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Fractal behavior of the shortest path between two lines in percolation systems
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Using Monte Carlo simulations, we determine the scaling form for the probability distribution of the shortest
path | between two lines in a three-dimensional percolation system at criticality; the two lines can have
arbitrary positions, orientations, and lengths. We find that the probability distributions can exhibit up to four
distinct power-law regimeéseparated by crossover regimasgth exponents depending on the relative orien-
tations of the lines. We explain this rich fractal behavior with scaling arguments.
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I. INTRODUCTION +0.5. The first stretched exponential functidn, reflects
the fact that the shortest path must always be at least equal to
There has been considerable recent activity5] analyz-  the distance between the two points; the second stretched
ing P(l|r), the probability distribution for the length of the exponential functionf,, reflects the fact that the lengths of
shortest pathl, between two points separated by Euclideanthe shortest paths are bounded because of the finitdsize
distancer in a percolation systerf6—9]. This paper extends the system.
that work by determining the scaling form of the distribution ~ We find that the scaling form for the two-lines configura-
of shortest paths between two lines of arbitrary positiontion has the same form as that found for the shortest path
relative orientation and lengths in three-dimensio(&D) distribution between two points with the exceptions tfiat
systems. These configurations are important because thélye power-law regime of the distribution as represented by
much more realistically model the configurations used in oilthe term (/r%in)~% in Eq. (1) is replaced with up to four
recovery in which fluid is injected in one welbne of the different power-law regimeqseparated by crossover re-
lines in our configurationand oil is recovered at a second gimes with exponents depending on the relative orientations
well (the second line in our configuratiprthe wells may, in  of the lines andii) the Euclidean distancein Eg. (1) be-
reality, be at arbitrary orientation and of different lengths. Antween the two points is replaced by the shortest Euclidean
important quantity in oil exploration is the “breakthrough distance between the two lines. The lengths of the lines affect
time”or “first passage time,” the elapsed time for the in- the ranges of the power-law regimes.
jected fluid to first reach the second wgll0,11]. Because
the shortest paths between the two wells is strongly corre-
lated with the breakthrough tim¢8] and the shortest paths Il SIMULATIONS
can be modeled more efficiently than the breakthrough time, Monte Carlo simulations were performed using the Leath
we study the distributions of shortest paths here to obtaimethod and growing clusters from two sets of seeds—one
insights into the behavior of the breakthrough time distribu-for each line. The length of the shortest path between the two
tions. lines is the sum of the chemical distances from each set of
The scaling form for the two-points configuration in seed sites to the point where a cluster started at one set of
which the two points are located pL—r)/2,L/2,L/2],[ (L seeds meets a cluster started from the other set of $égds
+r)/2,L/2,L/2] in a system of sidé has been found to be The cluster growth for a given realization is terminated when
[1] the two clusters meet. For parallel line configurations, in
which the probability distributions decay rapidly, we use the
)g'f ( | ) ( | ) W method of Ref.[12] to obtain good statistics for shortest
2

P([r)~ paths that have very low probabilities. We use the memory
management technique described in Réf3] to perform
simulations in which the growing clusters never hit a bound-
ary of the system.

fl(x):efax’d’ 2) The clusters that are created and included in our analysis

are of all sizes, not just the incipient infinite cluster.

rdmin ( rdmin

where

and
o I1l. NONPARALLEL WELLS
fo(x)=e 2. 3
A. Coplanar lines
The exponentsy,, dyn, ¢, and ¢ are universal and the
constantsa andb depend on lattice type. In 3D, the values of
these exponents have previously been found td 3jeg, We start by considering relatively simple configurations
=2.3+0.1, d,;;=1.39£0.05, ¢=2.1+0.5, and ¢y=2.5 of the type shown in Fig.(®) in which the lines are coplanar,

1. Equal length symmetric lines
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FIG. 1. Example configurations of two nonparallel lines which Ob e v v v v v v v e
- . . ] - 0 50 100 150
are studied(a) Simple configuration of lines of equal lengttn) O(degrees)

