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Mantegna et al. Reply: Reference [1] raises the question
concerning which kind of “control” sequence is the best to
test the robustness of the results found in [2], suggesting
that the most appropriate control symbolic sequence is
the “one with power-law correlations.” In [2], due to the
absence of an indisputable satisfactory control, we chose
to consider the simplest test and compared our results on
noncoding and coding DNA with the results expected for
a Bernoulli, with equal letter probability, and first-order
Markovian sequences.

Our choice is in some respects unsatisfactory, because
the DNA sequences are, of course, more complex than
first-order Markovian symbolic sequences. The choice
adapted in [1] is perhaps even more unsatisfactory for the
following reasons: The frequency rank v�R� analysis of
n-tuples and the analysis of long-range correlations are,
in general, not equivalent. Considering v�R� analysis for
power-law correlated binary strings (with equal probability
of the two digits) was the subject of a study [3] that showed
that the v�R� exponent z and the long-range correlation
exponent a provide information on quite different length
scales; in fact, a may be related to z only if the corrections-
to-scaling terms in the investigated symbolic sequences
are quite small [3]. In other words, if a is not constant
as a function of length scale �, then what is detected by
the v�R� analysis is not only some information related to
a but mostly information related to the local correlation
exponent a� where usually � � 10 (see, e.g., Fig. 4 in
Ref. [3]). In the control test performed in [1] a� � a is
implicitly imposed by the procedure used in the test, while
in real DNA sequences a� fi a when � � 10. In fact, in
actual noncoding DNA sequences power-law correlations
are not ideal: The correlation exponent measured for
length scales larger than 10 bp (base pair) differs from the
approximation for shorter length scales.

To distinguish structured biological information from
noise on a statistical basis would require a robust measure
of complexity which is still lacking; n-tuple Zipf analysis
is not a complexity analysis. Concerning the usefulness
of the n-tuple v�R� analysis discussed in Ref. [1], we note
that an approximate power-law v�R� plot is observed in
natural and formal languages, but its observation in a sym-
bolic sequence is not sufficient to prove the existence of an
underlying language. Indeed, we presented evidence [2,4]
suggesting that certain statistical properties of noncoding
eukaryotic regions better resemble these properties of nat-
ural languages than do those of the coding regions; we
never claimed that our results demonstrate the existence
of a “language” in the noncoding DNA of eukaryotes.

Next, we present a qualitative argument showing that
long-range correlations are not equivalent to a power law
v�R�. Imagine a given sequence S that has a long-
range correlations characterized by a power-law decay
with exponent a. Divide S into subsequences of n-tuples
“words” and generate a new sequence S0 by randomly
reordering the n-tuples in S. Certainly the long-range

correlations will be affected, but the v�R� plot as well
as the entropy and redundancy function will roughly
remain the same, since roughly the same n-tuples enter the
calculations. The above argument, supported by explicit
calculation (Fig. 1) confirms that long-range correlations
and v�R� analysis carry different information about the
analyzed symbolic sequences when a� is not constant.

A final reason showing that the “control” in [1] is not
conclusive is the fact that languages also display long-
range power law correlations [5] so that simultaneous
occurrence of long-range correlations and linear behavior
of an v�R� plot in noncoding, but not in coding, DNA is
not inconsistent with (but of course does not prove) the
presence of a structured language in noncoding DNA.

Reference [6] claims our results [2] arise mainly from
the difference in bp concentration between coding and
noncoding DNA. For long coding and noncoding regions,
xC � xG and xA � xT so we study the parameter xCG �
xC 1 xG . Indeed, the CG concentration produces a
strong background effect [7], but it is not sufficient to
explain our findings (Fig. 2): We have analyzed DNA
sequences using an AG�CT (purine-pyrimidine) binary

FIG. 1. Example showing, for yeast chromosome III
(315 000 bp), that long-range correlation analyses are in
general not equivalent to a power-law v�R� plot. Shown is
the original sequence before and after shuffling the order of
12-tuple binary “word”. (a) Dependence of the effective value
a� of the long-range correlation exponent a on length scale �,
(b) the v�R� plot. Shuffling “word” order destroys long-range
correlation but has a markedly smaller effect on the v�R� plot.
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rule in which the CG effect is eliminated, and find that
the n-gram redundancy R�n� for all lengthy vertebrate and
invertebrate DNA is larger for noncoding than coding.

To compensate for the CG effect, we compare v�R�
plots observed for coding and noncoding regions having
the same xCG (within a 1% tolerance) by analyzing all
the coding and noncoding regions of the set investigated
in [2] (longer than 10 3 46). Such long coding and
noncoding sequences having identical CG content and
also representing the same organism do not exist, so we
compare different organisms. In spite of this limitation,
the test might be useful. We are able to identify 15 pairs
of sequences having almost the same value of xCG; in
the majority of cases, v�R� is roughly a power law for
the noncoding regions and a logarithmic function for
the coding regions (cf. Fig. 3). We carry out a parallel
analysis for R�n�, and find that the noncoding DNA in
eukaryotes has larger R�n� than the coding for all but two
cases (the viruses VACCG and HSGEND).

