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Abstract

We develop a method for the multifractal characterization of nonstationary time series, which is

based on a generalization of the detrended $uctuation analysis (DFA). We relate our multifractal

DFA method to the standard partition function-based multifractal formalism, and prove that

both approaches are equivalent for stationary signals with compact support. By analyzing several

examples we show that the new method can reliably determine the multifractal scaling behavior of

time series. By comparing the multifractal DFA results for original series with those for shu6ed

series we can distinguish multifractality due to long-range correlations from multifractality due

to a broad probability density function. We also compare our results with the wavelet transform

modulus maxima method, and show that the results are equivalent.
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1. Introduction

In recent years the detrended $uctuation analysis (DFA) method [1,2] has become a

widely used technique for the determination of (mono-) fractal scaling properties and

the detection of long-range correlations in noisy, nonstationary time series [3–6]. It has

successfully been applied to diverse Lelds such as DNA sequences [1,2,7,8], heart rate

dynamics [9–13], neuron spiking [14,15], human gait [16], long-time weather records

[17–19], cloud structure [20], geology [21], ethnology [22], economics time series

[23–25], and solid state physics [26,27]. One reason to employ the DFA method is to

avoid spurious detection of correlations that are artifacts of nonstationarities in the time

series.

Many records do not exhibit a simple monofractal scaling behavior, which can be

accounted for by a single scaling exponent. In some cases, there exist crossover (time-)

scales s× separating regimes with diCerent scaling exponents [4,5], e.g. long-range

correlations on small scales s�s× and another type of correlations or uncorrelated

behavior on larger scales s�s×. In other cases, the scaling behavior is more compli-

cated, and diCerent scaling exponents are required for diCerent parts of the series [6].

This occurs, e.g., when the scaling behavior in the Lrst half of the series diCers from

the scaling behavior in the second half. In even more complicated cases, such diCer-

ent scaling behavior can be observed for many interwoven fractal subsets of the time

series. In this case a multitude of scaling exponents is required for a full description

of the scaling behavior, and a multifractal analysis must be applied.

In general, two diCerent types of multifractality in time series can be distinguished:

(i) Multifractality due to a broad probability density function for the values of the

time series. In this case the multifractality cannot be removed by shu6ing the series.

(ii) Multifractality due to diCerent long-range (time-) correlations of the small and

large $uctuations. In this case the probability density function of the values can be a

regular distribution with Lnite moments, e.g. a Gaussian distribution. The corresponding

shu6ed series will exhibit nonmultifractal scaling, since all long-range correlations are

destroyed by the shu6ing procedure. If both kinds of multifractality are present, the

shu6ed series will show weaker multifractality than the original series.

The simplest type of multifractal analysis is based upon the standard partition func-

tion multifractal formalism, which has been developed for the multifractal characteriza-

tion of normalized, stationary measures [28–31]. Unfortunately, this standard formalism

does not give correct results for nonstationary time series that are aCected by trends or

that cannot be normalized. Thus, in the early 1990s an improved multifractal formalism

has been developed, the wavelet transform modulus maxima (WTMM) method [32–

39], which is based on wavelet analysis and involves tracing the maxima lines in the

continuous wavelet transform over all scales. Here, we propose an alternative approach

based on a generalization of the DFA method. This multifractal DFA (MF-DFA) does

not require the modulus maxima procedure, and hence does not involve more eCort in

programming than the conventional DFA.

The paper is organized as follows: In Section 2 we describe the MF-DFA method

in detail and show that the scaling exponents determined via the MF-DFA method are

identical to those obtained by the standard multifractal formalism based on partition
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functions. In Section 3 we introduce several multifractal models, where the scaling

exponents can be calculated exactly, and compare these analytical results with the

numerical results obtained by MF-DFA. In Section 4, we show how the comparison of

the MF-DFA results for original series with the MF-DFA results for shu6ed series can

be used to determine the type of multifractality in the series. In Section 5, we compare

the results of the MF-DFA with those obtained by the WTMM method for nonstationary

series and discuss the performance of both methods for multifractal time series analysis.

2. Multifractal DFA

2.1. Description of the method

The generalized multifractal DFA (MF-DFA) procedure consists of Lve steps. The

Lrst three steps are essentially identical to the conventional DFA procedure (see, e.g.

[1–6]). Let us suppose that xk is a series of length N , and that this series is of compact

support. The support is deLned as the set of the indices k with nonzero values xk , and

it is compact if xk = 0 for an insigniLcant fraction of the series only. The value of

xk = 0 is interpreted as having no value at this k.

Note that we are not discussing the fractal or multifractal features of the plot of the

time series in a two-dimensional graph. The reason is that the time axis and the value

axis are not equivalent. The graph is neither monofractal nor multifractal structure in a

strict sense (but rather a self-aOne structure), because the scaling properties depend on

the direction. Hence, we analyze time series as one-dimensional structures with values

assigned to each point and consider the multifractality of these values. Since real time

series always have Lnite length N , we explicitly want to determine the multifractality

of Lnite series, and we are not discussing the limit for N → ∞ here.

• Step 1: Determine the “proLle”

Y (i) ≡
i

∑

k=1

[xk − 〈x〉]; i = 1; : : : ; N : (1)

Subtraction of the mean 〈x〉 is not compulsory, since it would be eliminated by the

later detrending in the third step.

• Step 2: Divide the proLle Y (i) into Ns ≡ int(N=s) nonoverlapping segments of

equal length s. Since the length N of the series is often not a multiple of the considered

time scale s, a short part at the end of the proLle may remain. In order not to disregard

this part of the series, the same procedure is repeated starting from the opposite end.

Thereby, 2Ns segments are obtained altogether.

• Step 3: Calculate the local trend for each of the 2Ns segments by a least-square

Lt of the series. Then determine the variance

F2(�; s) ≡
1

s

s
∑

i=1

{Y [(�− 1)s+ i]− y�(i)}
2 (2)
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for each segment �; �= 1; : : : ; Ns and

F2(�; s) ≡
1

s

s
∑

i=1

{Y [N − (�− Ns)s+ i]− y�(i)}
2 (3)

for � = Ns + 1; : : : ; 2Ns. Here, y�(i) is the Ltting polynomial in segment �. Linear,

quadratic, cubic, or higher order polynomials can be used in the Ltting procedure

(conventionally called DFA1, DFA2, DFA3, : : :) [1,2,13]. Since the detrending of the

time series is done by the subtraction of the polynomial Lts from the proLle, diCerent

order DFA diCer in their capability of eliminating trends in the series. In (MF-)DFAm

[mth order (MF-)DFA] trends of order m in the proLle (or, equivalently, of order m−1

in the original series) are eliminated. Thus a comparison of the results for diCerent

orders of DFA allows one to estimate the type of the polynomial trend in the time

series [4,5].