Configuration of lines of unequal length\;>W,). (c) Configura-
tion in which the shortest distance between lines does not terminate F1g. 3. The exponent of the power-law regimeR( |r), g,(6),

at the ends of linesWa, <W,<Wyp). for two lines vs6. The dashed line ig,(6) =2.35, the value of,

for two points.
of equal length, and are positioned symmetrically. We will

study qonfigurations in which the.Ii_nes are of unequal Ie”gﬂ}egimes clearly, we have chosen the lengths of the lines long
[see Fig. 1b)] and/or are not positioned symmetricalsee o5, that this crossover occurs after the maximum value
Fig. 1(c)] in the following sections. In all of these configu- ¢ | iy the plots.

rations,r is the shortest Euclidean distance between the two In Fig. 3, we plotg,(6) vs 6. The plot suggests thag( )

lines. . :
. . diverges asf goes to zero. At below 6.~15°, g,(0) is
. F'_gur? 2 contains Iog—log_plots &%(1|r), the shortest path greater thary, , the power-law regime exf)onent for the two-
distribution forr =8 and various values of. We have cho- points configuration. Abové, , g,(6) is less tharg
senr =8 so that the initial cutoff is present; for smaller val- For two lines orie.nted at ;n alngle less than oulr.results
ues ofr, Ia_tt|ce effe(_:ts destroy this |n|t|a_I cutoff. Slnce_ t_h_e are consistent with the qualitative argument that the slope of
focus of this paper is the power-law regimes, not the initialy,e o\ver-law regime should be greater than the slope of the
or final cutoffs, in all later figures we will choose configura- power-law regime for two points because there are more
tlons_ withr=1 so tha.‘t the po_wer-_law regime Is as I_ong aSWays to connect the two lines and the probability that there
possible. The exception to this will be cases in whiehs e long paths is decreased. F@r 6, however, where
ver\;//VsmaII wr;]ere sﬁmaﬂ r:ntr_oq_ucles otl?e_r Iatt'cﬁ ?ffeq:)s. . our results indicate that the slope of the power-law regime
e note that after the Initial peak In each distribution, ¢, \he two-lines configuration is smaller than the slope of

there is a power-law regime, the slope of whigi(6), in- 6 nower-law regime for two points, it is less clear how to
creases with increasing. We will call this power-law re- explain the behavior.

gime the “two-lines regime.” Simple scaling arguments im- e crossover between the two-line regime and the two-

ply that if the lengths of the lines were infinite, these two- yqint regime is illustrated in Fig. 4 where in each panel we
line regimes would continue indefinitely. For finite line plot P(I[r) for fixed 6, and various values ofV. As ex-

lengths, we would expect that, for largethe distributions o teq the larger the length of the lines, the higher the value
would exhibit a crossover to a power-law regime with the 1 th | 1 at which th it
same exponent as that for a configuration with two points—O , the value ofl at which the crossover occurs. Quantita-

because for largé the long paths travel far enough away tive analysis of the crossover behavior is given in Sec. Il C.
from the lines that they appear to be points. In this regime, o ) _

the power-law exponent has the value of that of two points, 2. Point-line configurations

2.35[3]. For the plots in Fig. 2, in order to see the power We next study configurations in which one line has zero
length (i.e., a point and the other is a line of finite length.
This is the extreme case of the configuration in which the
two lines have different lengths. We will study the case
where both lines have finite lengths in the following section.
We in fact study the three configurations shown in Figs.
5(a)-5(c). The plots of P(l|r) for these configurations are
shown in Fig. 6. The plots have a power-law regime with
exponent-1.75 for the configurations of Figs(® and 5c),

and exponent-2.2 for the configuration of Fig. (5). We
denote this regime as the “point-line regime.” Figure 7

10! 102 103 g . .
! shows the crossover from point-line behavior to two-points
behavior.

