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Multifractal behavior of linear polymers in disordered media
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The scaling behavior of linear polymers in disordered media modeled by self-avoiding random walks
~SAWs! on the backbone of two- and three-dimensional percolation clusters at their critical concentrationspc

is studied. All possible SAW configurations ofN steps on a single backbone configuration are enumerated
exactly. We find that the moments of orderq of the total number of SAWs obtained by averaging over many
backbone configurations display multifractal behavior; i.e., different moments are dominated by different
subsets of the backbone. This leads to generalized coordination numbersmq and enhancement exponentsgq ,
which depend onq. Our numerical results suggest that the relationm15pcm between the first momentm1 and
its regular lattice counterpartm is valid.

PACS number~s!: 61.41.1e, 05.40.2a, 61.43.2j
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I. INTRODUCTION

The question of how linear polymers behave in a dis
dered medium has attracted much attention in recent ye
The problem is not only interesting from a theoretical po
of view, but may also be relevant for understanding transp
properties of polymeric chains in porous media, such as
hanced oil recovery, gel electrophoresis, gel permea
chromatography, etc.@1–4#. In this context, it is useful to
learn about the static or conformational properties of lin
chains, modeled by self-avoiding walks~SAWs!, in the pres-
ence of quenched disorder, e.g., how the surrounding st
tural disorder influences their spatial configuration. As
quite general model of a random medium, percolation@5–8#
may be considered the paradigm for a broad class of di
dered systems and has therefore been mostly used so f

We are interested in how the statistical behavior of SA
on percolation clusters at criticality (p5pc) differs from
their behavior on regular lattices. While the values of t
exponents for SAWs on regular lattices are well establis
@1,9–12#, there is no complete agreement about their val
on percolation clusters atpc @13,14#. Here we study~i! the
so-called effective coordination number of the cluster, wh
contradicting results have been reported using different
merical techniques. Next we consider~ii ! the enhancemen
exponentg and~iii ! the exponentsn r andn l , characterizing
the end-to-end distance of SAWs in ther- and l-space met-
rics. Finally, we determine~iv! the values of the critical ex
ponents describing the corresponding structural distribu
functions.

We concentrate on SAWs on percolation clusters atpc in
two and three dimensions. In the literature, two distin
methods have been used for evaluating SAWs: Exact e
meration~EE! and Monte Carlo~MC! simulation. In the EE
technique,all SAW configurations on a given cluster a
taken into account, but only relatively short chains can
evaluated. In a MC simulation, longer chains can be stud
but inherently the ensemble of configurations remains
complete. Here we use the EE technique in combination w
PRE 611063-651X/2000/61~6!/6858~8!/$15.00
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an appropriate finite-size scaling procedure to determine
relevant exponents. Since ‘‘infinitely’’ long chains can on
exist on the backbone of the cluster, where dangling ends
absent on all length scales, we study the SAWs directly
the backbone. This enables us to generate longer chains
given cluster and to average over a larger set of differ
cluster configurations.

Specifically, we enumerate all possible SAW configu
tions of N steps for a single backbone and study differe
moments of the total number of SAWs and their end-to-e
distance by averaging over many different backbone c
figurations. Our analysis shows that the critical exponentsn r
andn l do not depend on the orderq of the moments, while
the enhancement exponents and the effective coordina
numbers do depend onq, leading to multifractal behavior. In
particular, we find that the first moment of the effective c
ordination numberm1 satisfiesm15pcm, wherem is the ef-
fective coordination number of the underlying regular lattic
resolving previous controversies. The mean structural dis
bution functions for the end-to-end distance afterN steps,
both in Euclidean and topological space, are obtained
merically, supporting the expected scaling forms@15,16#.

The paper is organized as follows: In Sec. II, we brie
review the main relevant properties of SAWs on regular l
tices to illustrate the different numerical procedures e
ployed in this work. In Sec. III, we present results for th
total number and the mean end-to-end distance of SAWs
the backbone of the incipient percolation cluster. The cor
sponding distribution functions of the end-to-end distan
and their scaling behavior, in Euclidean and topologi
space, are also discussed. Finally, in Sec. IV we summa
our main results.

