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We study the asymptotic shape of self-avoiding random wé&l&W) on the backbone of the incipient
percolation cluster ird-dimensional lattices analytically. It is generally accepted that the configurational av-
eraged probability distribution functiafPg(r,N)) for the end-to-end distaneeof anN step SAW behaves as
a power law forr —0. In this work, we determine the corresponding exponent using scaling arguments, and
show that our suggested “generalized des Cloizeaux” expression for the exponent is in excellent agreement
with exact enumeration results in two and three dimensions.
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Linear polymers have a broad spectrum of applications in
such different fields as biology, chemistry, and physics, see, (Pg(r,N))= 5
e.g.,[1-3], and theoretical work has been extensively docu- N7
mented in the literaturg4—6]. More recently, strong interest
has been drawn to the effects that environmental disorder = . . . oo dBo1
may have on the configurational properties of such lineatVhich |sBr_10rmaI|zed according thodr r ~(Pg(r,N)) =1,
Structures[?_g]_ As a paradigmatic mode| Of |inear po'y_ Wheredf IS the fraCtal d|mens|0n Of the backbone. The Scal'
mers, self-avoiding random walkKSAW) have captured the ing function f,(x) behaves asﬁr(x)~x9r1, for x<1, and in
attention of researchers for decades and are currently extethis limit Eq. (1) becomes
sively studied[4—6]. Structural disorder is generally mod-
eled by percolatiorf10,11], and interesting effects are ex-
pected at the percolation thresh¢&l. Since asymptotically
long SAW can only exist on the backbone of the cluster, in (Pg(r,N))~
which all dangling ends have been eliminated, one may
study SAW directly on the backbone. For relatively short
chains, one may still expect that the statistical properties ofvhereg} is the scaling exponent to which we draw our at-
SAW do not depend on whether they are studied on théention here. In/ space, the PDF obey$Pg(/,N))
:Jaclilbc;r}e”alone or 03 thtetrcw:.orres.ptonfdir?g perc;olattign g[:\s/\t/eg N—y/dEf/(//Ny/) and is normalized according to
n what follows, we adopt this point of view and study ot qB_ . . B . . .
directly on the backbone of the cluster. fod/_/d/ 1<PB(/'N)>:1’_ with d, Ee'n% the fractal di-
On percolation clusters, one can distinguish between twé"ension of the backbone ifi spaced, =d/dpn. The cor-
different metrics, the usual Pythagorian oner-@pace met- fesponding exponent in the case<N"” is denoted byg;
ric, and the topological one, of-space metric, which have and is related t@} by gi =gi/dp, (see, e.g.[15,16). The
been extensively discussed in the literafure—13. The cor-  interest in studying the PDEPg(~,N)) is because fluctua-
responding length scales are related/byrfmin whered,,,,,  tions are definitely smaller in” space than i space, and

f.(rIN") for N>1, (1)

ro|\%
for r<N', (2)

B
NZrde \ N7

is the fractal dimension of the shortest path]. more accurate results fgr; can be derived by determining
The scaling behavior of SAW is characterized by thegf and afterwards using the relatiq’i=g{dmin.
mean end-to-end distance afférsteps. On structurally dis- In the case of regular Iatticesgf=gr1=gl), des

ordered systems such as percolation qlusters, two types @floizeaux [17] showed thatg;=(y—1)/vg, where vg
averages need to be performed. One first averages over agg/(dJrz) is the Flory exponenit18] and y describes the

SAW configurations of steps on a single backbone starting tota| numberC,, of SAW configurations oN steps,
from the same origin as obtained, e.g., by exact enumeration

techniqueg 14], followed by a configurational average over Ny 1

many backbones. Inspace, the former average is denoted as Cn=un N7 for N>1, ®)

r(N), and the second one Ky?(N))~N2"r, which defines

the exponentv,. Correspondingly, in/" space one has whereu is the effective coordination number of the lattice