FIG. 2. P(l|r) vs| for configuration of two lines of equal length
with r =8, 6= (from bottom to top 3° (filled square, 6°, 12°, 20°,
40°, and 180°(unfilled squarg The corresponding well length§
are 4890, 2445, 1224, 737, 374, and 128, respectively. The plots are We can now study configurations of the type shown in
normalized such that the initial sections of plots are coincident. Fig. 1(b) in which the lines are of different length¥/, and

3. Unequal length symmetric lines
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FIG. 4. P(l|r) vs | for configuration of two lines of equal
length.(a) r=8, #=3°, W= (from top to bottom 38, 76, 152, 304,
1216, and 2432b) r =1, #=29°, W= (from bottom to top 8, 17,
33, 66, 132, 265, and 52%;) r=1, §=180°, W= (from bottom to
top) 8, 16, 32, 64, and 128. For all plots, the larger the valu&/pf
the larger the value df at which behavior changes from two-lines
behavior to two-points behavior for which the slope-i2.35. The

insets plot the crossover vallievs I max-

W,. For such a configuration we would expect three power-
law regimes(i) for smalll such that the two lines appear to

be infinite, a two-line regime, with slope dependentdiii)
a point-line regime, with slope-1.75, for values of large
enough that the shorter line appears to be a point,(&nd

(b)
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FIG. 5. Example configurations in which one line is of finite

lengthW and one is of zero lengtfi.e., a point. In all cases, the
shortest distance between the point and the line is
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PIr)

102
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FIG. 6. P(l|r) vs| for configuration of a point and a line with
r=1 andW=128. From top to bottom, the plots are for the con-
figurations shown in Figs.(8), 5(c), and gb), respectively. We see
that the slopes in configurations where the point is closest to the end
of the line [Figs. 5a) and Hc)] are the samdwith some initial
difference and they are different from the slope in the configura-
tions in which the point is closest to the middle of the lifeg.
5(b)].

two-point regime, for even larger valueslaffhere both lines
appear to be points. Plots &(l|r) for such configurations
are shown in Fig. 8 and are consistent with our expectations.

4. Complex configurations (unequal length nonsymmetric lines)

The last of the coplanar configurations is of the type
shown in Fig. 1c). In general, based on the reasoning above,
for configurations of this type we would expee(l|r) to
have four power-law regimes. For the configuration shown in
Fig. 1(c), in which W, ,<W,<W,,,, the power-law regimes
would be as follows{i) a power-law regime corresponding
to the angled between the segment®/;, and W,, (ii) a
power-law regime corresponding to the angle 6 between
segmentsV, and W, (iii) a point-line power-law regime
entered when>W,,,, and(iv) the two-points regime. Fig-
ure 9 is a plot ofP(l|r) which shows this behavior.

B. Noncoplanar lines

For noncoplanar lines, fde>r, the fact that the lines are
not coplanar should be irrelevant; what is relevant is the
effective angle between the lines. This angle is obtained by

3 '103 T 1

1071k i

] -175 ¢ 1o |4
107
Sf ;
10754

1077
102 10°
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FIG. 7. P(l|r) vs | for configuration of a point and a line in
which the point is closest to the end of the line witk1 andW
= (from bottom to top 2, 4, 8, 16, 32, 64, and 128. For all plots, the
larger the value ofW, the larger the value of=1 at which the
behavior changes from point-line behavior to two-points behavior.
The inset plotd vs W.
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FIG. 10. P(l|r) vs | for configurations of two lines of equal
length. The coplanar configuration hias 1, #=90°, andW= 256
and the lines are coplanar. The noncoplanar configuration is ob-
tained from the coplanar configuration by moving one of the lines a
distance 8 perpendicular to the plane defined by the coplanar lines.
One sees that for large the power-law regimes of the two plots
have the same exponent.

PIr)

C. Scaling of the crossover between power law regimes

10° 102 10° ~
{ We define the value df=I at whichP(l|r) crosses over
) . . . from one power-law regime to another power-law regime as
FIG. 8. P(l|r) vs| for configurations of two lines of different o'\ /2,6 off where straight lines fit to the power-law re-
lengths withr =1 andW,=128.(a) §=7°, W,= (from top to bot- . .

. . imes, between which the crossover takes place, cross. In
tom) 16, 32, and 64. Three power-law regimes can be seen: th (1) th | 1 at which the | d toff
two-lines regime, the point-line regime, and the two points regime. 9. e V.a ues of at whic _ € °"(‘j’e_r an upper cutofts

occur scale independently e%nin andL %min, respectively. By

(b) 6=180°, W, = (from bottom to top 4, 8, 16, 32, 64, and 128.
Only the first two power-law regimes can be seen: the two-line
regime and the point-line regimghe two-points regime would re-
quire even larger values o¢f.