II. SAWS ON REGULAR LATTICES REVIEWED

In this section, we illustrate the different numerical tec
niques we use in the following sections by briefly reviewi
the main results for SAWs on regular lattices. The main id
is to show that our finite-size scaling, employed in the la
6858 ©2000 The American Physical Society
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PRE 61 6859MULTIFRACTAL BEHAVIOR OF LINEAR POLYMERS IN . . .
sections, enables us to obtain quite accurate estimates fo
critical exponents based on EE results for relatively sh
chains. Here we consider the cased52, which is particularly
suitable since many results are known exactly.

A. Total number of SAW configurations CN

The total numberCN of SAW configurations ofN steps
behaves as@11#

CN5AmNNg21, ~1!

wherem is the effective coordination number of the lattice,g
is the universal enhancement exponent, andA is a constant.
To determinem, g, andA, we choose to study the behavior
the quantity

ln CN

N
5

ln A

N
1 ln m1~g21!

ln N

N
~2!

as a function ofN. Figure 1 shows that for the square lattic
the values form andg obtained by fitting the EE data usin
Eq. ~2! agree well with the accepted values reported in
literature~see Table I!.

B. Mean end-to-end distance
and structural distribution

function

The root mean-square end-to-end distance of SAWs oN
steps, r̄ (N)[@r 2(N)#1/2, averaged over all possible SAW
configurations behaves as

FIG. 1. The total numberCN of SAW configurations on the
square lattice plotted as (lnCN)/N versusN, from the presently
available exact enumeration results forCN , N<51 @17#. The con-
tinuous line corresponds to a numerical fit obtained in the ra
10<N<51 using Eq.~2!, with m52.641,g51.3, andA51.35.

TABLE I. Structural parameters for SAWs on regular lattices
d52. Results of the present simulations obtained on the sq
lattice, compared with the accepted values from the literature.

Literature Present results

l 43/32a 1.3060.05
m 2.638560.0001b 2.64160.005
nF 3/4c 0.74560.005
g1 11/24d 0.460.1
g2 5/8e 0.6160.05
d 4f 4.560.5

aReference@18#. dReference@21#.
bReferences@19,20#. eReference@22#.
cReference@9#. fReference@10#.
the
rt

,

e

r̄ ~N!}NnF, ~3!

with the universal exponentnF53/4 in d52 as suggested by
Flory @9#. In Fig. 2, we show values forr̄ (N) versusN ob-
tained by the EE technique@17#. The asymptotic value fornF
~see also Table I! is obtained using successive slopes,
shown in the inset of Fig. 2, and is in excellent agreem
with the theoretical prediction.

More detailed information about the spatial structure
SAWs is given by the distribution functionP(r ,N), where
P(r ,N)dr is the probability that afterN steps, the end-to-end
distance of a chain is betweenr and r 1dr. This quantity
obeys the scaling form@11,12#

P~r ,N!}
1

r
f ~r /NnF! ~4!

and is normalized according to*0
`drP(r ,N)51. The ana-

lytic form of the scaling functionf (x) is known asymptoti-
cally:

f ~x!}H xg11d, x!1

xg21d exp~2cxd!, x@1,
~5!

where g15(g21)/nF @21#, g25d„d(nF21/2)2(g21)…
@22#, andd51/(12nF) @10#. Values for these exponents a
summarized in Table I. We have verified these predictio
by enumerating all SAW configurations forN523 and 24
and calculating the corresponding distributionsP(r ,N),
from which we have extracted the different exponents~see
Fig. 3!. We show that a more accurate determination of
exponentg2 compared to a simple fit using Eq.~5! can be
obtained by employing a specific numerical procedure
scribed in Appendix A~see inset of Fig. 3!. The obtained
values are in agreement with the theoretical predictions~see
Table I!.