• Step 4: Average over all segments to obtain the qth order $uctuation function

Fq(s) ≡

{

1

2Ns

2Ns
∑

�=1

[F2(�; s)]q=2

}1=q

; (4)

where, in general, the index variable q can take any real value (for q = 0, see step

5). For q = 2, the standard DFA procedure is retrieved. We are interested in how

the generalized q dependent $uctuation functions Fq(s) depend on the time scale s for

diCerent values of q. Hence, we must repeat steps 2 to 4 for several time scales s. It

is apparent that Fq(s) will increase with increasing s. Of course, Fq(s) depends on the

DFA order m. By construction, Fq(s) is only deLned for s¿m+ 2.

• Step 5: Determine the scaling behavior of the $uctuation functions by analyzing

log–log plots Fq(s) versus s for each value of q. Several examples of this procedure

will be shown in Section 3. If the series xi are long-range power-law correlated, Fq(s)

increases, for large values of s, as a power-law,

Fq(s) ∼ sh(q) : (5)

For very large scales, s¿N=4; Fq(s) becomes statistically unreliable because the num-

ber of segments Ns for the averaging procedure in step 4 becomes very small. Thus, we

usually exclude scales s¿N=4 from the Ltting procedure to determine h(q).

Besides that, systematic deviations from the scaling behavior in Eq. (5), which can

be corrected, occur for very small scales s ≈ 10. In general, the exponent h(q) in

Eq. (5) may depend on q. For stationary time series, h(2) is identical to the well-known

Hurst exponent H (see, e.g. [28]). Thus, we will call the function h(q) generalized

Hurst exponent.

The value of h(0), which corresponds to the limit h(q) for q → 0, cannot be

determined directly using the averaging procedure in Eq. (4) because of the diverging

exponent. Instead, a logarithmic averaging procedure has to be employed,

F0(s) ≡ exp

{

1

4Ns

2Ns
∑

�=1

ln[F2(�; s)]

}

∼ sh(0) : (6)

Note that h(0) cannot be deLned for time series with fractal support, where h(q)

diverges for q → 0.
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For monofractal time series with compact support, h(q) is independent of q, since

the scaling behavior of the variances F2(�; s) is identical for all segments �, and the

averaging procedure in Eq. (4) will give just this identical scaling behavior for all

values of q. Only if small and large $uctuations scale diCerently, there will be a

signiLcant dependence of h(q) on q: If we consider positive values of q, the segments

� with large variance F2(�; s) (i.e., large deviations from the corresponding Lt) will

dominate the average Fq(s). Thus, for positive values of q; h(q) describes the scaling

behavior of the segments with large $uctuations. On the contrary, for negative values

of q, the segments � with small variance F2(�; s) will dominate the average Fq(s).

Hence, for negative values of q, h(q) describes the scaling behavior of the segments

with small $uctuations.

Usually the large $uctuations are characterized by a smaller scaling exponent h(q)

for multifractal series than the small $uctuations. This can be understood from the

following arguments: For the maximum scale s = N the $uctuation function Fq(s) is

independent of q, since the sum in Eq. (4) runs over only two identical segments

(Ns ≡ [N=s] = 1). For smaller scales s�N the averaging procedure runs over several

segments, and the average value Fq(s) will be dominated by the F2(�; s) from the

segments with small (large) $uctuations if q¡ 0 (q¿ 0). Thus, for s�N; Fq(s) with

q¡ 0 will be smaller than Fq(s) with q¿ 0, while both become equal for s = N .

Hence, if we assume an homogeneous scaling behavior of Fq(s) following Eq. (5),

the slope h(q) in a log–log plot of Fq(s) with q¡ 0 versus s must be larger than the

corresponding slope for Fq(s) with q¿ 0. Thus, h(q) for q¡ 0 will usually be larger

than h(q) for q¿ 0.

However, the MF-DFA method can only determine positive generalized Hurst

exponents h(q), and it already becomes inaccurate for strongly anti-correlated signals

when h(q) is close to zero. In such cases, a modiLed (MF-)DFA technique has to be

used. The most simple way to analyze such data is to integrate the time series before

the MF-DFA procedure. Hence, we replace the single summation in Eq. (1), which is

describing the proLle from the original data xk , by a double summation

Ỹ (i) ≡

i
∑

k=1

[Y (k)− 〈Y 〉] : (7)

Following the MF-DFA procedure as described above, we obtain generalized $uctuation

functions F̃q(s) described by a scaling law as in Eq. (5), but with larger exponents

h̃(q) = h(q) + 1,

F̃q(s) ∼ sh̃(q) = sh(q)+1 : (8)

Thus, the scaling behavior can be accurately determined even for h(q) which are smaller

than zero (but larger than −1) for some values of q. We note that F̃q(s)=s corresponds

to Fq(s) in Eq. (5). If we do not subtract the average values in each step of the

summation in Eq. (7), this summation leads to quadratic trends in the proLle Ỹ (i).

In this case we must employ at least the second order MF-DFA to eliminate these

artiLcial trends.



92 J.W. Kantelhardt et al. / Physica A 316 (2002) 87–114

2.2. Relation to standard multifractal analysis

For stationary, normalized series deLning a measure with compact support the multi-

fractal scaling exponents h(q) deLned in Eq. (5) are directly related, as shown below, to

the scaling exponents �(q) deLned by the standard partition function-based multifractal

formalism.

Suppose that the series xk of length N is a stationary, positive, and normalized

sequence, i.e., xk¿ 0 and
∑N

k=1 xk =1. Then the detrending procedure in step 3 of the

MF-DFA method is not required, since no trend has to be eliminated. Thus, the DFA

can be replaced by the standard $uctuation analysis (FA), which is identical to the DFA

except for a simpliLed deLnition of the variance for each segment �; �= 1; : : : ; Ns, in

step 3 [see Eq. (2)]:

F2
FA(�; s) ≡ [Y (�s)− Y ((�− 1)s)]2 : (9)

Inserting this simpliLed deLnition into Eq. (4) and using Eq. (5), we obtain
{

1

2Ns

2Ns
∑

�=1

|Y (�s)− Y ((�− 1)s)|q

}1=q

∼ sh(q) : (10)

For simplicity we can assume that the length N of the series is an integer multiple of

the scale s, obtaining Ns = N=s and therefore

N=s
∑

�=1

|Y (�s)− Y ((�− 1)s)|q ∼ sqh(q)−1 : (11)

This already corresponds to the multifractal formalism used, e.g. in Refs. [29,31]. In

fact, a hierarchy of exponents Hq similar to our h(q) has been introduced based on

Eq. (11) in Ref. [29].

In order to relate the MF-DFA also to the standard textbook box counting formalism

[28,30], we employ the deLnition of the proLle in Eq. (1). It is evident that the term

Y (�s)− Y ((�− 1)s) in Eq. (11) is identical to the sum of the numbers xk within each

segment � of size s. This sum is known as the box probability ps(�) in the standard

multifractal formalism for normalized series xk ,

ps(�) ≡

�s
∑

k=(�−1)s+1

xk = Y (�s)− Y ((�− 1)s) : (12)

The scaling exponent �(q) is usually deLned via the partition function Zq(s),

Zq(s) ≡

N=s
∑

�=1

|ps(�)|
q ∼ s�(q) ; (13)

where q is a real parameter as in the MF-DFA above. Sometimes �(q) is deLned with

opposite sign (see, e.g. [28]).

