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We study the mean first-passage time (MFPT) for random walks on the backbone of loopless ag-
gregates. We derive an exact expression for the MFPT on a general aggregate model. The exact
MPFPT for several deterministic and random disordered structures is calculated. We find that, in
general, the exponent 7(1) describing the asymptotic dependence of the MFPT on the linear size of
the system for diffusion is 7(1)=1+d,, where d is the fractal dimension of the aggregate.

I. INTRODUCTION

Diffusion properties on fractals and random aggregates
have recently been studied very extensively (see, e.g., the
review articles Refs. 1 and 2). An important quantity
that characterizes the diffusion is the mean first-passage
time (MFPT) of a random walker to reach a given sur-
face. The MFPT for random walks on one-dimensional
lattices has received considerable attention in a variety of
approaches (see, e.g., Refs. 3 and 4). In the present work
we study the MFPT along the backbone of a loopless ag-
gregate. We consider models where along the backbone
of the aggregate barriers, traps or dangling ends are dis-
tributed.. Recently, an approach for solving the first-
passage problem for a general network has been con-
sidered.’> This approach has the advantage that it de-
scribes all possible characteristics of the dynamics of the
network as a function of its components. However, it
leads to complicated calculations even for simple struc-
tures. In the present work we suggest a simple approach
to obtain the MFPT for a certain family of loopless struc-
tures.

In Sec. II we obtain a general relation for the MFPT,
by reducing an aggregate problem to a one-dimensional
problem. We show that the results are consistent with a
combinatorial approach.

In Secs. III and IV we apply the relations obtained in
Sec. II to various structures. In Sec. III, we examine the
one-dimensional hopping model for two different sym-
metries (barriers and traps). We derive general results for
the MFPT in this model, and calculate the MFPT for a
deterministic hierarchical hopping model. We show that
this model exhibits the same anomalous behavior as the
typical MFPT of a random hopping model with a diverg-
ing average waiting time.

In Sec. IV we calculate the MFPT for the hierarchical
comb and tree models. We discuss the MFPT for self-
similar trees. A brief summary is presented in Sec. V.

II. CALCULATION OF THE MFPT

Consider a structure consisting of a backbone to which
substructures are connected (see, e.g., Figs. 3 and 5). A
walker can travel along the backbone and on the dangling
structures. The dynamics is governed by a set of single-
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step transition probabilities from each site to each of its
neighboring sites, subject to the condition that the sum of
the transition probabilities from any site is less than or
equal to 1. The backbone is a one-dimensional lattice on
the interval [1,L +1]. We set a reflecting boundary at
x =1 and wish to calculate the average time for a walker
to reach the site L +1 for the first time. This is
equivalent to placing an absorbing boundary or trap at
site L +1 and calculating the average time to be trapped.
(We have chosen the interval [1,L +1] instead of the
more conventional [0,L] for convenience in calculations,
but since the length of the system is L in both cases we
shall denote mean values by S; and T,.) The structures
attached to the backbone are finite (otherwise the MFPT
is infinite) and are attached to the backbone at a single
site, so that no loops are created on the backbone. This
will enable us to decimate the dangling structures and as-
sociate a waiting time to each site on the backbone.

A. Definition of parameters for a single site

We define e;(t) to be the probability of a walker that
begins at ¢t =0 at site i to hop to one of its neighbors for
the first time at time ¢. By assuming no loops on the
backbone, and the fact that any structure attached to this
site is finite we can ensure that eventually the walker
must exit this site. Using e;(¢) we can calculate the mean
waiting time at site i, 7, = 3§’ te;(¢). Let us define p; (and
g;) as the conditional probabilities to leave site i to the
right (or left) after waiting at this position. These proba-
bilities are related to the single-step transition probabili-
ties p; and g; to the right and left, respectively, by

Pi __ 4
pit+q;
The probabilities p; and g; obey p; +¢q; =1, and from here

on they will be referred to as the normalized transition
probabilities.

pi= (1)

pi+a’

B. MFPT for a site adjacent to the trap

We shall now proceed to calculate a recursive relation
for the MFPT of a walker initially placed at site x =L,
that is adjacent to the absorbing boundary (see Fig. 1).
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FIG. 1. A walker adjacent to the trap. The walker begins at
time ¢t =0 at site L. At the right of the segment there is a trap
(T) and at the left there is a reflecting boundary (R): g, =0.
We wish to calculate the mean time for the walker to be
trapped.