III. SAWS ON THE BACKBONE OF
THE INCIPIENT PERCOLATION

CLUSTER

Next, we consider SAWs on the incipient percolatio
cluster by generating all SAW configurations directly on t
backbone of the cluster. We obtain the backbone of a gi
cluster grown by the Leath algorithm@23,24# by randomly

e

re

FIG. 2. The mean end-to-end distancer̄ (N) versusN for SAWs
on the square lattice. The continuous line is drawn as a guide an
slope has the theoretical valuenF53/4. In the inset, the successiv
slopesnF5d ln r̄(N)/d ln N are plotted versus 1/N. A linear extrapo-
lation of the points to the limit 1/N→0 yields our estimatenF

50.74560.005, consistent with the value 3/4.
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choosingoneof the sites of the last grown cluster shell~e.g.,
site A in Fig. 4! and determining the backbone between s
A and the seed of the cluster~siteS in Fig. 4! by the burning
procedure described in@25,26#. The SAWs start at the seedS
of the cluster. To avoid finite size effects, the chemical d
tance between both end pointsS and A of the backbone is
chosen to be at least 20 times larger than the chemical le
of the SAWs. The large ratio between both chemical leng
is needed, since close to the end pointA, the backbone has
quasilinear structure, which would falsify the results for t
SAWs. The straightforward idea to useall sites on the last
grown shell as end points for the backbone does not help
introduces boundary effects in the opposite direction, si
in this case the backbone coincides with the cluster near
end points; cf.@26#.

We analyze the results for SAWs on the incipient per
lation cluster by applying analogous numerical procedu
on the data as described above for SAWs on regular latti
In contrast to the case of regular lattices, on a percola
cluster two different metrics can be defined: the Euclide
metric and the topological or chemical metric. On avera

FIG. 3. The structural distribution function of SAWs,rP(r ,N)
versus r /NnF with nF53/4, for N523 ~diamonds! and N524
~circles! on the square lattice. The dashed line in the ranger /NnF

,1 has a slopeg11d52.4, and the one forr /NnF.1 is a fit with
Eq. ~5!, for x@1, yielding g21d52.960.4, d54.560.8, andc

50.760.1. In the inset, we show the functionr P̃(r ,N)
[b(g21d)/d(VB)21rP(r ,N)exp@(b1/dr /NnF)d#5b(r /NnF)d versus
b1/dr /NnF, following the procedure described in Appendix A, allow
ing a more precise determination ofg2 . For our estimate of the
crossover valuez50.4, the continuous line has a slopeg21d
52.6160.05, in agreement with the theoretical value~see Table I!.

FIG. 4. A percolation cluster on the square lattice~full squares!
and its corresponding backbone between the seedS and a siteA
randomly chosen on the last grown shell.
e
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the chemical distancel between two backbone sites separa
by the Euclidean distancer increases withr as @27,28#

l}r dmin, ~6!

where dmin51.130660.0003 ind52 @29# and dmin51.374
60.004 ind53 @30#. Thus Eq.~6! yields the scaling relation
between the two metrics, which will be used in what follow
Numerically it is found that data obtained inl space show
less fluctuations~cf., e.g.,@15#!. Therefore more accurate es
timates for many characteristic quantities~such as critical
exponents! in r space can be determined by studying t
corresponding quantity inl space and transforming it tor
space. For example, the fractal dimension of the backbon
l space isdl

B51.4560.01 in d52 anddl
B51.3660.02 in d

53. Using Eq. ~6!, this leads to the valuesdf
B5dl

Bdmin

51.6460.02 anddf
B51.8760.03 in r space, respectively

@26#.

A. Total number of SAW configurations: Multifractality

Due to the disordered structure of the clusters, the to
numberCN,B of SAW configurations that are generated on
single backbone, with the seedSof the cluster as the startin
point, fluctuates strongly among different backbone confi
rations. To characterize these fluctuations, we study the
ments ^CN,B

q &. A similar study on percolation clusters a
criticality has been performed for ‘‘ideal’’ chains; i.e., chain
that can intersect themselves. This model leads to a n
trivial dependence onq @31#.

