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Fractal behavior of the shortest path between two lines in percolation systems
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Using Monte Carlo simulations, we determine the scaling form for the probability distribution of the shortest
path l between two lines in a three-dimensional percolation system at criticality; the two lines can have
arbitrary positions, orientations, and lengths. We find that the probability distributions can exhibit up to four
distinct power-law regimes~separated by crossover regimes! with exponents depending on the relative orien-
tations of the lines. We explain this rich fractal behavior with scaling arguments.
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I. INTRODUCTION

There has been considerable recent activity@1–5# analyz-
ing P( l ur ), the probability distribution for the length of th
shortest path,l, between two points separated by Euclide
distancer in a percolation system@6–9#. This paper extends
that work by determining the scaling form of the distributio
of shortest paths between two lines of arbitrary positi
relative orientation and lengths in three-dimensional~3D!
systems. These configurations are important because
much more realistically model the configurations used in
recovery in which fluid is injected in one well~one of the
lines in our configuration! and oil is recovered at a secon
well ~the second line in our configuration!; the wells may, in
reality, be at arbitrary orientation and of different lengths.
important quantity in oil exploration is the ‘‘breakthroug
time’’or ‘‘first passage time,’’ the elapsed time for the in
jected fluid to first reach the second well@10,11#. Because
the shortest paths between the two wells is strongly co
lated with the breakthrough times@3# and the shortest path
can be modeled more efficiently than the breakthrough ti
we study the distributions of shortest paths here to ob
insights into the behavior of the breakthrough time distrib
tions.

The scaling form for the two-points configuration
which the two points are located at@(L2r )/2,L/2,L/2#,@(L
1r )/2,L/2,L/2# in a system of sideL has been found to be
@1#

P~ l ur !;
1

r dmin
S l

r dmin
D 2gl

f 1S l

r dmin
D f 2S l

Ldmin
D , ~1!

where

f 1~x!5e2ax2f
~2!

and

f 2~x!5e2bxc
. ~3!

The exponentsgl , dmin , f, and c are universal and the
constantsa andb depend on lattice type. In 3D, the values
these exponents have previously been found to be@3# gl
52.360.1, dmin51.3960.05, f52.160.5, and c52.5
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60.5. The first stretched exponential function,f 1, reflects
the fact that the shortest path must always be at least equ
the distancer between the two points; the second stretch
exponential function,f 2, reflects the fact that the lengths o
the shortest paths are bounded because of the finite sizeL of
the system.

We find that the scaling form for the two-lines configur
tion has the same form as that found for the shortest p
distribution between two points with the exceptions that~i!
the power-law regime of the distribution as represented
the term (l /r dmin)2gl in Eq. ~1! is replaced with up to four
different power-law regimes~separated by crossover re
gimes! with exponents depending on the relative orientatio
of the lines and~ii ! the Euclidean distancer in Eq. ~1! be-
tween the two points is replaced by the shortest Euclid
distance between the two lines. The lengths of the lines af
the ranges of the power-law regimes.

II. SIMULATIONS

Monte Carlo simulations were performed using the Le
method and growing clusters from two sets of seeds—
for each line. The length of the shortest path between the
lines is the sum of the chemical distances from each se
seed sites to the point where a cluster started at one s
seeds meets a cluster started from the other set of seed@4#.
The cluster growth for a given realization is terminated wh
the two clusters meet. For parallel line configurations,
which the probability distributions decay rapidly, we use t
method of Ref.@12# to obtain good statistics for shorte
paths that have very low probabilities. We use the mem
management technique described in Ref.@13# to perform
simulations in which the growing clusters never hit a boun
ary of the system.

The clusters that are created and included in our anal
are of all sizes, not just the incipient infinite cluster.

III. NONPARALLEL WELLS

A. Coplanar lines

1. Equal length symmetric lines

We start by considering relatively simple configuratio
of the type shown in Fig. 1~a! in which the lines are coplanar
©2002 The American Physical Society05-1
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of equal length, and are positioned symmetrically. We w
study configurations in which the lines are of unequal len
@see Fig. 1~b!# and/or are not positioned symmetrically@see
Fig. 1~c!# in the following sections. In all of these configu
rations,r is the shortest Euclidean distance between the
lines.

Figure 2 contains log-log plots ofP( l ur ), the shortest path
distribution for r 58 and various values ofu. We have cho-
senr 58 so that the initial cutoff is present; for smaller va
ues of r, lattice effects destroy this initial cutoff. Since th
focus of this paper is the power-law regimes, not the ini
or final cutoffs, in all later figures we will choose configur
tions with r 51 so that the power-law regime is as long
possible. The exception to this will be cases in whichu is
very small where smallr introduces other lattice effects.