Define Q; (¢) as the probability to be trapped at time ¢ for
the above initial condition. If we see the structure of
length L as composed of a structure of length L —1 that
is concatenated to a single site, we can write the following
relation:

t t—T
+tqr X e(n) X O (7Q (e —7—=7") . (2)
=1 7=1

Relation (2) sums over all possible routes for trapping at
time . Writing the same equation for the generating
functions®~° @, (z) and &, (z), we obtain

A e (z)
0, ()= LEPL . 3)
1—q,2,(2)Qp _(2)

If we define S; as the MFPT for a walker initially adja-
cent to the trap, then by differentiation of Eq. (3) with
respect to z and setting z = 1, one obtains a recursive rela-
tion for the MFPT:

s,=s, +1. . @)
PL PL

Reapplying the recursion relation and using the fact that
Sl :Tl yle]ds
L

+§l—’II

ZPI n=i+1

9
Pn

L= T1 H (5)

n=2 n

Note that Eq. (5) is a generalization of the known expres-
sion for the MFPT on a linear chain.>*

C. MFPT for a site at distance L from the trap

We now calculate the MFPT for a walker initially
placed at x =1 (see Fig. 2). We label P, (?) as the proba-
bility to be trapped at time ¢, and T, as the MFPT for

I TTT]

>0,

FIG. 2. A walker located a distance L from the trap. The
walker begins at time ¢t =0 at site 1. At the right of the segment
there is a trap (7) and at the left there is a reflecting boundary
(R):g,=0. We wish to calculate the mean time for the walker
to be trapped.
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this initial condition. In order to be trapped the walker
must first reach site x =L — 1, but from there on one re-
turns to the previous problem of a walker adjacent to the
trap. Thus,

t
H=3 P, _(1Q,(t—) . 6)
T7=1

After transformation to the corresponding generating
functions Eq. (6) becomes

P, (z) )0, (2) . (7)

As before, differentiating and setting z =1 gives

=P, _\(z

T,=T, ,+S, . ®)

Applying this recursion relation and taking into account
that T, =S, it follows that

L

=3 S,. (8"
n=1

Taking the sum in Eq. (8’) only from x to L gives T},

which is the MFPT for a walker placed initially at site x.

An interesting observation is that the MFPT from a site

adjacent to the trap is the derivative with respect to L of

the MFPT from a site at distance L from the trap.

If the normalized transition probabilities along the
backbone are constants (p, =p,q, =¢q), then one can dis-
tinguish between two cases: (a) Diffusion along the back-
bone (p =g =1) and (b) bias along the backbone (p7#q).
For the case (a) Eq. (5) is reduced to

L
S,=n+23> 7,
i=2

L=22. 9)

Using Eqgs. (8") and (9) it follows that
L

2 T.—2 3 nt, . (10)

n=1 n=1

T,=—Lr,+2(L+1)

For case (b) we obtain in a similar manner

L L
7,=—2 14| 1]+ 5,
p—q||p p—q, ="
L+1 n
L
+—L |2 |4 (1
pP—q |p e

When p <g the bias is directed against the trap, the
MFPT is dominated by the first term in (11), and the
dependence on L is exponential. When p > ¢ expressions
(10) and (11) are similar. The first term comes from the
fact that site x =1 is blocked in one direction and is
negligible for large L. The second term is a function of
the size of the system and of its components, but is in-
dependent on the internal order of the structure. The
third represents the dependence on the internal order. In
an ordered system where 7,=7, we obtain the well-
known results for normal diffusion

T, (v=0)=L’r, (12a)

(12b)
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where v =p —q. Before applying the above results [Egs.
(10) and (11)] for particular cases, it should be noted that
it is possible to derive these results using a combinatorial
method. Since trapping probabilities for FPT problems
are in convolution form it is possible to write a set of
self-consistent equations for the MFPT’s from each site.
Solution of this set of equations is equivalent to the fol-
lowing combinatorial approach:

T,=p. 3 qilT, +r +n(r, +T, +T, 5)].
n=0

(13)

Equation (13) describes the dynamics of exiting a struc-
ture of size L —1 and returning n times to that structure
before being trapped. Calculating the above sum [Eq.
(13)] one derives the following equation:

q
T, T =Ty~ Ty )t~ (14
PL pr

Defining S; =T, —T; _, we obtain Eq. (4).