£xtension, we would expect that all characteristic values of
the distribution, including crossovers between different
power-law regimes, would also scale X% n whereX is the

length in the system that controls the crossover. Thus, in

analogy with the scaling of the most probable valué,bf,
sliding the lines toward each other along the line of shortest gy g P

Euclidean distance between the lif@sthout changing their | * = cr9min, (4)
orientation$ until they touch; the lines are then coplanar and

th_e angle betwgen them determines _the bghawd?(cbfr)_. we would, in fact, expect that the value bfi at which
Figure 10 contains plots for two configurations which illus- P(I|r) crosses over from two-lines behavior to two-points
trate this:(i) two coplanar lines withh=1, §=90°, andW behavior scales as

=256, and(ii) the same configuration with the second line

translated out of the plane by distance 8. We see that while . Ao
there is some difference in the plots for siialthe slope of I=ci(O)r o ®)
the two-lines regime is the same for the two plots.
where
104} ™1 80 ] I max= T+ 2W sin( 6/2) (6)
%10-6, ] is the maximum Euclidean distance between the two lines
a i -1.2 T~ i andc,(6) is a slowly varying function off. In ordgr for a
. 175 D two-lines regime to exist, the two-lines regime cutbfiust
107 | be greater tham*, the maximum value of the distribution.
-2.35 2§ ;
. . That is,
102 i 10° 10*
Cy[[r +2W sin( §/2)]9min> ¢ rmin, (7)

FIG. 9. P(l|r) vs | for configurations of two lines of different
lengths which “overlap”[see Fig. 1c)] with 6=7°, r=1, Wy, which implies
=32, Wy,=128, and W,=256. Four power-law regimes are

present: the two-line {=7°) regime (slope —3.0), the two-line o
(#=180°—7°) regime(slope —1.2), the point-line regiméslope (c/cy)Fmin—r ®)
—1.75), and the two-points regin{slope — 2.35). 2 sin( 6/2)
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In Figs. 4a), 4(b), and 4c), the insets contain plots of @ (b) ©
Versusr.x. For 6=3°, the scaling exponent is consistent H ! '
with Eq. (5) but for #=29° and 180 the scaling exponent is L4 w,

' ' + 4
1.0+0.1. ! : J w, w,

Using the same reasoning that led to Es), we would . - rer
expect the crossover from point line to two-points behavior
to scale as

T = c,Wdmin, (9)

becausaN is the length that controls this crossover; as seen
in Fig. 7, the larger the value &, the larger the value df
at which the crossover from point-line to two-points behav-
ior occurs. However, as seen in the inset in Fig. 7, the cros%
over length scales with an exponent 0.1 notd,,.

Finally, we would expect that for different length lines,

the crossover from two-lines behavior to two-point behavior o
would scale as initial strong decay of the distribution followed by a two-

point power-law regime. The good collapse for small
T=cs4( ) Wamin, (Wo<W,), (10 = |/rdmin indicates that the strong initial decay is not a lattice
2 effect

becausaV, is the length that controls this crossover; as seen Because of the small values lo&t which the crossover to
in Fig. 8, the larger the value &, the larger the value df the two-point regime occurs it is difficult to Q|fferent|ate be-
at which the crossover occurs. Again, the insets in Fig. §Ween a power law andstretched exponential decay. We
indicate that the crossover scales with exponent-D.a. will proceed as if the decay were either a power law with
We cannot explain why in some cases the crossover scaléope g(R) or equivalently an exponential with “effective
with d i, and in others it scales with an exponent close to 1slope” g(R).
It is, of course, possible that corrections to scaling are strong One might argue as follows that the initial decay of
and that we are not seeing the true asymptotic behavior ab(l|r) for parallel lines must be exponential: Since the two-
the scaling of the crossover. These corrections to scalinfines regime of the probability distribution for a parallel well
might reflect the nondilute nature of the cluster close to theconfiguration must always decay faster than the two-lines
lines; a scaling exponent of 1 would be consistent with thisregime of a configuration with small but nonze#@nd since
nondilute regime. If this is the case, the question still remainsve believeg, () goes to infinity a® goes to zero, the decay
as to why the corrections to scaling are strong in some corfor parallel lines must be exponentiéle., faster than any
figurations and not in others. This area is a subject for furthepower-law decay This, however, need not be the case. In
study. Simulations for larger configurations than can feasiblyorder for a two-lines regime to exist, E@®) must hold. So as
be performed at present may help us understand the observ@@ decrease, we must increasaV, increasing the aspect

