� = 0:65, unit variance) with additional
oscillatory trends A sin(2�if) of di4erent frequencies f, (a) f = 0:1 and (b) f = 0:001, and intensities A
ranging from A= 0:02 to 2:56. The modi2ed DFA "uctuation functions F (3)

mod(s) are plotted versus the time
scale s. For other orders of the DFA we get similar results. Only for strong oscillatory trends the expected
scaling behavior F (n)

mod(s) ∼ s0:65 is disturbed. This shows that DFA is quite robust against oscillatory trends,
especially against those with rather high frequencies. The results for 100 series of length N = 200; 000 have
been averaged for each curve.

that the DFA is more sensitive to slowly varying trends, while quickly oscillating
trends disturb the scaling behavior of the results much less. Thus, for example, the
seasonal trends in temperature records have to be removed prior to the analysis (e.g.
by subtracting a daily mean temperature), while the modulating e4ect of breathing does
not signi2cantly disturb the analysis of heartbeat records.
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