Reference [8] makes several claims: (a) The first is
that, even if correct, Zipf analysis provides no useful
information about natural languages. In fact, our work
concerns the analysis of n-tuples, not traditional Zipf
analysis of words of different lengths (for which the claim
of [8] is known to be correct). The n-tuple v�R� analysis
we perform—unlike the older Zipf analysis— is a current
linguistic tool [9].

(b) Figure 1(a) of [8] is incorrectly interpreted to imply
that we did not take into account the known fact that
v�R� has a nonzero slope for a randomized control of
finite length. Finite-size effects exist, but Fig. 1(a) of
[8] shows that for the sequence lengths we analyzed, the
finite-size contributions to z are smaller than the values
of z : The top curves produce values for exponent z that
are of order 0.1 while we found typical values of z � 0.3.

FIG. 2. R�n� for C-elagans chromosome. Circles are the ac-
tual data, while lines are successive Markovian approximations.
The zero-order Markovian generates the uncorrelated sequence
with the correct CG concentration. The first-order Markovian
generates the symbol repeats suggested in [8], and clearly can-
not account for R�n� for n . 1.

Moreover, for the majority of cases, the coding is shorter
than the noncoding part, so the contribution from the
finite-size effect would lead to spuriously larger values
for coding DNA—the opposite of what is found [2,4].

(c) Figure 1(b) of [8] considers the effect of nonuni-
form bp concentrations, a known feature of both coding
and noncoding DNA. The magnitude of this effect is
misrepresented (the values 0.6, 0.25, 0.10, and 0.05 dif-
fer greatly from the known nonuniformity [7]).

(d) Figure 1(c) of [8] is incorrectly interpreted to imply
that trivial local correlations in noncoding DNA may
explain the v�R� behavior of [2]. The trivial correlations
used in [8] imply a probability distribution of simple
repeats of n identical bp’s decaying exponentially with
n, but in all sufficiently long sequences we studied, we
find such exponential distributions only in coding regions,
while in noncoding regions the length distribution of
repeats is better approximated by a power law (with
exponent m . 3) than by an exponential (cf. Fig. 4) [10].
Moreover, the process suggested in [8] is in fact a first-
order Markov process, but Fig. 2 clearly shows that finite-
order Markov processes cannot explain the R�n� behavior
reported in [2].

(e) Figure 2(f) of [8] gives the impression that the differ-
ences in v�R� plots for coding and noncoding sequences
for lengthy primates is negligible. The observation that
this difference is small was shown in Table I of [2].
Important is not only the slope of the power-law approxi-
mation but also the functional form of the coding and non-
coding regions, which cannot be seen on the scale of Fig. 2
of [8]; we found that coding DNA is better fit by a loga-
rithmic function than by a power law [4]. Incorrectly in-
terpreted is Fig. 2(e) of [8], which concerns the longest
human sequence HUMTCRB (unavailable when [2] was
written): While the noncoding DNA lies below the coding
DNA on a v�R� plot, what is relevant is not the absolute

FIG. 3. Comparison of the noncoding regions of HUMH-
PRTB �L � 56080, xCG � 0.403� and the coding regions of
SCCHRIII �L � 211091, xCG � 0.405�. v�R� is logarithmic
for coding regions and power law for noncoding regions. The
inset shows that R�n� is larger for the noncoding regions.
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FIG. 4. Frequency of repetitions of n identical bp’s in the four
yeast chromosomes III, VI, IX, and XI. Coding data ��� follow
an exponential distribution, while noncoding data ��� follow a
power law—in disagreement with the arguments of [8].

value but rather the functional form. We find that the cod-
ing data are less linear on a log-log plot (Fig. 5).

(f) Figure 2(g) of [8] shows that for bacteria the
difference between coding and noncoding—although it
does clearly exist—is small. However, for bacteria the
noncoding regions are short [11] and have different
biological functions, which is why, in our studies [2,4], we
limited ourselves to the noncoding regions of eukaryotes.

(g) In general, Fig. 2 of [8] is interpreted to demonstrate
that the differences between noncoding and coding DNA
vanish when the entire GenBank database is analyzed.
The GenBank is not an unbiased sample; e.g., multiple
copies of DNA sequences from the same gene (either
representing different clones or different organisms) are
present in it [12]. Indiscriminate use of the GenBank
does not increase the robustness of one’s analysis and
may, in fact, lead to erroneous conclusions. The set
of sequences of the GenBank database is an artificially
redundant set for which a reliable frequency analysis of
n-tuples cannot be performed. Moreover, the longest

FIG. 5. v�R� plot for the longest sequence studied in [8].
Note that over the range 10 , R , 1000, the noncoding
regions ��� are well fit by a power law �R � 0.99�, but the
coding regions ��� cannot be �R � 0.96�. This difference in
scaling behavior is consistent with the analysis in Ref. [4].

mammalian sequences analyzed in [2,4,8] are probably
not typical mammalian sequences selected at random—
usually they represent regions that contain multiple copies
of genes in a family of closely related genes (as in the
case of HUMTCRB) [12]. The natural redundancy of
the particular sequences chosen could be significantly
different from that of typical randomly chosen sequences
of the mammalian genome. For this reason, we chose to
analyze complete chromosome sequences (yeast III, XI)
as well as the 2.2 Mb sequence from C. elegans. As
more complete chromosomal sequences become available,
the entire question of whether there is a genuine difference
in v�R� and R�n� for coding and noncoding DNA will be
resolved.
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