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We study traveling time and traveling length for tracer dispersion in two-dimensional bond percolation,
modeling flow by tracer particles driven by a pressure difference between two points separated by Euclidean
distance r. We find that the minimal traveling time tmin scales as tmin�r1.33, which is different from the scaling

of the most probable traveling time, t̃�r1.64. We also calculate the length of the path corresponding to the

minimal traveling time and find l min�r1.13 and that the most probable traveling length scales as l̃ �r1.21. We
present the relevant distribution functions and scaling relations. �S1063-651X�99�02809-3�

PACS number�s�: 47.55.Mh, 05.60.Cd, 64.60.Ak

The study of flow in porous media has many applications,
such as hydrocarbon recovery and ground-water pollution
�1–5�. Here we study an incompressible flow on two-
dimensional bond percolation clusters �6� at criticality where
fluid is injected at point A and recovered at point B separated
from point A by Euclidean distance r. At time t�0 we add a
passive tracer �7� at the injection point �8�. We investigate
the scaling properties of the distributions of traveling time,
traveling length, minimal traveling time, and the length of
the path corresponding to the minimal traveling time of the
tracer particles. We find new dynamical scaling exponents
associated with these distributions.

Our first step is to calculate the pressure difference across
each bond by solving Kirchhoff’s law, which is equivalent to
solving the Laplace equation. The velocity across a given
bond is proportional to the pressure difference across
the bond; we normalize the velocities assuming the total
flow between A and B is fixed, independent of the dis-
tance between A and B and the realization of the porous
media �9�.

We simulate the flow of tracers using a particle-launching
algorithm �PLA� �10�, where a tracer particle starting from
the injection point A travels through the medium along a path
connected to the recovery point B �11�. The probability pi j
that a tracer particle at node i selects an outgoing bond (i j)
is proportional to the velocity of flow on that bond; pi j
�vi j /�kvik , where the k summation should be taken over
all outgoing bonds, i.e., for vik�0. In this process, the time
taken to pass through the bond (i j) is inversely proportional
to the velocity of that bond, i.e., t i j�1/vi j .

We measure the distributions, P( t̃ ) and P( l̃ ), of the
traveling time t̃ and the traveling length l̃ between A and B
for 10 000 tracer particles for each realization. We sample
over 10 000 different realizations with the two points A and
B fixed. For each realization, we also find the minimal trav-
eling time and the path, which corresponds to the minimal

traveling time to obtain P(tmin) and P(l min). We run the
simulation for system size L�L where L�1000�r , and
find a well-defined region where the distributions follow the
scaling form �12�

P�x ��Ax� x

x*
� �gx

f � x

x*
� , �1�

where x denotes l min , tmin , l̃ , or t̃ . The normalization
constant is given by Ax�(x*)�1 and we find the scaling
functions to be of the form f (y)�exp(�axy

��x). The maxi-
mum of the probability is at x*. Simulation shows that x*
has a power-law dependence on the distance r,

x*�rdx. �2�

The exponents �x and dx are related by �x�1/(dx�1) �13�.
The scaling function f decreases sharply when x is smaller
than x*. The lower cutoff is due to the fact that the traveling
distance cannot be smaller than the distance r.

The path, which takes minimal time, is not always the
shortest path. However, we find that the distribution of l min
coincides with the distribution of the chemical lengths
between points separated by distance r studied in detail in
Ref. �14�.

In Figs. 1�a�, 2�a�, and 3�a�, we show the log-log plots of
distributions P(tmin), P( l̃ ), and P( t̃ ), respectively. For dif-
ferent distances r�4, 8, 16, 32, 64, and 128, we determine
the characteristic size x* as the peak of the distribution. In
Figs. 1�b�, 2�b�, and 3�b�, we plot x* versus distance r in a
double logarithmic scale and linear fitting yields the expo-
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nents dx for each distribution. In Figs. 1�c�, 2�c�, and 3�c� we
collapse the data by rescaling x by its characteristic size x*.
All distributions are consistent with the scaling form of Eq.
�1�. The measured values of scaling exponents are summa-
rized in Table I.

As shown in Fig. 2�b�, the most probable traveling length
l̃ * scales as l̃ *�rd l̃ where d l̃ �1.21�0.02. Note that d l̃

is significantly different from the minimal path exponent
dmin�1.130�0.002 �15�, while it is within the error bars of

the exponent for the optimal path in random energy land-
scapes, dopt�1.2�0.02 �16�, and the shortest path in inva-
sion percolation with trapping, dopt�1.22�0.01 �17�.

In many transport problems, the characteristic time scales
with the characteristic length with a power law, t*�(l *)z.
Since t* scales as rdt and l * scales as rd l , it is reasonable
to assume that z�dt /d l . Combining this relation, the rela-
tion tmin�l min

z , Eq. �1�, and the identities P(l min)dl min

�P(tmin)dtmin we obtain scaling relations between expo-
nents,

FIG. 1. �a� Log-log plot of the minimal traveling time distribu-
tion P(tmin) for separations r�4, 8, 16, 32, 64, and 128 between
injection and recovery points. �b� Log-log plot of the most probable
minimal traveling time versus r. A linear fit yields dtmin

�1.33
�0.05. �c� The data obtained by rescaling the minimal time with its
characteristic time tmin* �r1.33. A fit of the power-law regime gives
gtmin

�1.90�0.05.

FIG. 2. �a� Log-log plot of traveling distance distribution P( l̃ )
for r�4, 8, 16, 32, 64, and 128. �b� Log-log plot of the most prob-
able traveling length versus r. A linear fit yields d l̃ �1.21�0.02.
�c� The data obtained by rescaling the traveling length with its

characteristic length l̃ *�r1.21. A fit of the power-law regime gives
g l̃ �2.0�0.05.
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�g l min
�1 �d l min

��gtmin
�1 �dtmin

, �3�

This scaling relation is well satisfied by the set of scaling
exponents given in Table I.

Because of flow conservation, the velocity at distance r�
from point A should scale inversely proportional to the num-
ber of bonds at this distance, which scales as (r�)dB�1 where
dB is the fractal dimension of the transport backbone. Then,
the traveling time for a particle to travel the distance r is
given by

t̃*�r ���
0

r 1

v�r��
dr��rdB. �4�

Note that t̃*(r) is the most probable traveling time in our
system, so we obtain the scaling relation d t̃�dB . Thus, the
most probable traveling time is characterized by the transport
backbone dimension of the media. This result is consistent
with the homogeneous case, where dB�2. The most recently
reported value for the fractal dimension of the backbone is
dB�1.6432�0.0008 �18� for d�2, which is in agreement
with our results �Table I�.

The minimal traveling time is the sum of inverse veloci-
ties over the fastest path where as noted above the fastest
path is statistically identical to the shortest path. While the
velocity distribution has been studied extensively �19� �e.g.,
it is known to be multifractal�, because the velocities along
the path are correlated, how the minimum traveling time dis-
tribution is related to the local velocity distribution is an
open challenge for further research.
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