Using Eq. (12) we see that Eq. (13) is identical to Eq. (11), and obtain analytically

the relation between the two sets of multifractal scaling exponents,

�(q) = qh(q)− 1 : (14)
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Thus, we have shown that h(q) deLned in Eq. (5) for the MF-DFA is directly related

to the classical multifractal scaling exponents �(q).

Another way to characterize a multifractal series is the singularity spectrum f(�),

that is related to �(q) via a Legendre transform [28,30],

�= �′(q) and f(�) = q�− �(q) : (15)

Here, � is the singularity strength or H?older exponent, while f(�) denotes the dimen-

sion of the subset of the series that is characterized by �. Using Eq. (14), we can

directly relate � and f(�) to h(q),

�= h(q) + qh′(q) and f(�) = q[�− h(q)] + 1 : (16)

3. Four illustrative examples

3.1. Example 1: monofractal uncorrelated and long-range correlated series

As a Lrst example we apply the MF-DFA method to monofractal series with compact

support, for which the generalized Hurst exponent h(q) is expected to be independent

of q,

h(q) = H and �(q) = qH − 1 : (17)

Such series have been discussed in the context of conventional DFA in several studies

before, see, e.g. [4–6]. Long-range correlated random numbers are usually generated

by the Fourier transform method, see, e.g. [28,40]. Using this method we can gen-

erate long-range anti-correlated (0¡H ¡ 0:5), uncorrelated (H = 0:5), or (positively)

long-range correlated (0:5¡H ¡ 1) series. The latter are characterized by a power-law

decay of the autocorrelation function C(s) ≡ 〈xkxk+s〉 ∼ s−� for large scales s with

� = 2 − 2H if the series is stationary. Alternatively, all stationary long-range cor-

related series can be characterized by the power-law decay of their power spectra,

S(f) ∼ f−� with frequency f and �=2H − 1. Note that H corresponds to the Hurst

exponent of the integrated series here. Uncorrelated data are characterized by C(s)= 0

and S(f) = const, while C(s) ∼ s−� with �¿ 1 (also leading to H = 0:5) is usually

considered as short-range correlation.

Fig. 1 shows the generalized $uctuation functions Fq(s) for all three types of

monofractal series (H = 0:75; 0:5; 0:25) and several q values. On large scales s, we

observe the expected power-law scaling behavior according to Eq. (5), which corre-

sponds to straight lines in the log–log plot. In Fig. 1(d), the scaling exponents h(q)

determined from the slopes of these straight lines are shown versus q. Although a slight

q dependence is observable, the values of h(q) are always very close to the H of the

generated series that has been analyzed. The degree of the q dependence observed for

this monofractal series allows to estimate the usual $uctuation of h(q) to be expected

for monofractal series in general.

Next, we analyze multifractal series for which �(q) can be calculated exactly, and

compare the numerical results with the expected scaling behavior.
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Fig. 1. The MF-DFA $uctuation functions Fq(s) are shown versus the scale s in log–log plots

for (a) long-range correlated monofractal series with H = 0:75, (b) uncorrelated random series with

H = 0:5 (white noise), and (c) long-range anti-correlated series with H = 0:25. The diCerent sym-

bols correspond to the diCerent values of the exponent q in the generalized averaging procedure,

q = −10 ( ); −2 (◦); −0:2 (�); +0:2 (�); +2 (�); and q = +10 (+). MF-DFA2 has been em-

ployed, and the curves have been shifted by multiple factors of 4 for clarity. The straight dashed lines have

the corresponding slopes H and are shown for comparison. Part (d) shows the q dependence of the asymp-

totic scaling exponent h(q) determined by Lts in the regime 200¡s¡ 5000 for H = 0:25 ( ); 0:5 (◦);

and 0:75 (�). The very weak dependence on q is consistent with monofractal scaling. In part (e) the q

dependence of �(q); �(q) = qh(q)− 1, is shown. Series of length N = 65536 were analyzed.
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3.2. Example 2: binomial multifractal series

In the binomial multifractal model [28–30], a series of N = 2nmax numbers k with

k = 1; : : : ; N is deLned by

xk = an(k−1)(1− a)nmax−n(k−1) ; (18)

where 0:5¡a¡1 is a parameter and n(k) is the number of digits equal to 1 in the binary

representation of the index k, e.g. n(13) = 3, since 13 corresponds to binary 1101.

The scaling exponents �(q) can be calculated straightforwardly. According to

Eqs. (12) and (18) the box probability p2s(�) in the �th segment of size 2s is given by

p2s(�) = ps(2�− 1) + ps(2�) = [(1− a)=a+ 1]ps(2�) = ps(2�)=a :

Thus, according to Eqs. (13) and (18),

Zq(s) =

N=s
∑

�=1

[ps(�)]
q =

N=2s
∑

�=1

[ps(2�− 1)]q + [ps(2�)]
q

=

[

(1− a)q

aq
+ 1

] N=2s
∑

�=1

[ps(2�)]
q

= [(1− a)q + aq]

N=2s
∑

�=1

[p2s(�)]
q = [(1− a)q + aq]Zq(2s)

and according to Eqs. (13) and (14),

�(q) =
−ln[aq + (1− a)q]

ln(2)
; (19)

h(q) =
1

q
−

ln[aq + (1− a)q]

q ln(2)
: (20)

Note that �(0) =−1 as required. There is a strong nonlinear dependence of �(q) upon

q, indicating multifractality. The same information is comprised in the q dependence

of h(q). The asymptotic values are h(q) → −ln(a)=ln(2) for q → +∞ and h(q) →
−ln(1− a)=ln(2) for q → −∞. They correspond to the scaling behavior of the largest

and weakest $uctuations, respectively. Note that h(q) becomes independent of q in the

asymptotic limit, while �(q) approaches linear q dependences.

Fig. 2 shows the MF-DFA $uctuation functions Fq(s) for the binomial multifractal

model with a= 0:75. The results for MF-DFA1 and MF-DFA4 are compared in parts

(a) and (b). Fig. 2(c) shows the corresponding slopes h(q) for three values of a

together with the exact results obtained from Eq. (20). The numerical results are in good

agreement with Eq. (20), showing that the MF-DFA correctly detects the multifractal

scaling exponents. Figs. 2(d) and (e) show the corresponding exponents �(q)=qh(q)−1

[see Eq. (14)] and the corresponding f(�) spectrum calculated from h(q) using the

modiLed Legendre transform (16). Both are also in good agreement with Eq. (19).