(7(N)>~N”/, wherev, = v, dy,. (see, e.g.[6]). Numerical results for SAW on the backbone
More generally, one is interested in the configurationalof percolation clusters at criticality in two dimensions seem

averaged probability distribution functiofPDP for the  to be roughly consistent with the forgi=(y;—1)/v, [15],

end-to—end distance on the backboner-Bpace, it is de- wherevy, is the corresponding enhancement exponent on the

noted agPg(r,N)), and is expected to obey the scaling form backbone. More recent results in three dimensi¢h6]
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TABLE I. Critical exponents and fractal dimensions for the in-  TABLE Il. Results for SAW on the backbone of critical perco-
cipient percolation cluster, for spatial dimensiahs 2, 3, andd lation clusters(from Ref.[16]). Note that the value og{ slightly
=6, from (a) exact results Ref.21], (b) Monte Carlo simulations  differs from the value given in Ref16], as we determined it more
Ref.[22], (c) exact results Ref.23], (d) Refs.[10,11], (¢) Monte  accurately here by plottingN*¢)d*(Pg(~,N)), as shown in Figs.
Carlo simulations Ref.24], (f) Monte Carlo simulations Ref25], 1(b) and Xd). The last line displays the present theoretical results
(g) Monte Carlo simulations Ref13], (h) Monte Carlo simulations  from the generalized des Cloizeaux relatmgn=(y,—1)/v,+ Bl v,
Ref.[12], and(i) the relationd®=d?/d ;,. Here,d;=d— B/visthe  Eq. (8).
fractal dimension of percolation clusters.

d=2 d=3 d=6
d=2 d=3 d=6
v, 0.787-0.010 0.662-0.006  1/2
B 5/36(a) 0.41%0.003(b) 1(c) 1 1.34+0.05 1.29-0.05 1
v 4/3(a) 0.87530.008(b) 1/2(c) g} 0.56+0.10 0.90-0.10 2
ds 91/48(a) 2.524 0.008(b) 4(d) af 0.49+0.05 0.67-0.05 1
df 1.6432+-0.0008(e) 1.8%0.03(f) 2(d) 9= 0% dmin 0.55+0.06 0.92-0.08 2
Aimin 1.1306+0.0003(g)  1.3740.004(h) 2(d) g} (present conjectuje  0.54+0.07  0.916:0.080 2
d® 1.446+ 0.001(i) 1.36-0.02(f) 1(d)

ter, P... Near the percolation threshofi} , P., behaves as a

clearly disprove this relation, so the question remaingynction of the concentratiop (=p.) of occupied sites as
whether a generalization of the des Cloizeaux expression Cg10,11

still provide an accurate framework for estimating the expo-
nentg} analytically. The goal of the present paper is to pro- a
vide such a generalization of the des Cloizeaux relation valid P~ (p—po)f~¢ 77, (6)
in all dimensions.

To this end, we follow de Gennéd] and study the prob- \yhere the correlation lengtt, diverging asé~|p—pg| ™"
ability (Pg(a,N)) that theNth step of the SAW is on a nearp,, is a measure of the linear size of the finite clusters
backbone site located at a lattice distaneel from its start- in the Systen'(or Simila”y’ the mean distance between two

ing point atr=0. This probability can be written as sites on the same finite clusterand v is the correlation
length exponent. Equatio(6) suggests that the probability
(Cnp(a=1)) P..(L), to find a site belonging to the incipient cluster within

(Pg(a= 1’N)>NW’ 4 4 distancel from a given cluster sitéand consequently at

least one path connecting these two sijtasales a$..(L)

. . 1 —Blv PP .
where(Cy, g(a=1)) represents théconfigurationalaverage L ° ' for L<¢ [11]. ldentifying the length scalé )’V[;}Vh
number of SAW that, afteN steps, arrive at a distange "€ mean siz&k of the SAW,L~R, we obtainFg~R ",

