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‘‘Generalized des Cloizeaux’’ exponent for self-avoiding walks on the incipient percolation cluster
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We study the asymptotic shape of self-avoiding random walks~SAW! on the backbone of the incipient
percolation cluster ind-dimensional lattices analytically. It is generally accepted that the configurational av-
eraged probability distribution function̂PB(r ,N)& for the end-to-end distancer of anN step SAW behaves as
a power law forr→0. In this work, we determine the corresponding exponent using scaling arguments, and
show that our suggested ‘‘generalized des Cloizeaux’’ expression for the exponent is in excellent agreement
with exact enumeration results in two and three dimensions.
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Linear polymers have a broad spectrum of application
such different fields as biology, chemistry, and physics, s
e.g.,@1–3#, and theoretical work has been extensively do
mented in the literature@4–6#. More recently, strong interes
has been drawn to the effects that environmental diso
may have on the configurational properties of such lin
structures@7–9#. As a paradigmatic model of linear poly
mers, self-avoiding random walks~SAW! have captured the
attention of researchers for decades and are currently ex
sively studied@4–6#. Structural disorder is generally mod
eled by percolation@10,11#, and interesting effects are ex
pected at the percolation threshold@8#. Since asymptotically
long SAW can only exist on the backbone of the cluster,
which all dangling ends have been eliminated, one m
study SAW directly on the backbone. For relatively sh
chains, one may still expect that the statistical properties
SAW do not depend on whether they are studied on
backbone alone or on the corresponding percolation clus
In what follows, we adopt this point of view and study SAW
directly on the backbone of the cluster.

On percolation clusters, one can distinguish between
different metrics, the usual Pythagorian one, orr-space met-
ric, and the topological one, orl -space metric, which have
been extensively discussed in the literature@11–13#. The cor-
responding length scales are related byl ;r dmin, wheredmin
is the fractal dimension of the shortest path@11#.

The scaling behavior of SAW is characterized by t
mean end-to-end distance afterN steps. On structurally dis
ordered systems such as percolation clusters, two type
averages need to be performed. One first averages ove
SAW configurations ofN steps on a single backbone starti
from the same origin as obtained, e.g., by exact enumera
techniques@14#, followed by a configurational average ov
many backbones. Inr space, the former average is denoted
r 2(N), and the second one by^r 2(N)&;N2nr, which defines
the exponentn r . Correspondingly, inl space one has

^ l̄ (N)&;Nn l , wheren l 5n r dmin .
More generally, one is interested in the configuratio

averaged probability distribution function~PDF! for the
end–to–end distance on the backbone. Inr-space, it is de-
noted aŝ PB(r ,N)&, and is expected to obey the scaling for
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^PB~r ,N!&5
1

Nnrdf
B f r~r /Nnr ! for N@1, ~1!

which is normalized according to*0
`dr r df

B
21^PB(r ,N)&51,

wheredf
B is the fractal dimension of the backbone. The sc

ing function f r(x) behaves asf r(x);xg1
r
, for x!1, and in

this limit Eq. ~1! becomes

^PB~r ,N!&;
1

Nnrdf
B S r

Nnr
D g1

r

for r !Nnr, ~2!

whereg1
r is the scaling exponent to which we draw our a

tention here. In l space, the PDF obeyŝPB(l ,N)&
5N2n l dl

B
f l (l /Nn l ) and is normalized according t

*0
`dl l dl

B
21^PB(l ,N)&51, with dl

B being the fractal di-
mension of the backbone inl space,dl

B5df
B/dmin . The cor-

responding exponent in the casel !Nn l is denoted byg1
l

and is related tog1
r by g1

l 5g1
r /dmin ~see, e.g.,@15,16#!. The

interest in studying the PDF̂PB(l ,N)& is because fluctua
tions are definitely smaller inl space than inr space, and
more accurate results forg1

r can be derived by determinin
g1

l and afterwards using the relationg1
r 5g1

l dmin .
In the case of regular lattices (g1

l 5g1
r 5g1), des

Cloizeaux @17# showed thatg15(g21)/nF , where nF
>3/(d12) is the Flory exponent@18# and g describes the
total numberCN of SAW configurations ofN steps,