We have also checked that the results for the binomial multifractal model remain

unchanged if the double summation technique [see Eq. (7)] is applied. We obtain
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Fig. 2. The MF-DFA $uctuation functions Fq(s) are shown versus the scale s in log–log plots for the

binomial multifractal model with a = 0:75 (a) for MF-DFA1 and (b) for MF-DFA4. The symbols are the

same as for Fig. 1. The straight dashed lines have the corresponding theoretical slopes h(−10) = 1:90 and

h(+10)=0:515 and are shown for comparison. In part (c) the q dependence of the generalized Hurst exponent

h(q) determined by Lts in the regime 50¡s¡ 500 is shown for MF-DFA1 and a=0:9 (�); a=0:75 (◦);

and a = 0:6 ( ), as well as for MF-DFA4 and a = 0:75 (�). Parts (d) and (e) show the corresponding

exponents �(q) and the corresponding singularity spectrum f(�) for a = 0:75 determined by the modiLed

Legendre transform (16), respectively. The lines are the theoretical values obtained from Eq. (20). Series of

length N = 65536 were analyzed.
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slopes h̃(q) = h(q) + 1 as expected in Eq. (8). Note that there is no need to use this

modiLcation, except if h(q) is close to zero or has negative values.

3.3. Example 3: dyadic random cascade model with log-Poisson distribution

For another independent test of the MF-DFA, we employ an algorithm based on

random cascades on wavelet dyadic trees proposed in Refs. [41,42] (see also [43]).

This algorithm builds a random multifractal series by specifying its discrete wavelet

coeOcients cn;m, deLned recursively,

c1;1 = 1; cn;2m−1 =Wcn−1;m; cn;2m =Wcn−1;m ;

where n=2; : : : ; nmax (with N =2nmax) and m=1; : : : ; 2n−2. The values of W are taken

from a log-Poisson distribution, |W |= exp(P ln !+ �), where P is Poisson distributed

with 〈P〉=". There are three independent parameters, "; !, and �. Inverse wavelet trans-

form is applied to create the multifractal random series xk once the wavelet coeOcients

cn;m are known,

xk =

nmax
∑

n=1

2n−1

∑

m=1

cn;m n;m(k) ; (21)

where  n;m(k) is a set of wavelets forming an orthonormal wavelet basis. Here, we

employ the Haar wavelets,  n;m(k) ≡ 2(n−nmax−1)=2 [2n−nmax−1k −m] with  (x) ≡ 1 for

0¡x6 0:5;  (x) ≡ −1 for 0:5¡x6 1 and  (x) ≡ 0 otherwise. For this model the

multifractal scaling exponents are given by [41,42]

�(q) =
"(1− !q)− �q

ln 2
− 1 ; (22)

h(q) = ["(1− !q)− �q]=(q ln 2) : (23)

Fig. 3 shows the MF-DFA $uctuation functions Fq(s) for the dyadic random cascade

model. The numerically determined slopes h(q) for three sets of parameters are com-

pared with the exact results obtained from Eq. (23) and the good agreement shows

that the MF-DFA correctly detects the multifractal scaling exponents. Large deviations

occur only for very small moments (q¡ − 10), indicating that the range of q values

should not exceed −10.

3.4. Example 4: uncorrelated multifractal series with power-law distribution

function

The examples discussed in the previous three subsections were based on series in-

volving long-range correlations. In the present example we want to apply the MF-DFA

method to an uncorrelated series, that nevertheless exhibits multifractal scaling behav-

ior due to the broad distribution of its values. We denote by P(x) the probability

density function of the values xk in the series. The distribution P(x) does not aCect

the multifractality of a series on large scales s, if all moments

〈|x|q〉 ≡

∫

∞

−∞

|x|qP(x) dx (24)
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Fig. 3. (a) The MF-DFA2 $uctuation functions Fq(s) are shown versus the scale s in a log–log plot for the

dyadic random cascade model with log-Poisson distribution with parameters "= 1; != 0:9, and �=−!4=2.

The symbols are the same as for Fig. 1. The dashed straight lines have the theoretical slopes h(−10)=0:743

and h(+10)=0:567 and are shown for comparison. (b) The q dependence of the generalized Hurst exponent

h(q) determined by Lts is shown for MF-DFA2 and diCerent parameters (see legend). The lines are the

theoretical values obtained from Eq. (23). In part (c) �(q)= qh(q)− 1 is shown. Series of length N =65536

were analyzed.

are Lnite. Here we choose a (normalized) power-law probability distribution function,

P(x) = �x−(�+1) for 16 x¡∞ with �¿ 0 (25)

and P(x) = 0 for x¡ 1, where already the second moment diverges if �6 2. Thus,

the study deLnitely has to be restricted to ?nite series in this example. If �6 2, the

series exhibits multifractal scaling behavior on all scales. Note, that Eq. (25) becomes

identical to a Levy distribution of class � for large values of x. The parameter � is

not related to the H?older exponent � in Eq. (15). The scaling properties of random

walks with Levy distributed steps (Levy $ights and Levy walks) have been analyzed

in Refs. [44–46]. The multifractal nature of Levy processes has been investigated in

Refs. [47,48].
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In order to derive the multifractal spectrum, let us consider s uncorrelated random

numbers rk ; k=1; : : : ; s, distributed homogeneously in the interval [0; 1]. Obviously, the

typical value of the minimum of the numbers, rmin(s) ≡ minsk=1rk , will be rmin(s)=1=s.

It can be easily shown that the numbers rk are transformed into numbers xk distributed

according to the power-law probability distribution function (25) by rk → xk = r
−1=�
k .

Thus, the typical value of the maximum of the xk will be xmax(s) ≡ maxsk=1xk =

[rmin(s)]
−1=� = s1=�.

If �6 2, the $uctuations of the proLle Y (i) [Eq. (1)] and the corresponding DFA

variance F2(�; s) [Eq. (2)] will be dominated by the square of the largest value x2max(s)=

s2=� in the segment of s numbers, since the second moment of the distribution (25)

diverges. Now the whole series consists of Ns ≡ int(N=s) segments of length s and not

just of one segment. For some segments �; [F2(�; s)]1=2 is larger than its typical value

xmax(s) = s1=�, since the maximum within the whole series of length N is xmax(N ) =

N 1=�. In order to calculate Fq(s) [Eq. (4)], we need to take into account the whole

distribution Ps(y) of the values y ≡ [F2(�; s)]1=2. Since each of the maxima in the

Ns segments corresponds to an actual number xk and these xk are random numbers

from the power-law distribution (25), it becomes obvious, that the distribution of the

maxima will have the same form, i.e., Ps(y) ∼ P(x = y) for large y. Small values of

y are excluded because of the maximum procedure, but the large xk values are very

likely to be identical to the maxima of the corresponding segments. Since the smallest

maxima for segments of length s are of the order of xmax(s)= s1=�, the lower cutoC for

Ps(y) must be proportional to s1=�. From the normalization condition
∫

∞

As1=�
Ps(y) dy=1

(with an unimportant prefactor A¡ 1) we get

Ps(y) = A��sy−(�+1) : (26)

Now Fq(s) [Eq. (4)] can be calculated by integration from the minimum value As1=�

of y ≡ [F2(�; s)]1=2 to the maximum value N 1=�. For s�N we obtain

Fq(s)∼

[

∫ N 1=�

As1=�
yqPs(y) dy

]1=q

∼ |A�sN q=�−1 − Aqsq=�|1=q ∼

{

s1=q (q¿�)

s1=� (q¡�)
:

Comparing with Eq. (5), we Lnally get

h(q) ∼

{

1=q (q¿�)

1=� (q6 �)
: (27)

Note that �(q) follows a linear q dependence, �(q)=q=�−1 for q¡�, while it is equal

to zero for q¿� according to Eq. (14). Hence, the series of uncorrelated power-law

distributed values has rather bi-fractal [48] instead of multifractal properties. Since

h(2)= 1
2
holds exactly for all values of �, it is not possible to recognize the multifrac-

tality due to the broad power-law distribution of the values if only the conventional

DFA is applied. The second moment shows just the uncorrelated behavior of the val-

ues. In a very recent preprint [46] this behavior has been interpreted as a failure of the
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Fig. 4. (a) The modiLed and rescaled MF-DFA3 $uctuation functions F̃q(s)=s (corresponding to Fq(s)) are

shown versus the scale s in a log–log plot for a series of independent numbers with a power-law probability

density distribution P(x) ∼ x−(�+1) with �=1. The symbols are the same as for Fig. 1. The straight dashed

lines have the corresponding theoretical slopes h(−10)=1 and h(+10)=0:1 and are shown for comparison.

(b) The q dependence of the generalized Hurst exponent h(q) = h̃(q)− 1 determined by Lts on large scales

s is shown for MF-DFA3 and � = 0:5 ( ); 1:0 (◦), and 2:0 (�). The lines are the theoretical values

obtained from Eq. (27). In part (c) the corresponding �(q) is shown. The broad distribution of the values

leads to multifractality (bi-fractality) in all three cases. Series of length N = 65536 were analyzed.

DFA and corresponding nondetrending methods for series with a broad distribution,

and another method to determine the exponent 1=� has been proposed. We believe that

a multifractal description with more than one exponent is required to characterize this

kind of series, and thus any method calculating just one exponent will be insuOcient

for a full characterization.

Fig. 4(a) shows the MF-DFA3 $uctuation functions for series of independent random

numbers xk ∈ [1;∞) distributed according to Eq. (25) with � = 1. Since the scaling
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exponents h(q) become very close to zero asymptotically for large positive values of

q according to Eq. (27), we must use the modiLed MF-DFA technique involving the

double sum as described in the last paragraph of Section 2.1. Hence, for this techni-

cal reason, F̃q(s)=s is calculated instead of Fq(s). The corresponding slopes h̃(q) − 1

are identical to h(q), see Eq. (8). In Fig. 4(b) the slopes h(q) for series with �=0:5; 1:0,

and 2.0 are compared with the theoretical result Eq. (27), and nice agreement is ob-

served.

4. Comparison of the multifractality for original and shu!ed series

4.1. Distinguishing the two types of multifractality

As already mentioned in the introduction, two diCerent types of multifractality in

time series can be distinguished. Both of them require a multitude of scaling expo-

nents for small and large $uctuations. (i) Multifractality of a time series can be due

to a broad probability density function for the values of the time series, and (ii) mul-

tifractality can also be due to diCerent long-range correlations for small and large

$uctuations.

In general, the example discussed in Section 3.4, the uncorrelated multifractal

series with a power-law probability density function, is of type (i), while the examples

discussed in Sections 3.1–3.3 are of type (ii), where the probability density function

of the values is a regular distribution with Lnite moments. More exactly speaking, the

example of the binomial multifractal series (Section 3.2) can also show multifractal-

ity due to a broad probability density function for the values xk . If the parameter a

is chosen to be very close to one or if very long series are considered, correspond-

ing to large values of nmax, the minimum value in the series, (1 − a)nmax , will be

very small compared with the maximum value anmax [see Eq. (18)]. In this case the

log-binomial probability density function will become broad, approaching a log-normal

form. Since the scaling behavior of uncorrelated log-normal distributed series corre-

sponds to the multifractal scaling behavior observed in the example of uncorrelated

power-law distributed series with � = 2 (see Section 3.4), distribution multifractality

[type (i)] will occur in addition to the correlation multifractality [type (ii)]. For the

series with a= 0:75 and N = 8192 (nmax = 13) considered in Section 3.2, we observe

only type (ii) multifractality caused by long-range correlations.

Now we would like to distinguish between these two types of multifractality. The

most easy way to do so is by analyzing also the corresponding randomly shu6ed

series. In the shu6ing procedure the values are put into random order, and thus all

correlations are destroyed. Hence the shu6ed series from multifractals of type (ii)

will exhibit simple random behavior, hshuf (q)= 0:5, i.e., nonmultifractal scaling like in

Fig. 1(b). For multifractals of type (i), on the contrary, the original h(q) dependence is

not changed, h(q) = hshuf (q), since the multifractality is due to the probability density,

which is not aCected by the shu6ing procedure. If both kinds of multifractality are

present in a given series, the shu6ed series will show weaker multifractality than the

original one.
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Fig. 5. (a) The MF-DFA $uctuation functions Fshuf
−10(s) (open symbols) and Fshuf

10 (s) (Llled symbols) are

shown versus the scale s in a log–log plot for randomly shu6ed series of long-range correlated series

with H = 0:75 ( ), for the dyadic random cascade model with log-Poisson distribution with parameters

"=ln1; !=0:9, and �=−!4=2 (◦), and for power-law distributed random numbers xk with P(x) ∼ x−2 (�).

The correlations and the multifractality are destroyed by the shu6ing procedure for the Lrst two series, but

for the broadly distributed random numbers the multifractality remains. The dashed line has the slope H=0:5

and is shown for comparison. (b) The ratios of the MF-DFA2 $uctuation functions Fq(s) of the original

series and the MF-DFA2 $uctuation functions Fshuf
q (s) of the randomly shu6ed series are shown versus s

for the same models as in (a), correlated series (�), dyadic random cascade model (�), and power-law

distributed random numbers (+ for q=−10; × for q=+10). The deviations from the slope hcor=0 indicate

long-range correlations. Series of length N = 65536 were analyzed.

The eCect of the shu6ing procedure is illustrated in Fig. 5(a), where the MF-DFA2

$uctuation functions F shuf
−10(s) and F shuf

10 (s) are shown for shu6ed series for three of the

multifractal examples taken from the previous section. Random behavior, hshuf (q)=0:5,

is observed for the series that were long-range correlated or generated from the dyadic

random cascade model before the shu6ing procedure [upper four curves in Fig. 5(a)].

In contrast, we observe the original multifractal scaling for the shu6ed multifractal

series with power-law probability density function P(x) ∼ x−2 [lower two curves in

Fig. 5(a)]. The hshuf (q) dependences are shown in Fig. 6, which can be compared with

the corresponding slopes shown in Figs. 1(d), 3(b), and 4(b). Thus, the $uctuation
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Fig. 6. (a) The q dependence of the slopes hshuf (q) of the same models as in Fig. 5(a). The lines indicate

the theoretical values: H = 0:5 for shu6ed data with narrow distribution, and h(q) from Eq. (27) for the

series of numbers with a power-law probability density distribution. The symbols are the same as in Fig. 5.