III. MFPT FOR ONE-DIMENSIONAL HOPPING
MODELS

In this chapter we begin by studying a general one-
dimensional hopping model for two different symmetries
(barriers and wells which behave as temporary traps).
Later, we calculate the MFPT for both models in a par-
ticular case where the hopping probabilities are given by
a hierarchical model.'” We also consider the case where
the hopping probabilities are random variables with the
same distribution as the hierarchical model.

In the one-dimensional hopping lattice model each site
is associated with hopping probabilities g,, to the left,
and p,, to the right. The probability to remain at the
same site is 1 —p, —g, and the mean waiting time at site i
is therefore

T, = S — . (15)
P, t4,

The well model is defined by the symmetry condition
P.=7,. Due to the above symmetry, Eq. (5) becomes

L Th
S;=n+3 — . (16)
n=2 Py
Using Eqgs. (1) and (15) and the fact that 7,=1/p,; we ob-

tain

(17)

M=

™ [

S, =

n=1

Note that in contrast to the expressions in the previous
chapter, the transition probabilities p, are the single-step
transition probabilities and not the normalized ones.
Equation (17) shows some interesting properties of the
one-dimensional wells model. A walker adjacent to the
trap is able to ‘“‘see” all the wells, but their internal order-
ing is of no importance. In a random well model the dis-
tribution of the transition probabilities and not their or-
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der will define the dynamical behavior. This is similar to
the Zwanzig result for the diffusion constant,?
D '=1/L $1/p,. Thus Eq. (17) can be written as
S, =D 'L. Using Egs. (17) and (8) one can calculate T,

L 1 L n
I,=(L+1) Yy —— 3> —. (18)
n=1Pn n=1 Py
The barrier model is defined by the symmetry condi-
tion p, =¢, - Using Egs. (1), (5), and (15) one obtains

Pr
This result is surprising when compared to the well mod-
el. A walker adjacent to the trap “sees’ an ordered struc-
ture composed of L barriers of the same height as the
barrier adjacent to the trap. From Egs. (19) and (8’) fol-
lows

(20)

M

IR

T, =

n=1

We now consider the MFPT on the hierarchical model
introduced by Huberman and Kerszberg.” This model
has been studied by several authors’ ™ !! and is shown in
Fig. 3. The hopping probabilities are proportional to the
inverse of the length of the teeth at each site. The lengths
of the teeth /, are given by the following equations:

I,=R* 1<R<w
1)
n(mod2k*1)=2% k>0.

We proceed to calculate the MFPT for the hierachical
wells and barriers. In the Appendix we have calculated
the sums appearing in Egs. (18) and (20) as a function of
the generation of the structure. The Qth generation of
the hierarchical structure is of length 2¢*t1—1, so that
the following expressions for the MFPT will be for these
lengths only.

R3

R2

barriers | 2 3 4 8 16
traps | 2 3 4 8 15

FIG. 3. The hierarchical structure. The lengths of the teeth
are governed by Eq. (21). These lengths describe hopping prob-
abilities for the hierarchical barrier and well models or lengths
of dangling ends that a walker can walk on them in the
hierarchical comb. For the barrier model the sites are defined
between the teeth. For the well and comb models sites are
defined at the bottom of the teeth.
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For the case of hierarchical wells, we use Eqgs. (18),
(A4), and (A7) to obtain an exact expression for the
MFPT,

. log,R
r,=-L+@+nETDRETD — gy

Two different asymptotic behaviors are seen. For L —
we have

2
sz}z) «L? R<2
T, =~ (23)
L (L +1)1+log2R o:LlHong R>7 .
R -2 ’