CN>mNNg21 for N@1, ~3!

wherem is the effective coordination number of the lattic
~see, e.g.,@6#!. Numerical results for SAW on the backbon
of percolation clusters at criticality in two dimensions see
to be roughly consistent with the formg1

r 5(g121)/n r @15#,
whereg1 is the corresponding enhancement exponent on
backbone. More recent results in three dimensions@16#
©2001 The American Physical Society04-1
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clearly disprove this relation, so the question rema
whether a generalization of the des Cloizeaux expression
still provide an accurate framework for estimating the exp
nentg1

r analytically. The goal of the present paper is to p
vide such a generalization of the des Cloizeaux relation v
in all dimensions.

To this end, we follow de Gennes@4# and study the prob-
ability ^PB(a,N)& that the Nth step of the SAW is on a
backbone site located at a lattice distancea51 from its start-
ing point atr 50. This probability can be written as

^PB~a51,N!&;
^CN,B~a51!&

^CN,B&
, ~4!

where^CN,B(a51)& represents the~configurational! average
number of SAW that, afterN steps, arrive at a distancea
51 from the origin, and̂CN,B& denotes the total number o
SAW of N steps. The latter is the configurational avera
analog of Eq.~3!, with m and g replaced by the exponent
m1 andg1. The index 1 reminds us of the underlying mul
fractal behavior of these two exponents for percolation s
tems@16# ~see also Ref.@19#!. We assume the former to be

^CN,B~a51!&5m1
NS a

RD df
B

FB , ~5!

whereR[^r 2(N)&1/2;Nnr, and the factorFB;R2k<1 rep-
resents the additional difficulty of theN step SAW to return
close to its starting point due to topological constrai
caused by the statistical nature of the embedding struct
For regular lattices, this factor reduces to unity since in th
cases there is no distinction between cluster and lattice s
and the exponentdf

B is replaced by the spatial dimensionali
d of the lattice@4#. For deterministic fractals such as Sierpi
ski gaskets, the factorFB is also expected to be unity, sinc
in those cases the fractal structure embedding the SAW
also unique@20#.

The exponentk can be determined by considering first t
probability that an arbitrary site belongs to the infinite clu

TABLE I. Critical exponents and fractal dimensions for the i
cipient percolation cluster, for spatial dimensionsd52, 3, andd
>6, from ~a! exact results Ref.@21#, ~b! Monte Carlo simulations
Ref. @22#, ~c! exact results Ref.@23#, ~d! Refs. @10,11#, ~e! Monte
Carlo simulations Ref.@24#, ~f! Monte Carlo simulations Ref.@25#,
~g! Monte Carlo simulations Ref.@13#, ~h! Monte Carlo simulations
Ref. @12#, and~i! the relationdl

B5df
B/dmin . Here,df5d2b/n is the

fractal dimension of percolation clusters.

d52 d53 d>6

b 5/36(a) 0.41760.003(b) 1(c)
n 4/3(a) 0.87560.008(b) 1/2(c)
df 91/48(a) 2.52460.008(b) 4(d)
df

B 1.643260.0008(e) 1.8760.03(f) 2(d)
dmin 1.130660.0003(g) 1.37460.004(h) 2(d)
dl

B 1.44660.001(i) 1.3660.02(f) 1(d)
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ter, P` . Near the percolation thresholdpc , P` behaves as a
function of the concentrationp (>pc) of occupied sites as
@10,11#

P`;~p2pc!
b;j2b/n, ~6!

where the correlation lengthj, diverging asj;up2pcu2n

nearpc , is a measure of the linear size of the finite cluste
in the system~or similarly, the mean distance between tw
sites on the same finite cluster!, and n is the correlation
length exponent. Equation~6! suggests that the probabilit
P`(L), to find a site belonging to the incipient cluster with
a distanceL from a given cluster site~and consequently a
least one path connecting these two sites!, scales asP`(L)
;L2b/n for L,j @11#. Identifying the length scaleL with
the mean sizeR of the SAW,L;R, we obtainFB;R2b/n,
i.e.,k5b/n. Accepted values@10–13, 21–25# for the critical
exponents reported so far are summarized in Table I.