Part (b) shows �shuf (q) = qhshuf (q)− 1.

analysis of the shu6ed series, F shuf
q (s), directly indicates the presence of type (i)

multifractality, which is due to a broad probability distribution, by deviations from

hshuf (q) = 0:5.

Now we want to determine directly the magnitude of the (ii) multifractality, which is

due to correlations. For that purpose we compare the $uctuation function for the original

series, Fq(s), with the result for the corresponding shu6ed series, F shuf
q (s). DiCerences

between these two $uctuation functions directly indicate the presence of correlations

in the original series. These diCerences can be observed best in a plot of the ratio

Fq(s)=F
shuf
q (s) versus s. Since the anomalous scaling due to a broad probability density

aCects Fq(s) and F shuf
q (s) in the same way, only multifractality due to correlations

will be observed in Fq(s)=F
shuf
q (s). This is illustrated in Fig. 5(b) for the same three

multifractal examples as in Fig. 5(a). In order not to have increased statistical errors in

the results when considering the ratio Fq(s)=F
shuf
q (s) instead of Fq(s) itself, F

shuf
q (s) can

be calculated by averaging over a large number of randomly shu6ed series generated

from the same original series.

The ratio Fq(s)=F
shuf
q (s) can also be used to eliminate systematic deviations from the

expected power-law scaling behavior that occur at very small scales s¡ 10 especially

for small values of q (see Figs. 1–3). A similar procedure has already been introduced

for the conventional DFA recently (see Section 3.1 of Ref. [4]). Since the deviations

are systematic for the MF-DFA method, they occur in both, Fq(s) and F shuf
q (s), and

they should cancel in the ratio.
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The scaling behavior of the ratio is

Fq(s)=F
shuf
q (s) ∼ sh(q)−hshuf (q) = shcor(q) : (28)

Note that h(q) = hshuf (q) + hcor(q). If only distribution multifractality [type (i)] is

present, h(q) = hshuf (q) depends on q and hcor(q) = 0. On the other hand, deviations

of hcor(q) from zero indicate the presence of correlations, and a q dependence of

hcor(q) indicates correlation multifractality [type (ii)]. If only correlation multifractality

is present, hshuf (q) = 0:5 and h(q) = 0:5 + hcor(q). If both, distribution multifractality

and correlation multifractality are present, both, hshuf (q) and hcor(q) depend on q.

4.2. Signi?cance of the results

In Figs. 1–6 we have shown the results of the MF-DFA for single conLgurations of

long time series. Now we address the signiLcance and accuracy of the MF-DFA results

for short series. How much do the numerically determined exponents h(q) vary from

one conLguration (sample series) to the next, and how close are the average values

to the theoretical values? In other words, how large are the statistical and systematical

deviations of exponents practically determined by the MF-DFA for Lnite series? These

questions are particularly important for short series, where the statistics is poor. If the

values of h(q) are determined inaccurately, the multifractal properties will be reported

inaccurately or even false conclusions on multifractal behavior might be drawn for

monofractal series.

To address the signiLcance and accuracy of the MF-DFA results we generate,

for each of the three examples considered already in Fig. 5, 100 series of length

N = 213 = 8192 and calculate h(−10); h(+10); hshuf (−10), and hshuf (+10) for each

of these series. The corresponding histograms are shown in Fig. 7. For the long-range

power-law correlated series with H = 0:75 we Lnd the following mean values and

standard deviations of the generalized Hurst exponents:

h(−10) = 0:80± 0:03; hshuf (−10) = 0:56± 0:02 ;

h(+10) = 0:72± 0:04; hshuf (+10) = 0:48± 0:02 :

The mean values for the original series are rather close to, but not identical to the the-

oretical value H =0:75. The mean value for q=−10 is about two standard deviations

larger than 0.75, while the value for q = +10 is slightly smaller. These deviations,

though, certainly cannot indicate multifractality, since we analyzed monofractal series.

Instead, they are due to the Lnite, random series, where parts of the series have slightly

larger and slightly smaller scaling exponent just by statistical $uctuations. By consid-

ering negative values of q we focus on the parts with small $uctuations, which are

usually described by a larger scaling exponent. For positive values of q we focus on

the parts with large $uctuations usually described by a smaller value of h. Thus for

short records we always expect a slight diCerence between h(−10) and h(+10) even

if the series are monofractal. If this diCerence is weak, one has to be very careful with

conclusions about multifractality. Practically it is always wise to compare with gener-

ated monofractal series with otherwise similar properties before drawing conclusions
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Fig. 7. (a) Histograms of the generalized Hurst exponents h(−10) (black bars) and hshuf (−10) (gray bars)

for 100 generated monofractal series with H =0:75. The exponents have been Ltted to MF-DFA2 $uctuation

functions in the scaling range 400¡s¡ 2000. (b) Same as (a), but for h(+10) and hshuf (+10). (c,d)

Same as (a,b), but for the dyadic random cascade model with log-Poisson distribution and parameters

"=ln1; !=0:9, and �=−!4=2. The corresponding theoretical values are h(−10)=0:743 and h(+10)=0:567

from Eq. (23) for the original series and hshuf = 0:5 for the shu6ed series. From the histogram of h(+10)

it would be hard to draw any conclusions regarding multifractality. (e,f) Same as (a,b), but for power-law

distributed random numbers with the distribution P(x) ∼ x−2. The corresponding theoretical values from

Eq. (27) are h(−10)=1 and h(+10)=0:1 for the original and the shu6ed series. The length of all series is

N = 8192. The Lgure shows that correlations and multifractality due to correlations (a–d) are eliminated by

the shu6ing procedure, while multifractality due to a broad distribution (e,f) remains. It further allows to

estimate the statistical $uctuations in the scaling exponents h(q) determined by the MF-DFA for monofractal

(a,b), correlation multifractal (c,d) and distribution multifractal (e,f) series.

regarding the multifractality of a time series. In addition to the statistical $uctuations

of the h values, the average h(−10) is usually determined slightly too large, while

h(+10) is slightly too small. The same behavior is obtained if the WTMM method is

used instead of the MF-DFA, as we will show in Section 5.3.

The same kind of diCerence is also observed for the average hshuf (−10) and

hshuf (+10) values. After all correlations have been destroyed by the shu6ing, hshuf=0:5

is expected since the probability density is Gaussian with all Lnite moments. The

deviations from hshuf = 0:5 we observe for the Lnite random series are characteristic
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for monofractal series of this length (N = 8192). Only for the second moment we

obtain hshuf (2) = 0:5 exactly if a suOcient number of series is considered.

