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Abstract

Recently it has been shown that the most e0cient strategy for searching randomly located
objects, when the sites are randomly distributed and can be revisited any number of times, leads
to a power law distribution P(‘) = ‘−� of the "ights ‘; with � = 2. We show analytically
that the incorporation of energy considerations limits the possible range for the L!evy exponent
�, however, � = 2 still emerges as the optimal foraging condition. Furthermore, we show that
the probability distribution of "ight lengths for the short and intermediate "ight length regimes
depends on the details of the system. c© 2001 Elsevier Science B.V. All rights reserved.
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The problem of searching randomly distributed sites whose exact locations are not
known a priori has applications in :elds ranging from information technology [1] to
animal foraging [2–5]. For such problems, one of the most important questions we
can ask is how to optimize the search of the target sites. It is not di0cult to see that
we generally need a mixing strategy: on the one hand the ignorance about the exact
locations of the sites demands some sort of probabilistic approach to the problem. On
the other hand, the search process itself requires speci:c rules of locomotion, leading
then also to an algorithmic (one might even say “deterministic”) dynamical procedure.
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Fig. 1. Foraging strategy: (a) If there is a target site (full square) located within a “direct vision” distance
rv, then the forager detects it with certain probability and moves on a straight line to it. (b) If the forager
does not detect a target site within a distance rv, then the forager chooses a random direction and a random
distance lj from the L!evy probability distribution, and then proceeds as explained in the text.

In animal foraging, experimental data are obtained by making histograms of the "ight
lengths of the animals during their search for food. Such histograms [5–7] show that
the foragers follow a L!evy probability distribution of long "ight (or step) lengths ‘j.
L!evy "ights are characterized by a distribution function P(‘j) ≈ ‘−�j , with 1¡�6 3
(the Gaussian is the stable distribution for �¿ 3). The possible reason why this distri-
bution is advantageous to the animals, relative to others, like the Gaussian or Poisson,
are discussed, e.g., in [8,9]. A recent study [5] has addressed, in the context of animal
foraging, the problem of identifying the most e0cient strategy for food searching. It
was found that when the target sites are sparse and can be visited any number of times,
�= 2 emerges as the optimal parameter, a result which is consistent with experiments
[8]. Conversely, if a target site can be visited only once, it was shown that the optimal
value is theoretically �→ 1.
In the present contribution we shall go a step further and show how “dynamical”

considerations can improve even more our statistical approach to L!evy "ight random
searches.
The starting point in Ref. [8] was to propose the following idealized model to

describe foraging search. Assume that target sites are distributed randomly, and the
forager behaves as follows (see Fig. 1):
(1) If there is a target site located within a ‘direct vision’ distance rv, then the

forager detects it and moves in a straight line towards the site.
(2) If there are no target sites within a distance rv, then the forager chooses a

direction at random and a distance lj from the L!evy distribution. It then incrementally
moves to the new point, constantly looking for a target site within a radius rv along
the way. If it does not detect a site, it stops after traversing the distance lj. Then, the
process starts all over again.
We now de:ne the foraging e0ciency, in a slightly diMerent way from that in

Ref. [8], as the ratio between the total energy gained in the visited sites to the total
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distance traversed by the forager. Thus we have �E(�)=〈Es〉=〈L2〉, with 〈L2〉 the average
distance traveled between two target sites, and 〈Es〉 the mean net energy gained per
site. We assume that 〈Es〉=g− r 〈L2〉, where g is the mean energy gained per site and
r is the rate at which energy is lost per unit length during the search between the two
sites. Then �E(�) = g�(�)− r, for � = 1=〈L2〉= 1=(〈l〉N ). Here 〈l〉 is the mean "ight
distance and N is the mean number of "ights taken by a L!evy forager while traveling
between two successive target sites. Due to the linear relation between �E(�) and �(�),
a value of � which maximizes � also maximizes �E . Since the � here is exactly the
one in Ref. [8], all the results derived there are also valid for �E which implies that
�=2 is also the optimal value for the energy e0ciency in the case of sparse food and
when the animal can always return to the target sites.
The advantage here, however, is that now we have an energy constraint in the

foraging process, i.e., we must impose 〈Es〉¿ 0. Thus, the constraint, which depends
on speci:c parameters of the system, for instance, g and r, becomes a fundamental
factor for the forager to choose a foraging strategy. Indeed, if the biological parameters
are such that 〈Es〉¡ 0 when �=2 then the optimal foraging strategy can no longer be
followed. An interesting example is given for amoeba by Schuster and Levandowsky
[2–4], where experimental data show � ranging from 2.0 to 2.5. In principle, the
amoeba should follow a L!evy distribution with �=2. However, since the environment of
these simple organisms can vary considerably (implying changed relevant parameters),
one may conjecture that the diMerent foraging strategies are changed from the optimal
value because of energy constraints. Obviously, more experimental work is necessary
to corroborate such a hypothesis.
We :nally mention that depending on biological factors, more complicated expres-

sions for 〈Es〉 can emerge. Richer expressions for the e0ciency, leading to diMerent
behaviors of �E as a function of �, can be used and thus force a change in the allow-
able range for the optimal value of �. This point is under investigation and will be the
subject of a future contribution [10].
A second point we want to discuss is related to short and intermediate "ight length

regimes. The two dynamical rules proposed above allow the animal to truncate its L!evy
"ight every time it :nds food along its way. Since we are most interested in the limit
of low target site (e.g., food) concentration C, then the number of "ights which are
aborted is smaller than the ones which are not. Thus, we still have a power law-like
distribution of "ight lengths but now with a small deviation from a pure L!evy case for
the long "ights. This is in fact observed experimentally as shown in Fig. 2. We treat
this problem by considering that the search for food along a single "ight is a Poisson
process. So, we expect that the distribution of "ight lengths would be modi:ed to
P(l) = f(l)=l�, with f(l) having an exponential behavior. Indeed, we show that [10]
f(l)=N(exp[−2r2vC]−exp[−2rvlC]) for l¿ rv. Here N is a normalization constant.
To test our modi:ed L!evy distribution we :t experimental data in Fig. 2 and it shows a
very good agreement. From such :ts a biologist could, for instance, estimate important
parameters, like rv and C. Our hope is that this “dynamical” approach would be helpful
in the practical study of animal foraging.
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Fig. 2. Comparison of experimental data for deer (from Ref. [11]) with our modi:ed "ight distribution. The
:tting parameters are rv = 14 and C = 0:001. We see that our expression can :t well both long and short
"ight regimes. We mention that we also obtain good :ts for bumble bees [10].

A general statistical approach for foraging leads to very general and robust results.
Here we have shown that (for a particular model) the energy constraints on the system
leave the maximum value of � = 2 for maximum e0ciency unchanged, but this max-
imum is feasible only if the systems’ parameters are such that the net energy gained
during foraging is positive. Also, we have explicitly considered the Poisson process in
searching for food along each "ight chosen by the forager from a L!evy distribution. It
leads to deviations from a pure L!evy distribution which can be measured experimen-
tally. These calculations show that in principle one can determine important parameters
for the system such as food concentration and direct vision.
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