FIG. 11. Example configurations for parallel wellg) Simple
configuration of wells of equal lengtkb) Configuration of wells of
nequal length\(V;>W,). (c) Configuration in which shortest line
etween the end of one well and the other well does not terminate at
the end of the other wellW,; <W,<Wy;).

behavior of the crossover. ratio R, to maintain a two-lines regime. But since the effec-
tive slope for parallel wellsg(R) increases with increasing
IV. PARALLEL WELLS R, the decay can be a power law and still always have a

A. Simple configurations greater slope than the configuration with small but nonzero

As with nonparallel wells we first consider the simple
configurations shown in Fig. 18 in which the parallel wells

are of the same length. Figure(&2plots P(I|r) versusl for 100[ !
r=1 and variousV. The initial decay of the plots increases 1072} 1
with increasingV because the longer the wells, the lower the o 10 ] !
probability for long shortest paths. Eventually, all plots cross < 1 3
over to a power-law regime with slope consistent with that a 10_6[ o
for two points. To see if this initial decay is a lattice effect, 1078} 2% ]
Fig. 13 plots of the scaled distributionminP (I/r 9min| W) for 10-10] e |
variousr andW where the aspect ratio, 0 s .
10" 102
W {
R=—, (11 , . .
r FIG. 12. P(l|r) vs| for configurations of two parallel lines of

equal length withr =1 andW= (from top to bottom O (two points,
is fixed atR=32. Changingr and W but keepingR fixed 4, 8, 16, and 32. The slopes of the power-law regimes of the plots
results in scaling all lengths in the geometry by the saméor all configurations are the same but the initial decay of the plots
factor and the plots collapse as expected. Again, we note thecreases with increasingy.
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FIG. 13. P(l|r) vs| for configurations of two parallel lines of
equal length with W,r)=(from top to bottom (32,1), (64,2,
(96,3, (128,9, (160,53, and(196,9, (b) plots of (a) scaled with the
variable x=1/r%in, The plots in(b) collapse nicely as would be
expected since they all have the same aspect natio, The good
collapse for smallx indicates that the smak behavior is not a
lattice effect.

B. Complex configurations

The treatment of the more complex configurations shown
in Figs. 11b) and 1Xc) follows that of nonparallel wells.
P(l|r) for configurations of the type in Fig. {4 would
contain an initial two-line regime with slopggf R=W,/r), a
point-line regime, and finally a two-point regime(l|r) for
configurations of the type in Fig. 1d), with W;,<W,
<W;, would contain an initial two-line regime with slope
g(R=W,,/r), a two-lines regime with slopg,(6=m), a
point-line regime, and a two-point regime.

C. Quasi-Euclidean regime

When the length of the wells is very large and the distance
between the wells is small the behavior of the most probable

shortest path between the wells is close to a straight Iinqin

This can be seen in Fig. 14 in which we pldt, the most
probable value of the shortest path, versuor various

PHYSICAL REVIEW E65 066105

most probable ¢

most probable ¢

most probable ¢

10%¢

most probable ¢

10° 10!
r

FIG. 14. Most probablé vsr for configurations of two parallel

es of equal length(a) W=16,r=1, 2, 4, 8, and 14(b) W
=32,r=1,2,3,4,8,and 16c) W=64,r=2,4,5,6,7, 8, 16, and
32. (d) Combined plot of(a), (b), and(c). The upper and lower

lengthsW. For long enough wells, there is a regimeroh  jqhed lines have slope,, (1.374 and 1.0, respectively. The

which

[*=r, (12

larger the value oW, the larger the value of at which scaling
crosses over from Euclidean behavior to fractal behavior.