In generalizing Eq.~1!, we make the ansatz

^CN,B
q &1/q5Aqmq

NNgq21, ~7!

wheremq are the generalized effective coordination numb
of the backbone andgq the generalized enhancement exp
nents. Results for different values ofq are shown in Figs.
5~a! and 5~b! for the square and simple cubic lattice, respe
tively, employing the numerical procedure described in S
II A. The values formq and gq are displayed in Fig. 6 for
d52, clearly revealing a dependence onq, reminiscent of a
multifractal behavior. For large negative values ofq, back-
bone configurations with a small number of SAW config
rationsCN,B are singled out in the averaging procedure. W
find that mq→1 and gq→1 for q→2`, pointing to rare
configurations of backbones with an almost linear shape.
the contrary, for large values ofq the averaging procedur
emphasizes backbone configurations with a large numbe
SAW configurationsCN,B . Since these backbones are t
most compact ones,mq andgq are strongly enlarged. Figur
6 seems to suggest that the structure of the most com
backbone differs distinctively from the structure of a regu
square lattice, as limq→` mq'1.9, which is well below the
value for m on the regular square lattice, and limq→` gq
'1.7 is well above the value forg on the regular square
lattice.

These results resolve earlier controversies regarding
values for bothm and g for percolation obtained from MC
simulations and by EE techniques. For the square lattice,
example, the valuesmperc~EE!51.5360.05 @32# and
gperc~EE!51.3360.02 @33# have been obtained from exa
enumeration calculations, while from MC simulations t
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values mperc~MC!51.45960.003 and gperc~MC!51.31
60.03 @34# were determined. We findm151.56560.005,
g151.3460.05, and m051.45660.005, g051.2660.05,
corresponding to the EE and MC results, respectively. T
can be understood by noting that EE calculations yield
definition the whole ensemble~the so-called ‘‘annealed’’ av-
erage!, corresponding to the caseq51; i.e., the normal arith-
metic average. In contrast, MC simulations intrinsic
sample only a small subset of all possible configuratio
omitting rare configurations, yielding ‘‘typical’’ subsets o

FIG. 5. Generalized moments^CN,B
q & of the total numberCN,B

of SAW configurations on the backbone of critical percolation cl
ters, plotted as (1/N)ln@^CN,B

q &1/q# versusN. ~a! On the square lat-
tice, forq52, 1, 0.5, 0,20.5,21, and22 ~from top to bottom!; ~b!
on the simple cubic lattice, forq51 ~top! andq50 ~bottom!. Av-
erages over 105 backbone configurations each are performed. T
continuous lines are the best fits based on Eq.~7!, yielding the
values for mq and gq for q50 and 1 given in Table II. Some
representative values forgq , in addition to those reported in Tabl
II, are g2251.1560.05,g2151.2360.05, andg251.3660.05 in
d52. Values ofAq are found to fluctuate in the range 1.0–1.3
both d52 andd53.

FIG. 6. The effective coordination numbersmq and enhance-
ment exponentsgq versusq for 210<q<10 in d52 obtained
from Fig. 5~a!. Expect forgq for q>2, the error bars are smalle
than the symbol sizes. The values form and g on regular square
lattice are marked by arrows, clearly showing that limq→`gq is
larger thang on regular square lattice. The inset showsmq versusq
for 22<q<2 in d52, in good agreement with the theoretical r
sult mq5m0(11qs0

2/2) ~continuous line! expected foruqu→0 @16#,
with m051.456 ands050.45.
is
y

s,

the ensemble~the so-called ‘‘quenched’’ average!. This
quenched average is usually described by a logarithmic
erage, i.e.,̂ CN,B& typ[exp̂ ln CN,B&, and is equivalent to the
limit q→0 of Eq. ~7!; i.e., limq→0^CN,B

q &1/q5exp̂ ln CN,B&.
Indeed, our results are in excellent agreement, in bothd52
andd53, with the relation

m15pcm, ~8!

wherem is the effective coordination number of the unde
lying regular lattice,pc50.592 7460 for the square lattic
@35# andpc50.311 605 for the simple cubic lattice@36#. This
relation, which was originally suggested in the formmperc
5pcm @34#, could not be confirmed earlier on because of t
different values obtained formperc. Because of the possibl
existence of rare events playing a dominant role in the av
age procedure, we have performed a detailed analysis of
numerical data to confirm that we have considered a su
ciently large set of cluster configurations~cf. Appendix B!.