We define the exponent 7(1) by the relation T o L™,
The index (1) stands for the first moment of the FPT.
Below the critical value R <R,=2 we have normal
diffusive behavior with 7(1)=2. Above the critical value
we have anomalous behavior with 7(1)=1+log,R. This
transition in the dynamics is similar to that exhibited by
the mean-square displacement.w* T 1n fact, we find that
7(1) is equal to the diffusion exponent d,,, both above and
below R,. The diffusion exponent d, is defined by
(x?)y <t where (x?) is the mean-square displace-
ment of the walker after ¢ steps.

For the case of hierarchical barriers one must normal-
ize the hopping probabilities so that p,+g, will not
exceed unity. We therefore write 5, =R ~*/ 4. The con-
stant 4 will only change the time scale as can easily be
seen by examining the master equation governing the dy-
namics. Using Egs. (20) and (A7) we derive the MFPT,

L+1L+1)—(L+1)%F

2—R

In Eq. (24) it is seen how the normalization of the hop-
ping probabilities is reflected in the factor that multiplies
the MFPT. For large enough systems (L >>1) the bar-
rier model exhibits the same phase transition exhibited in
the well model. That is,

2, R<2
~ |1+log,R, R>2.

T,=A4

(24)

7(1) (25)

Until now we have discussed only deterministic mod-
els. When the hopping probabilities are random vari-
ables, with a probability distribution p(p), one must take
an ensemble average over all the possible configurations.
If (1/p)=D_,' converges, the solution is simple. This is
exactly case (a) solved by Alexander et al.'? yielding nor-
mal diffusion. For this case the ensemble averages over
Egs. (18) and (20) yield the same result,

_L(L+1)

D (26)

(T.)
av

When the above inverse hopping probability average
diverges one finds anomalous diffusion.'> For this case
the divergence of the average waiting time gives rise to an
infinite average MFPT. Since the first passage problem
deals with a finite system, the typical FPT on such a sys-
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tem will not diverge. One has to take into account a
cutoff in the transition probabilities, i.e., a minimum
transition rate p_;., which represents the MFPT for a
typical configuration.

Similar to the case of the mean-square displacement on
the infinite lattice, here also, the appearance of anoma-
lous behavior is due only to the distribution of the transi-
tion probabilities or waiting times, and is not a charac-
teristic of their internal ordering.” The transition proba-
bility distribution in the hierarchical model is’
¢(p)=p ¥ where y =In2/InR [the analog for continuous
lengths is p(p)=(1—a)p~* where a=1—In2/InR].
This distribution coincides with case (c) solved by Alex-
ander et al. for R >2. As previously stated, in order to
calculate the typical FPT we must take into account an
appropriate cutoff. The cutoff is taken to be the max-
imum tooth in a Qth generation of the hierarchical mod-
el.!' We therefore find

0 _ _ —1+log,R
<é>=% S RARM =1L ;”_”R .
n=0

Thus, the average MFPT is
L (L+1)—(L+1)°%"

T =
(1) 5 SR (28)
If we define 7,,,(1) by (T, ) <L "op'" for large L then
2, R=2
Tupel D= 114 10g,R, R>2, (29)

which is identical to the exponent (1) for the determinis-
tic model.
IV. MFPT FOR COMBS AND TREES

In this chapter we deal with models that have dangling
structures attached to the backbone on which particles
can walk. We begin by describing the general method to
calculate the MFPT for such models. We then proceed
to calculate the MFPT for two examples: the hierarchi-
cal comb and the hierarchical tree. The expressions de-
rived are in agreement with previous results for the
MFPT asymptotic dependence on the size of the sys-
tem. 1315

Figure 4 shows an arbitrary structure attached to the

~ —
aj Pi

FIG. 4. A dangling structure attached to site i. There is a
probability 7; to enter the structure. The mean duration of this
sojourn is S;. The mean waiting time at site i as a function of S;
and 7; is given by Eq. (30).
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backbone at site i. Site i has single-step hopping proba-
bilities governing the motion to the right, p; left, ¢;, and
up onto the attached structure, 7;. (It is possible to define
a probability to remain at site i.) We wish to express the
mean waiting time at site /, 7;, as a function of 7; and of
the waiting time on the attached structure once it is en-
tered. This is exactly the MFPT of this structure when
the walker is adjacent to the trap. Let us depict this
value by S;. We can write, using a combinatorial ap-
proach the following expression for 7;:

© ?i
=(1=7) S FI1+n(S;+D]=1+——(S,+1) .