Using Eqs.~4!,~5!, and the above result forFB , we find

^PB~a51,N!&;
m1

N~a/R!df
B
FB

m1
NNg121

;
1

Nnrdf
B S 1

Nnr
D (g121)/nr1b/n

,

~7!

and comparison with Eq.~2! yields

g1
r 5

g121

n r
1

b

n
, ~8!

which is denoted as the generalized des Cloizeaux relati
Numerical calculations based on exact enumeration te

niques in two and three dimensions~taken from Ref.@16#!
are reported in Fig. 1 for̂ PB(l ,N)&. The corresponding
numerical values forg1

l andg1
r are summarized in Table II

The suggested relation~8! is in excellent agreement with th
numerical data. Additionally, it should be noted that Eq.~8!
yields the correct value expected whend>6, i.e., g1

r 52.

TABLE II. Results for SAW on the backbone of critical perco
lation clusters~from Ref. @16#!. Note that the value ofg1

l slightly
differs from the value given in Ref.@16#, as we determined it more
accurately here by plotting (Nne)dl

3^PB(l ,N)&, as shown in Figs.
1~b! and 1~d!. The last line displays the present theoretical resu
from the generalized des Cloizeaux relationg1

r 5(g121)/n r1b/n,
Eq. ~8!.

d52 d53 d>6

n r 0.78760.010 0.66260.006 1/2
g1 1.3460.05 1.2960.05 1
g1

r 0.5660.10 0.9060.10 2
g1

l 0.4960.05 0.6760.05 1
g1

r 5g1
l dmin 0.5560.06 0.9260.08 2

g1
r ~present conjecture! 0.5460.07 0.91660.080 2
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FIG. 1. Scaling plots of the PDF inl space on the backbone of the incipient percolation cluster in~a!,~b! d52 and~c!,~d! d53, from

the exact enumeration results of Ref.@16#. In ~a! and ~c!, the whole PDF is shown, plotted asl dl
B

^PB(l ,N)& versusl /Nn l , for N539
~closed circles! and 40~closed squares!, averaged over 53103 backbone configurations. In~b! and~d!, the region withl !Nn l is shown in

more detail, plotted asl dl
B

^PB(l ,N)&/(l /Nn l )dl
B
5(Nn l )dl

B

^PB(l ,N)& versusl /Nn l @26#. Cased52: In ~a! the solid line corresponds to
the casel @Nn l and is not further discussed here~see@16# for details!. For l !Nn l the dashed line in~b! has the slope 0.4960.05 and is

a fit with the ansatz (Nn l )dl
B

^PB(l ,N)&;(l /Nn l )g1
l

for l !Nn l @cf. Eq. ~2! and text#, in very good agreement with the predictiong1
l

5(g121)/n l 1b/(ndmin)>0.474@derived from Eq.~8! using the relationg1
l 5g1

r /dmin#. The dotted line is for illustration only and has th
slope 0.382, resulting from the relation (g121)/n l >0.382, in disagreement with the numerical results. Cased53: Similarly to ~b!, in ~d!
the dashed line has the slope 0.6760.05, in excellent agreement with the predictiong1

l 5(g121)/n l 1b/(ndmin)>0.666. The dotted line has
the slope 0.32, resulting from (g121)/n l >0.32, clearly revealing the inadequacy of this relation to fit the numerical results.
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Indeed, whend>6 the backbone of the incipient percolatio
cluster becomes topologically one-dimensional, since lo
are irrelevant on large length scales, and one simply hasg1

51. Thus,g1
r is solely determined by the second term in E

~8!. The valueg1
r 52 for d>6 can be understood by notin

that in this caseFB;(a/R)df
B

with df
B52 for d>6, since

SAW are equivalent to the embedding backbone and
02010
s

.

e

probability to return close to the starting point just decrea
asR22, i.e.,g1

r 52. The good agreement between Eq.~8! and
the numerical results supports the ansatz made in Eq.~5!.
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