B. Mean end-to-end distances
and structural distribution

functions

Next we study the scaling behavior of the distributio
functions for the end-to-end distance,^PB( l ,N)& and
^PB(r ,N)&, averaged over many backbone configuratio
where PB( l ,N)dl is the probability that afterN steps, the
chemical end-to-end distance of a chain on a single backb
is betweenl and l 1dl, and PB(r ,N)dr is the analogous
quantity inr space. These distribution functions are expec
to obey scaling forms similar to the one valid on regu
lattices, Eq.~4!, with the corresponding scaling exponen
@15#. The mean chemical end-to-end distance^ l̄ (N)& and the
root mean-square Euclidean end-to-end distance^ r̄ (N)&
[^@r 2(N)#1/2& scale withN as

^ l̄ ~N!&}Nn l, ~9!

^ r̄ ~N!&}Nnr, ~10!

respectively. The first average is performed over all SA
configurations on a single backbone; the second averag
carried out over many backbone configurations. Follow
Eq. ~6!, the exponentsn l andn r are related to each other b
n r5n l /dmin . The numerical results forn l andn r obtained by
the successive slopes technique discussed in Sec. II B
regular lattices are reported in Table II. As an example, F
7 shows the determination ofn l in d53.

Accordingly, the scaling variable in chemical space
l /Nn l, and the mean structural distribution function, averag
over many backbone configurations, has the form

^PB~ l ,N!&}
1

l
f ~ l /Nn l ! ~11!

with the scaling function

f l~x!}H xg1
l
1dl

B
, x!1

xg2
l
1dl

B
exp~2cd,lx

d l !, x@1.
~12!

-

e
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Equivalently, inr space, the scaling variable isr /Nnr, and
one has

^PB~r ,N!&}
1

r
f ~r /Nnr ! ~13!

with

f r~x!}H xg1
r
1df

B
, x!1

xg2
r
1df

B
exp~2cd,rx

dr !, x@1.
~14!

Both distribution functions are normalized according
*0

`dl^PB( l ,N)&51 and*0
`dr^PB(r ,N)&51.

TABLE II. Structural parameters for SAWs on the backbone
percolation clusters at criticality ind52 andd53, on the square
and simple cubic lattice, respectively. The values forn r , obtained
directly from the numerical data, are in agreement with the m
precise values obtained from the relationn r5n l /dmin . The values
for g1

r 5g1
l dmin are also in good agreement with the correspond

values obtained directly from the data. The numerical values for
exponentsg2

l and g2
r have been determined using the proced

described in Appendix A. Note that there is no simple relat
betweeng2

l andg2
r ; i.e., g2

r Þg2
l dmin . The values ofd l andd r are

consistent, within the present accuracy, with the expressiond l

51/(12n l) andd r51/(12n r).

d52 d53

g1 1.3460.05 1.2960.05
g0 1.2660.05 1.1960.05
m1 1.56560.005 1.46260.005
m0 1.45660.005 1.31760.005
n l 0.8960.01 0.91060.005

n r ~directly from data! 0.77860.015 0.6660.01
n r5n l /dmin 0.78760.010 0.66260.006

g1
l 0.4560.10 0.6660.15

g1
r 5g1

l dmin 0.5160.11 0.9160.20
g2

l 1.660.16 1.9560.17
g2

r 1.2660.18 2.9660.18
d l 9.560.5 1260.5
d r 4.8560.20 3.160.2

FIG. 7. The mean topological end-to-end distance^ l̄ (N)& versus
N for SAWs on the backbone of critical percolation clusters ind
53 averaged over 53104 backbone configurations. In the inset, th