are occupied ip;, . The probability that one or more bonds in
as one would expect in Euclidean space in which the shortegihe straight line path is not occupied is thus fi; and the
path is a straight line path of occupied bonds. As also seen iprobability that one or more bonds in thé¢possible straight
Fig. 14, for a given well length, as increases, there is a line paths between the wells are not occupied is-pf)".

value ofr, r*, at which the behavior crosses over to that of The probability that at least one straight line path has all

3D percolation. We can develop a simple expression to estibonds occupied is then

mate r* as follows: The probability that all bonds in a
straight line path between two wells separated by distance

066105-6
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difference between the values oandr .y is smal) should
the slopes of the parallel configuration and the configuration
with small but nonzer@ be equal. That is,

9[W/r1=g,(6), (15)

WhereE(R) is defined in Sec. IVA.

OE . : . : reveid VI. DISCUSSION AND SUMMARY
0 100 200 300 400 500
W Motivated by the need to more realistically model the

geometries found in oil recovery activities, we have deter-
mined the scaling form for the distribution of shortest paths
between two lines in three-dimensional percolation systems.
Using simple scaling arguments we explained the rich fractal
behavior of the shortest path in these systems.

FIG. 15. Value ofr at which behavior changes from linear to
fractal, r*, vs W. For r<r*(W), I~r while for r>r*(W), |
~r9min. The dashed line is a prediction of Ed.4).

The shortest path will exhibit linear behavidt, =r when

P(r.W) is of the order unity. Settind®(r* ,W)=a in Eq. While it is doubtful that features other than the initial
(1(3) \A\,(,)e find y P W) d peak and the first power-law regime will be observed with
’ measurements of actual oil fields, one can make the an im-
. In(1—a*™) portant inference about the actual behavior of the distribu-

NP (14)  tions of shortest paths and breakthrough times: Because the
slope of the power-law regime decreases with increasing

In Fig. 15 we plot the observed valuesf and the values angle between the wells, the uncertainty in the predicted

predicted by Eq(14) with a value ofa=0.55 that gives the shortest path or breakthrough times increases as the angle

best fit to the observed values. between the wells is increased. So, although certain opera-
tional considerations may favor configurations with large

V. RELATIONSHIP BETWEEN PARALLEL WELLS angles between the wells, a price is paid in the increased
AND “CLOSE TO PARALLEL” WELLS uncertainty in predictions of the most probable shortest path

or breakthrough time.

For a givenr, we expect that a configuration with a small A number of challenges, however, remain:
but nonzero angle will have a power-law regime slope very (i) Qualitatively, why does the power-law regime expo-
close to thgeffective power-law regime slope of a configu- nentg,(6) depend on angle? Why below some angleis
ration of parallel lines with the san. This at first leads to  g,(6) greater than the corresponding power-law exponent for
a seeming paradox: If we increase or decrédséut keep  the two-points configuration and smaller aba¥&
the angle of the nonparallel wells fixed, the slope of the (ii) Can one develop an expression f( #)? An exact
two-lines regime of the nonparallel well configuration doesexpression foig, for two points in two-dimensions was ob-
not change as discussed in Sec. Ill A 1. However, if we contained by Ziff[5] using conformal invariance arguments of
sider this configuration as a parallel configuration, changingardy[14]. Possibly this approach could be extended to find
W changes the aspect ratio that changes the power-law rg; for point-line and two-line configurations, at least in two
gime slope as discussed in Sec. IV A. This seeming incondimensions.
sistency is resolved as follows: On the one hand, for a two- (jii) How is the fact that the crossover from one power-
lines regime to existW must be at least as large as the valuejaw regime to another does not scale with the expodgpt
given by Eq.(8). If Wis too small, there will be no two-lines  explained? Is this simply an artifact of corrections to scaling
regime and both the parallel and small-angle configurationg/hich would disappear if we could simulate much larger
will look like the configuration for two points. On the other systems or is the scaling of the crossover actually anomalous
hand, ifW is increased, keepingand ¢ fixed, the greater is in certain configurations?
the deviation from parallel lines and there is no reason why
the parallel and small-angle configurations should have the ACKNOWLEDGMENTS
same slopes in their power-law regimes.
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