For multifractal series generated from the dyadic random cascade model, Fig. 7(c,d)

shows the histograms of the scaling exponents h(−10); h(+10); hshuf (−10), and

hshuf (+10). Their averages and standard deviations,

h(−10) = 0:69± 0:04; hshuf (−10) = 0:57± 0:02 ;

h(+10) = 0:54± 0:02; hshuf (+10) = 0:48± 0:02

have to be compared with the theoretical values from Eq. (23), h(−10) = 0:743 and

h(+10)=0:567. Surprisingly, the mean h(−10) is smaller than the theoretical value in

this example, but for the mean h(+10) the deviation is similar to the deviation observed

for the monofractal data in the previous example. Again, similar results are obtained

with the WTMM method. For the shu6ed series, the mean generalized Hurst expo-

nents are practically identical to those for the shu6ed monofractal series [the average

hshuf (−10) is larger by half the standard deviation], and both are evidently consistent

with monofractal uncorrelated behavior, h(q)= 0:5, as discussed above. Hence, the se-

ries from the dyadic random cascade model show no signs of distribution multifractality

and are characterized by correlation multifractality only.

The histograms of the scaling exponents for our last example, the power-law dis-

tributed random numbers with P(x) ∼ x−2, are shown in Fig. 7(e,f). The corresponding

mean values and standard deviations

h(−10) = 1:24± 0:09; hshuf (−10) = 1:26± 0:09 ;

h(+10) = 0:11± 0:03; hshuf (+10) = 0:11± 0:04

show obviously no diCerences between original and shu6ed series as expected for

uncorrelated series. This indicates that the multifractality is due to the broad probability

density function only. The values have to be compared with h(−10)=1 and h(+10)=0:1

from Eq. (27). As usual, the average value of h(−10) is too large because we analyzed

short series.

5. Comparison with the WTMM method

5.1. Brief description of the WTMM method

The WTMM method [32–35] is a well-known method to investigate the multifractal

scaling properties of fractal and self-aOne objects in the presence of nonstationari-

ties. For applications, see e.g. [36–39]. It is based upon the wavelet transform with

continuous basis functions. One deLnes the wavelet-transform of a series xk of

length N by

W (n; s) =
1

s

N
∑

k=1

xk [(k − n)=s] : (29)
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Note that in this case the series xk are analyzed directly instead of the proLle Y (i)

deLned in Eq. (1). Here, the function  (x) is the analyzing wavelet and s is, as above,

the scale parameter. The wavelet is chosen orthogonal to the possible trend. If the trend

can be represented by a polynomial, a good choice for  (x) is the mth derivative of

a Gaussian,  (m)(x) = dm(e−x2=2)=dxm. This way, the transform eliminates trends up to

(m− 1)th order.

Now, instead of averaging over all values of W (n; s), one averages, within the

modulo-maxima method, only the local maxima of |W (n; s)|. First, one determines

for a given scale s, the positions ni of the local maxima of |W (n; s)| as function of n,

so that |W (ni−1; s)|¡ |W (ni ; s)|¿ |W (ni+1; s)| for i=1; : : : ; imax. Then one sums up

the qth power of these maxima,

Z(q; s) =

imax
∑

i=1

|W (ni ; s)|
q : (30)

The reason for this maxima procedure is that the absolute wavelet coeOcients |W (n; s)|
can become arbitrarily small. The analyzing wavelet  (x) must always have positive

values for some x and negative values for other x, since it has to be orthogonal to

possible constant trends. Hence there are always positive and negative terms in the

sum (29), and these terms might cancel. If that happens, |W (n; s)| can become close

to zero. Since such small terms would spoil the calculation of negative moments in

Eq. (30), they have to be eliminated by the maxima procedure. In the MF-DFA,

the calculation of the variances F2(�; s) in Eq. (2), i.e., the deviations from the

Lts, involves only positive terms under the summation. The variances cannot become

arbitrarily small, and hence no maximum procedure is required for series with compact

support.

In addition, the MF-DFA variances will always increase if the segment length s is

increased, because the Lt will always be worse for a longer segment. In the WTMM

method, in contrast, the absolute wavelet coeOcients |W (n; s)| need not increase with

increasing scale s, even if only the local maxima are considered. The values |W (n; s)|
might become smaller for increasing s since just more (positive and negative) terms

are included in the summation (29), and these might cancel even better. Thus, an

additional supremum procedure has been introduced in the WTMM method in order to

keep the dependence of Z(q; s) on s monotonous: If, for a given scale s, a maximum

at a certain position ni happens to be smaller than a maximum at n′i ≈ ni for a lower

scale s′¡s, then W (ni ; s) is replaced by W (n′i ; s
′) in Eq. (30). There is no need for

such a supremum procedure in the MF-DFA.

Often, scaling behavior is observed for Z(q; s), and scaling exponents �̂(q) can be

deLned that describe how Z(q; s) scales with s,

Z(q; s) ∼ s�̂(q) : (31)

The exponents �̂(q) characterize the multifractal properties of the series under investi-

gation, and theoretically they are identical to the �(q) deLned in Eq. (13) [32–35] and

related to h(q) in Eq. (14).
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5.2. Examples for series with nonstationarities

Since the WTMM method has been developed to analyze multifractal series with

nonstationarities, such as trends or spikes, we will compare its performance with the

performance of the MF-DFA for such nonstationary series. In Fig. 8 the MF-DFA $uc-

tuation function Fq(s) and its scaling behavior are compared with the rescaled WTMM

partition sum Z(q; s) for the binomial multifractal described in Section 3.2. To test

the detrending capability of both methods, we have added linear as well as quadratic

trends to the generated multifractal series. The trends are removed by both methods, if

a suOciently high order of detrending is employed. The deviations from the theoretical

values of the scaling exponents h(q) [given by Eq. (20)] are of similar size for the

MF-DFA and the WTMM method. Thus, the detrending capability and the accuracy

of both methods are equivalent.

We also obtain similar results for a monofractal long-range correlated series with

additional spikes (outliers) that consist of large random numbers and replace a small

fraction of the original series in randomly chosen positions. The spikes lead to mul-

tifractality on small scales s, while the series remains monofractal on large scales.

Thus, the eCects of the spikes are eliminated neither by the WTMM method nor by

the MF-DFA, but both methods again give rather equivalent results.

5.3. Signi?cance of the results

The last problem we address is a comparison of the signiLcance of the results ob-

tained by the MF-DFA and the WTMM method. The signiLcance of the MF-DFA

results has already been discussed in detail in Section 4.2. Here we will compare the

signiLcance of both methods for short and long series.

We begin with the signiLcance of the results for random series involving nei-

ther correlations nor a broad distribution [as in Fig. 1(b)]. Fig. 9 shows the dis-

tribution of the multifractal Hurst exponents h(−10) and h(+10) calculated by the

MF-DFA as well as by the WTMM using the relation h(q) = [�̂(q) + 1]=q based on

Eq. (14). Similar to the results presented in Fig. 7, we have analyzed 100 gener-

ated series of uncorrelated random numbers. In addition, we compare the results for

the (relatively short) series length N = 213 = 8192 and for N = 216 = 65532. Ide-

ally, both, h(−10) and h(+10), should be equal to the Hurst exponent of the uncor-

related monofractal series, H = 0:5. The histograms show that similar deviations as

well as remarkable $uctuations of the exponents occur for both methods, as discussed

in Section 4.2 for the MF-DFA. We Lnd the following mean values and standard

deviations,

h(−10) =



























0:55± 0:03 for MF-DFA (N = 8k)

0:52± 0:02 for MF-DFA (N = 64k)

0:58± 0:05 for WTMM (N = 8k)

0:56± 0:03 for WTMM (N = 64k)
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Fig. 8. (a) The MF-DFA2 $uctuation functions Fq(s) are shown versus the scale s in log–log plots for

the binomial multifractal model with a = 0:75 and an additional linear trend xk → xk + k=500N . (b) The

scaled WTMM partition functions [sZ(q; s)]1=q are shown for the same series and the same values of q.