successive slopesn l5d ln^ l̄ (N)&/d ln N are plotted versus 1/N. A
linear extrapolation of the points to the limit 1/N→0 yields our
estimaten l50.91060.005.
The numerical results for the distribution functions ind
52 andd53 are shown in Figs. 8 and 9, respectively,
both l and r space. The values for the exponentsn l and n r
5n l /dmin reported in Table II are used in the scaling va
ables. For the determination of the exponentsg1

l , g2
l , g1

r ,
and g2

r according to Eqs.~12! and ~14!, we use the previ-
ously reported values of the fractal dimensionsdl

B and df
B

@26#. The exponentsg1
l and g1

r can be estimated directly
from the slope off l and f r in the double logarithmic plots
Sinceg1

l andg1
r are related byg1

r 5g1
l dmin @15#, a more pre-

cise estimate forg1
r can be derived from the estimate forg1

l .
The determination ofg2

l andg2
r is more difficult, since both

exponents occur in the nondominant part and are maske
the exponential. Therefore it requires the use of the sligh
more involved numerical procedure discussed in Appendi
~see the insets of Figs. 8 and 9 ford52 andd53, respec-
tively!. The numerical results we obtain forg1

l , g2
l , g1

r , and
g2

r are reported in Table II. Regarding the exponential fa
tors, our results for the exponentsd l and d r are consistent,

f

e

g
e

e

FIG. 8. Scaling plots of the distribution functions on the bac
bone ind52, for N539 and 40, averaged over 53103 configura-
tions. ~a! l ^PB( l ,N)& versusl /Nn l: The dashed line has the slop
1.90 and corresponds to the ansatz Eq.~12! for x!1; the continu-
ous line is a fit with the ansatz Eq.~12! for x@1, yielding g2

l

51.460.4, d l59.560.5, andc2,l50.0960.01. The inset shows

l ^P̃B( l ,N)& [ b
l

(g2
l
1dl

B)/d l (VBl)
21l ^PB( l ,N)& exp@(bl

1/d l l / Nn l)d l#

5bl( l /N
n l)d l versusbl

1/d l l /Nn l, with our estimate of the crossove
value zl50.21, according to the procedure described in Appen
A, yielding the more precise estimateg2

l 1dl
B53.0560.15 ~con-

tinuous line!. ~b! r ^PB(r ,N)& versusr /Nnr: The dashed line has th
slope 2.15 and corresponds to the ansatz Eq.~14! for x!1; the
continuous line is a fit with the ansatz Eq.~14! for x@1, yielding
g2

r 51.4660.4, d r54.960.3, and c2,r50.7960.10. The inset

shows r ^P̃B(r ,N)&[b
r

(g2
r
1dr

B)/dr(VBr)
21r ^PB(r ,N)&exp@(br

1/dr r /

Nnr)dr#5br(r /Nnr)dr versus br
1/dr r /Nnr with our estimate of the

crossover valuezr50.25, according to the procedure described
Appendix A, yielding the more precise estimateg2

r 1dr
B52.9

60.15 ~continuous line!.



o
on
r
s

-

g

r-

n

W
d

the

re-
or,
an

sug-

for
, re-
on

for
an-
-
ors-
.P.
n-

ri-
by

k

e

r
A

e
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within the present accuracy, with the expressionsd l51/(1
2n l) andd r51/(12n r), respectively.