] P
n=0 1—7

(30)

The most simple structure to build is a comb structure.
In this model a tooth of length /; is attached to site i of
the backbone. In the length /; we include the site on the
backbone, so the structure attached is, in fact, of length
I;—1. Using the fact that for a one-dimensional chain
S;=2L —1 and setting 7=1 (all directions are equal),
Eq. (30) gives a result convenient for use: 7,=/;. The fol-
lowing results are based on the assumption that 7=1, but
can easily be generalized for any value of 7. Moreover,
the asymptotic dependence on the linear size of the sys-
tem is independent on 7. We now proceed to calculate
the MFPT for a deterministic hierarchical comb struc-
ture (see Fig. 3), in which the lengths of the teeth are
governed by Eq. (21). Since the average waiting time 7; is
exactly the same as in the hierarchical trap model, then
for the case of diffusion along the backbone (F=g=1)
the MFPT for the hierarchical comb is exactly the ex-
pression derived above for the MFPT of the hierarchical
well model:

_ log,R
T,=—L+@+nEtD-EL+D — (31)
2—R
For the case of bias along the backbone (p7¢q) we can
calculate the MFPT using Egs. (11), (A4), and (A9),

L log,R
r—_4 | _ |4 L LH+D=L+D
L p—q||p p—q 2—R
L+1 L+1
__1 |g 1— |2
p—q |p q
0 2k 2k+17 -1
X 3 R* 1;— 1— % (32)
k=0

When p > q and for large systems L >>1, then according
to Eq. (A10) the last term in Eq. (32) converges to a con-
stant and we are able to write

log,R
) 2

T ~ 1 (L+1)—(L+1
L= P—q 2—R
The asymptotic dependence of T, on the length of the
system, described by 7(1) is, of course, equivalent to that
of the hierarchical well model [Eq. (23)]. This asymptotic
result remains valid for the typical FPT on a random
comb model with the same length distribution. This can

(33)

6577

be shown following the same reasoning applied for the
random well model. The equivalence of the comb and
well models is restricted to the MFPT only. Other mo-
ments of the first passage time will be different in value
and asymptotic behavior as a function of the size of the
system. This is due to the fact that the trapping probabil-
ities P; (¢) are different in the two models. Moreover, 7(1)
for the comb model is different from the diffusion ex-
ponent d,, as stated elsewhere.!>1*

As a last example we consider the hierarchical tree (see
Fig. 5). This structure is self-similar in all length scales.
A tree of order Q is composed of trees of lower order
dangling from the backbone. We consider a tree of coor-
dinate number z =3 where all directions are equal, that
is, hopping probabilities in all directions are . Let us
consider the average waiting time at a site that has a tree
of order Q attached to it. According to Eq. (30) this

value is
AO=31415(0 (34)

where S'? is the MFPT for the walker initially adjacent
to the trap in a tree of order Q. Using Eq. (5) and taking
into account the recursive structure of the tree we find

L
§5Q=2 3 r,—7=28C V—r +2(3+15@°")

n=1
=350 V—7 +3 . (35)

Applying the recursion with the fact that /=1 and
7,=1 we obtain

§@=2x39-1,
r@=32+1 .