The symbols are the same as for Fig. 1. (c) The q dependence of the generalized Hurst exponent h(q) for

the generated series with linear trend for the MF-DFA2 ( ) and the second order WTMM (◦) methods.

Corresponding results for a binomial multifractal with an additional quadratic trend are also included for

MF-DFA2 (�) and second order WTMM (�) methods. The quadratic trend causes deviations from the line

indicating the theoretical values [obtained from Eq. (20)], which disappear if MF-DFA3 is employed (×).

The values of h(q) have been determined by Lts to Fq(s) and Z(q; s) in the regime 50¡s¡ 2000. The

relation h(q) = [�̃(q) + 1]=q from Eq. (14) has been used to convert the exponent �̃(q) from Eq. (31) into

h(q). (d) The q dependence of �(q).
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Fig. 9. (a) Histograms of the generalized Hurst exponents h(−10) for 100 random uncorrelated series with

H = 0:5. The exponents have been Ltted to MF-DFA2 $uctuation functions F−10(s) (black bars) in the

scaling range 40¡s¡ 2000 and to WTMM results Z(−10; s) (gray bars) in the scaling range 5¡s¡ 250.

We have used these diCerent Ltting regimes, since there is a factor of approximately 8 in the ratio of the

segment sizes in WTMM and MF-DFA. The length of the series is N=8192. The relation h(q)=[�̂(q)+1]=q

from Eq. (14) has been used to convert the exponent �̂(q) from Eq. (31) into h(q). (b) Same as (a), but for

h(+10). (c,d) Same as (a,b), but for longer series (N = 65536), where statistical $uctuations are reduced.

The Lgure shows that the MF-DFA seems to give slightly more reliable results than the WTMM method for

short series and negative moments (q=−10), see (a). In the other cases, the performance of both methods

is similar.

and

h(+10) =































0:49± 0:03 for MF-DFA (N = 8k)

0:49± 0:02 for MF-DFA (N = 64k)

0:46± 0:04 for WTMM (N = 8k)

0:48± 0:02 for WTMM (N = 64k)

:

As already discussed in Section 4.2, the deviations of the average h(q) values from

H = 0:5 do not indicate multifractality. For the WTMM method and short series,

one has to be very careful in order not to draw false conclusions from results like

h(−10) = 0:58 and h(+10) = 0:46. The corresponding results of the MF-DFA are

closer to the theoretical value.

Fig. 10 shows the distribution of the multifractal scaling exponents h(−10) and

h(+10) calculated for generated multifractal series from the binomial model with a=

0:75 described in Section 3.2. Like for Fig. 9, 100 generated series have been analyzed

for each of the histograms. Now the diCerences between the distributions of h(−10)
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Fig. 10. Same as Fig. 9 for the binomial model with a=0:75. The theoretical values of the generalized Hurst

exponents are h(−10) = 1:90 and h(+10) = 0:515 according to Eq. (20). The Lgure shows that our Lndings

regarding the performance of the MF-DFA and WTMM methods for uncorrelated monofractal series in

Fig. 9 also hold for multifractal series.

and h(+10) are much larger, indicating multifractality. We Lnd

h(−10) =



















1:88± 0:06 for MF-DFA (N = 8k)

1:89± 0:03 for MF-DFA (N = 64k)

1:86± 0:05 for WTMM (N = 8k)

1:89± 0:02 for WTMM (N = 64k)

and

h(+10) =



























0:50± 0:02 for MF-DFA (N = 8k)

0:51± 0:01 for MF-DFA (N = 64k)

0:46± 0:01 for WTMM (N = 8k)

0:47± 0:01 for WTMM (N = 64k)

:

These values must be compared with the theoretical values h(−10)=1:90 and h(+10)=

0:515 from Eq. (20). Again, the MF-DFA results turn out to be slightly more signiLcant

than the WTMM results. The MF-DFA seems to have slight advantages for negative

q values and short series, but in the other cases the results of the two methods are

rather equivalent. Besides that, the main advantage of the MF-DFA method compared

with the WTMM method lies in the simplicity of the MF-DFA method.
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6. Conclusion

We have generalized the DFA, widely recognized as a method to analyze the (mono-)

fractal scaling properties of nonstationary time series. The MF-DFA method allows

a reliable multifractal characterization of multifractal nonstationary time series. The

implementation of the new method is not more diOcult than that of the conventional

DFA, since just one additional step, a q dependent averaging procedure, is required. We

have shown for stationary signals that the generalized (multifractal) scaling exponent

h(q) for series with compact support is directly related to the exponent �(q) of the

standard partition function-based multifractal formalism. Further, we have shown in

several examples that the MF-DFA method can reliably determine the multifractal

scaling behavior of the time series, similar to the WTMM method which is a more

complicated procedure for this purpose. For short series and negative moments, the

signiLcance of the results for the MF-DFA seems to be slightly better than for the

WTMM method.

Contrary to the WTMM method, the MF-DFA method as described in Section 2.1

requires series of compact support, because the averaging procedure in Eq. (4) will

only work if F2(�; s)¿ 0 for all segments �. Although most time series will fulLll

this prerequisite, it can be overcome by a modiLcation of the MF-DFA technique in

order to analyze data with fractal support: We restrict the sum in Eq. (4) to the local

maxima, i.e., to those terms F2(�; s) that are larger than the terms F2(� − 1; s) and

F2(� + 1; s) for the neighboring segments. By this restriction all terms F2(�; s) that

are zero or very close to zero will be disregarded, and series with fractal support

can be analyzed. The procedure reminds slightly of the modulus maxima procedure

in the WTMM method (see Section 5.1). There is no need, though, to employ a

continuously sliding window or to calculate the supremum over all lower scales for

the MF-DFA, since the variances F2(�; s), which are determined by the deviations

from the Lt, will always increase when the segment size s is increased. In the maxima

MF-DFA procedure the generalized Hurst exponent h(q) deLned in Eq. (5) will depend

on q and even diverge for q → 0 for monofractal series with noncompact support. Thus,

it is more appropriate to consider the scaling exponent �(q), calculating
∑

F2(�−1; s)¡F2(�; s)¿F2(�+1; s)

[F2(�; s)]q=2 ∼ s�(q) : (32)

This extended MF-DFA procedure will also be applicable for data with fractal support.

In our future work we will apply the MF-DFA method to a range of physiological

and meteorological data.
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