As discussed in Sec. II B, for regular lattices the exp
nentsg1 , nF , andg are related by the des Cloizeaux relati
g15(g21)/nF . Therefore, it is legitimate to ask if a simila
‘‘generalized des Cloizeaux’’ relation holds also for SAW
in percolation. Since the enhancement exponentgq depends
on q, it is necessary to find out whether the exponentsn l and
g1

l as well asn r andg1
r depend onq. To this end we gener

alize the averageŝl̄ (N)& and ^ r̄ (N)& to ^ l q(N)&1/q}Nn l
(q)

and ^r q(N)&1/q}Nnr
(q)

. Since this is equivalent to studyin
the quantities@* l qPB( l ,N)dl#1/q and@*r qPB(r ,N)dr#1/q, re-
spectively, and̂ PB( l ,N)& and ^PB(r ,N)& scale with l /Nn l

and r /Nnr, ^ l q(N)&1/q and ^r q(N)&1/q must also scale with
l /Nn l and r /Nnr, respectively. Thereforen l

(q)5n l and n r
(q)

5n r for all q, which we confirmed numerically. Furthe
more, we have numerically verified that the exponentsg1

l

andg1
r ~as well asg2

l , g2
r , d l , andd r! are independent ofq.

Regarding the generalized des Cloizeaux relation, our

FIG. 9. Scaling plots of the distribution functions on the bac
bone ind53, for N539 and 40, averaged over 53103 configura-
tions. ~a! l ^PB( l ,N)& versusl /Nn l: The dashed line has the slop
2.02 and corresponds to the ansatz Eq.~12! for x!1; the continu-
ous line is a fit with the ansatz Eq.~12! for x@1, yielding g2

l

51.360.6, d l512.060.5, andc3,l50.0660.01. The inset shows

l ^P̃B( l ,N)& [ b
l

(g2
l
1dl

B)/d l (VBl)
21l ^PB( l ,N)& exp@(bl

1/d l l /Nn l)d l#

5bl( l /N
n l)d l versusbl

1/d l l /Nn l, with our estimate of the crossove
valuezl50.4, according to the procedure described in Appendix
yielding the more precise estimateg2

l 1dl
B53.3160.15~continuous

line!. ~b! r ^PB(r ,N)& versusr /Nnr: The dashed line has the slop
2.78 and corresponds to the ansatz Eq.~14! x!1; the continuous
line is a fit with the ansatz Eq.~14! x@1, yielding g2

r 52.360.6,

d r53.560.5, andc3,r50.8860.10. The inset showsr ^P̃B(r ,N)&

[b
r

(g2
r
1dr

B)/dr(VBr)
21r ^PB(r ,N)&exp@(br

1/dr r /Nnr)dr#5br(r /Nn l)d l

versusbr
1/dr r /Nnr with our estimate of the crossover valuezr50.5,

yielding the more precise estimateg2
r 1dr

B54.8360.15~continuous
line!.
-

u-

merical results suggest that ind52 the relations g1
l

5(gq5121)/n l and g1
r 5(gq5121)/n r hold, where the to

some extent arbitrary choice ofgq51 is motivated by the fact
that q51 describes the annealed case of the whole SA
ensemble. However, ind53 these relations are not satisfie
by the present numerical results.

IV. CONCLUDING REMARKS

We have studied structural properties of SAWs on
backbone of the incipient percolation cluster in bothd52
and d53, applying exact enumeration techniques. Our
sults suggest that SAWs display multifractal behavi
caused by the underlying multiplicative process yielding
infinite hierarchy of generalized coordination numbersmq
and enhancement exponentsgq describing the moments
^CN,B

q & of the total number of SAWs of lengthN. The present
results resolve previous inconsistencies regarding the
gested relationmperc5pcm, where pc is the percolation
threshold of a specific regular lattice, andm andmperc are the
corresponding effective coordination numbers of SAWs
the ordered case and on the incipient percolation cluster
spectively. We find that this relation is accurately obeyed
the square and simple cubic lattice by identifyingmperc
5m1 .
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APPENDIX A: IMPROVED PROCEDURE
FOR THE DETERMINATION OF g2

The procedure used for extracting the exponentsg2 , g2
l ,

and g2
r , describing the scaling form of the structural dist

bution functions, is an improved version of the procedure
Wittkop et al. @37# ~cf. @38#! and is illustrated here for the
case of regular lattices. The distribution function Eq.~4! can
be written as

P~r ,N!5
VB

r
f ~r /NnF!, ~A1!

with V52p in d52 andV54p in d53 and the scaling
function f (x) defined as

f ~x!5H xg11d, x,z

xg21d exp~2bxd!, x.z,
~A2!

whered51/(12nF). The actual value of the crossoverz is
determined from the numerical results. The constantsB and
b can be obtained from the normalization condition

E
0

`

P~r ,N!dr51 ~A3!