(36a)
(36b)

From here on one can calculate 7, from Eq. (10), using a
technique similar to that shown in the Appendix. for the
hierarchical comb. The result is

Ty =—3L +3L" 20" (37)

For large systems (L >>1) we find the asymptotic depen-
dence on the length is described by 7(1)=log,6.
We can generalize Eq. (37) for an arbitrary fractal tree

e
1‘1: I—f :_ l—l} IA’I

FIG. 5. The hierarchical tree. This is a loopless fractal of
coordinate number z =3. (a) A tree of order Q =4 embedded
on a square lattice. (b) A tree of order Q =3 imbedded on a
binary tree.
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of coordinate number z (see, e.g., Fig. 6). If all directions
on this tree are equal (the hopping transition probability
is (z —2)/z), then the MFPT obtained is

1+log,z log,z

T,=—3iL+3L +2L (38)
The fractal dimension of the tree is d,=log,z, so the
asymptotic dependence of the MFPT on the length is
7(1)=1+log,z =1+d,. This is probably true not only
for deterministic fractal trees, but for random ones as

well (see, e.g., Ref. 2).

V. SUMMARY

A general method to calculate the MFPT for deter-
ministic loopless structures has been presented. Exact ex-
pressions have been derived for several models including
combs and trees. For random structures we have calcu-
lated the typical FPT by taking the appropriate cutoff.
In both cases we can associate the waiting time at a site
with a “mass” (this is the real mass in the comb structure
or the depth of a well in the well model). The average
mass along a segment of length L behaves as M ~L"/
where d; is the fractal dimension.'® The average waiting
time per site is, therefore

T=%~Ldf_l. (39)

Thus using Egs. (10) and (11) we can write for diffusion
with or without bias along the backbone

1+d
L

TL o« Ldf

v

v=0
(40)

, v=p—q>0, L>1.

This result is consistent with the asymptotic behavior ob-
tained for the MFPT in the preceeding chapters.

Note added. After this work was completed, we
learned of complementary results derived by Murthy and
Kehr (unpublished) for MFPT on one dimensional hop-
ping models.
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(a) )

FIG. 6. A fractal of coordinate number z =4 embedded (a)
on a square lattice (b) on a Cayley tree lattice. Fractals of
higher coordination numbers can be embedded only in higher
dimensions or on a Cayley tree.

OFER MATAN AND SHLOMO HAVLIN

18

APPENDIX: CALCULATIONS FOR THE
HIERARCHICAL STRUCTURE

Here we calculate a few quantities needed for the cal-
culation of the MFPT on hierarchical structures (see Fig.
3). We calculate these values as a function of the genera-
tion Q of the hierarchical structure. In the Qth genera-
tion the highest tooth is of length RS. The number of
teeth in structure of order Q is

L =20+ 1. (A1)
The tooth length at site n is given by
1,=Rk,
(A2)

n mod2* T1=2F

We are interested in calculating the value of three expres-
sions that appear in Egs. (10) and (11):

Instead of summing over the positions # it is more con-
venient to sum over teeth of the same size, RX. There-
fore,

M=
Mo

—

1 K=0

n

Since the number of teeth of length R X is 22 7K, we write

K
L Q 0 Q+1_pQ+1
>SL=3 20— KpK—=90 > R| 22" —R""
n=1 K =0 K=0 2 2—R
(A3)

We find that value (a) is

L L+1)—(L+1)*"

> g, =" )2(_R D (Ad)

n=1

In order to calculate the sum (b), we first must calculate
the sum of the positions of teeth of length RX. From Eq.
(A2) these positions are

2K m2K+t (m=0,1,...,229°K—1).

The sum of the positions is
20Ky
> 2K+ maKt1=2K20"K 40020 K —1)=220"K

m=0

(AS)
The sum (b) is therefore
L 1) L
S nl,=3 220 KREk=22% | . (A6)
n=1 K=0 n=1
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Using Eq. (A3) we find

Lo L+1(L+D)—(L+1)""

2—R

(A7)

Before calculating the sum (c), we first sum terms of teeth
of length RX

20 Ky K K+1 I(I—QZQ+1
2 RKa(Z +m2 ):RKa2 - e
m=0

e A9
—a

The sum for the whole structure is therefore

K
RK__aZ

L Q
> La"=(1—alt*) ¥ KT - (A9)

n=1 K=0 l—a

For large systems (Q — o ) the sum in Eq. (A9) converges
to a constant that does not depend on Q:

L
S lLa"—>A(1—alt™), L>1.

n=1

(A10)
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