— 1 from the origin, andCy g) denotes the total number of i.e., k= Blv. Accepted valuegl0—13, 21—2%for the critical

SAW of N steps. The latter is the configurational averageEXPOnents reported so far are summarized in Table I.
Using Egs.(4),(5), and the above result fdfg, we find

analog of Eq.(3), with u and v replaced by the exponents
mq and y,. The index 1 reminds us of the underlying multi-
fractal behavior of these two exponents for percolation sys- MN(a/R)deF 1 1\ DBl
tems[16] (see also Ref.19]). We assume the former to be (Pg(a=1N))~ ! B _ ( )

T |
d? )
Fg, 5

a
<CN,B(a:1)>:ﬂ?<§
and comparison with Eq2) yields

whereR=(r?(N))¥2~N"r, and the factoFg~R “<1 rep-

resents the additional difficulty of thd step SAW to return e

close to its starting point due to topological constraints 91 =——+t—

caused by the statistical nature of the embedding structure.

For regular lattices, this factor reduces to unity since in those

cases there is no distinction between cluster and lattice siteghich is denoted as the generalized des Cloizeaux relation.

and the exponentt? is replaced by the spatial dimensionality ~ Numerical calculations based on exact enumeration tech-

d of the lattice[4]. For deterministic fractals such as Sierpin- niques in two and three dimensiofisken from Ref[16])

ski gaskets, the factdfg is also expected to be unity, since are reported in Fig. 1 fo{Pg(/,N)). The corresponding

in those cases the fractal structure embedding the SAW isumerical values fog; andg} are summarized in Table II.

also uniqug 20]. The suggested relatigi) is in excellent agreement with the
The exponenk can be determined by considering first the numerical data. Additionally, it should be noted that E&).

probability that an arbitrary site belongs to the infinite clus-yields the correct value expected whde=6, i.e., gj=2.

8

v, v’
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FIG. 1. Scaling plots of the PDF irf space on the backbone of the incipient percolation clustés)jtb) d=2 and(c),(d) d=3, from

the exact enumeration results of REE6]. In (a) and (c), the whole PDF is shown, plotted a@E(PB(/,N)) versus/ /N7, for N=39
(closed circlesand 40(closed squargsaveraged over % 10° backbone configurations. Ii) and(d), the region with/<N? is shown in
more detail, plotted azde(PB(/,N))/(//N”/)dé:(NV/)“E(PB(/,N» versus/ /N [26]. Cased=2: In (a) the solid line corresponds to
the case”’>N"~ and is not further discussed hesee[16] for detaily. For //<N* the dashed line ifb) has the slope 0.490.05 and is
a fit with the ansatz P@V/)d5<PB(/,N))~(//N”/)QI for /<N [cf. Eq. (2) and texi, in very good agreement with the predictigh

=(71—

1)/v,+ BI(vdmin)=0.474[derived from Eq(8) using the relatiorg

=g4/dmin]- The dotted line is for illustration only and has the

slope 0.382, resulting from the relatiory,(—1)/v,=0.382, in disagreement with the numerical results. @&s8: Similarly to (b), in (d)
the dashed line has the slope 0:87.05, in excellent agreement with the predictg{n: (v1—D)/v,+ Bl(vdy;)=0.666. The dotted line has
the slope 0.32, resulting fromy¢—1)/v,=0.32, clearly revealing the inadequacy of this relation to fit the numerical results.

Indeed, wherd=6 the backbone of the incipient percolation probability to return close to the starting point just decreases
cluster becomes topologically one-dimensional, since loopasR ™2, i.e.,g;=2. The good agreement between Eg).and

are irrelevant on large length scales, and one simplyjhas the numerical results supports the ansatz made in&qg.

=1. Thus,g] is solely determined by the second term in Eq.
(8). The valueg’;=2 for d=6 can be understood by noting G

that in this caseFg~ (a/R)% with d?

=2 for d=6, since
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