-
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and from the second moment

E
0

`

r 2P~r ,N!dr5r 2~N!>N2nF. ~A4!

Upon integration of Eqs.~A3! and ~A4!, one gets the exac
relations

B5
1

V F 1

db~g21d!/d GS g21d

d
,bzdD1

zg11d

g11dG21

, ~A5!

whereG(u,z) is the incomplete gamma function, and

VBH 1

db~g21d12!/d GS g21d12

d
,bzdD1

zg11d12

g11d12J 51.

~A6!

Thus by plotting the distribution function in the casex
.z as y[b(g21d)/d(VB)21rP(r ,N)exp@(b1/dr /NnF)d# ver-
susb1/dr /NnF in a double logarithmic plot, the exponentg2
can be read off from the relationy;xg21d and adjusted until
the above relations Eqs.~A5! and ~A6! are satisfied. This
method yields much more accurate results than by dire
fitting the distribution function itself. The accuracy of th
result can be assessed by plotting y[

2 ln@ḃ(g21d)/d(VB)21rP(r,N)(b1/dr /NnF)2(g21d)#5b(r /NnF)d

versusb1/dr /NnF in a double logarithmic plot, from which
the exponentd can be determined and compared with t
expected valued51/(12nF). The procedure can be ex
tended straightforwardly to study the distribution functio
^PB( l ,N)& and ^PB(r ,N)& of SAWs on the backbone o
critical percolation clusters.

APPENDIX B: GENERALIZED
AVERAGING PROCEDURE

To obtain an estimate of whether the ensembleB of back-
bone configurations considered is sufficiently large to
convergent results, we analyze the data by a generalized
eraging procedure as follows: The total ensembleB contain-
ing ntot backbone configurations is divided into subsetsBi
containingneff configurations each. The generalized avera
is then defined as

^CN,B&neff

~q! 5S 1

neff
(
i 51

neff

~CN,B! i
qD 1/q

. ~B1!

The obtained resultŝCN,B&neff

(q) depend sensitively on the dif
s

is-
ly

t
v-

e

ferent backbone configurations and display strong fluct
tions, indicating that the system is not self-averaging. In
der to smooth out these fluctuations, a second averag
performed. This second step is a logarithmic average o
the ntot /neff subsets@39#:

CN,B~q,neff!5exp̂ ln^CN,B&neff

~q! &5Aq,neff
mq,neff

N Ngqneff21.

~B2!

In Eq. ~B2!, the limiting caseneff51 corresponds to the
limit q→0, while the usual average@cf. Eq. ~7!# is recovered
when neff5ntot . The results for the coordination numbe
mq,neff

and enhancement exponentsgq,neff
are shown in Figs.

10~a! ~for q51! and 10~b! ~for q52!. A dependence of
these two values onneff indicates that the given ensemble
too small to obtain the asymptotic values. If, on the contra
the ensemble of backbone configurations is sufficiently lar
then mq,neff

and gq,neff
no longer depend onneff . For q51,

this seems to be the case whenneff*103, and forq52 when
neff*104.

FIG. 10. The effective coordination numbersmq,neff
~circles! and

the enhancement exponentsgq,neff
~squares! of SAWs on the back-

bone ind52 for ~a! q51 and ~b! q52 versus the effective en
semble sizeneff . The values are obtained by a least-square-fit
$ ln@CN,B(q,neff)#%/N5(ln Aq,neff

)/N1ln mq,neff
1@(gq,neff

21)ln N#/N
versusN, shown asmq,neff

andgq,neff
21 versusneff .
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