We note that after the initial peak in each distributio
there is a power-law regime, the slope of which,gl(u), in-
creases with increasingu. We will call this power-law re-
gime the ‘‘two-lines regime.’’ Simple scaling arguments im
ply that if the lengths of the lines were infinite, these tw
line regimes would continue indefinitely. For finite lin
lengths, we would expect that, for largel, the distributions
would exhibit a crossover to a power-law regime with t
same exponent as that for a configuration with two point
because for largel the long paths travel far enough awa
from the lines that they appear to be points. In this regim
the power-law exponent has the value of that of two poin
2.35 @3#. For the plots in Fig. 2, in order to see the pow

FIG. 1. Example configurations of two nonparallel lines whi
are studied.~a! Simple configuration of lines of equal length.~b!
Configuration of lines of unequal length (W1.W2). ~c! Configura-
tion in which the shortest distance between lines does not termi
at the ends of lines (Wa1,W2,W1b).

FIG. 2. P( l ur ) vs l for configuration of two lines of equal lengt
with r 58, u5~from bottom to top! 3° ~filled square!, 6°, 12°, 20°,
40°, and 180°~unfilled square!. The corresponding well lengthsW
are 4890, 2445, 1224, 737, 374, and 128, respectively. The plot
normalized such that the initial sections of plots are coincident
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regimes clearly, we have chosen the lengths of the lines l
enough that this crossover occurs after the maximum va
of l in the plots.

In Fig. 3, we plotgl(u) vs u. The plot suggests thatgl(u)
diverges asu goes to zero. Atu below uc'15°, gl(u) is
greater thangl , the power-law regime exponent for the two
points configuration. Aboveuc , gl(u) is less thangl .

For two lines oriented at an angle less thanuc , our results
are consistent with the qualitative argument that the slope
the power-law regime should be greater than the slope of
power-law regime for two points because there are m
ways to connect the two lines and the probability that th
will be long paths is decreased. Foru.uc , however, where
our results indicate that the slope of the power-law regi
for the two-lines configuration is smaller than the slope
the power-law regime for two points, it is less clear how
explain the behavior.

The crossover between the two-line regime and the tw
point regime is illustrated in Fig. 4 where in each panel
plot P( l ur ) for fixed u, and various values ofW. As ex-
pected, the larger the length of the lines, the higher the va
of l̂ , the value ofl at which the crossover occurs. Quantit
tive analysis of the crossover behavior is given in Sec. III

2. Point-line configurations

We next study configurations in which one line has ze
length ~i.e., a point! and the other is a line of finite length
This is the extreme case of the configuration in which
two lines have different lengths. We will study the ca
where both lines have finite lengths in the following sectio
We in fact study the three configurations shown in Fig
5~a!–5~c!. The plots ofP( l ur ) for these configurations ar
shown in Fig. 6. The plots have a power-law regime w
exponent21.75 for the configurations of Figs. 5~a! and 5~c!,
and exponent22.2 for the configuration of Fig. 5~b!. We
denote this regime as the ‘‘point-line regime.’’ Figure
shows the crossover from point-line behavior to two-poi
behavior.

3. Unequal length symmetric lines

We can now study configurations of the type shown
Fig. 1~b! in which the lines are of different lengths,W1 and

te

re

FIG. 3. The exponent of the power-law regime ofP( l ur ), gl(u),
for two lines vsu. The dashed line isgl(u)52.35, the value ofgl

for two points.
5-2
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W2. For such a configuration we would expect three pow
law regimes:~i! for small l such that the two lines appear
be infinite, a two-line regime, with slope dependent onu, ~ii !
a point-line regime, with slope21.75, for values ofl large
enough that the shorter line appears to be a point, and~iii ! a

FIG. 4. P( l ur ) vs l for configuration of two lines of equa
length.~a! r 58, u53°, W5~from top to bottom! 38, 76, 152, 304,
1216, and 2432~b! r 51, u529°, W5~from bottom to top! 8, 17,
33, 66, 132, 265, and 529,~c! r 51, u5180°, W5~from bottom to
top! 8, 16, 32, 64, and 128. For all plots, the larger the value ofW,
the larger the value ofl at which behavior changes from two-line
behavior to two-points behavior for which the slope is22.35. The

insets plot the crossover valuel̂ vs r max.

FIG. 5. Example configurations in which one line is of fini
length W and one is of zero length~i.e., a point!. In all cases, the
shortest distance between the point and the line isr.
06610
r-

two-point regime, for even larger values ofl where both lines
appear to be points. Plots ofP( l ur ) for such configurations
are shown in Fig. 8 and are consistent with our expectatio

4. Complex configurations (unequal length nonsymmetric lines)

The last of the coplanar configurations is of the ty
shown in Fig. 1~c!. In general, based on the reasoning abo
for configurations of this type we would expectP( l ur ) to
have four power-law regimes. For the configuration shown
Fig. 1~c!, in which W1a!W2!W1b , the power-law regimes
would be as follows:~i! a power-law regime correspondin
to the angleu between the segmentsW1a and W2, ~ii ! a
power-law regime corresponding to the anglep2u between
segmentsW2 and W1b , ~iii ! a point-line power-law regime
entered whenl @W1b , and ~iv! the two-points regime. Fig-
ure 9 is a plot ofP( l ur ) which shows this behavior.

B. Noncoplanar lines

For noncoplanar lines, forl @r , the fact that the lines are
not coplanar should be irrelevant; what is relevant is
effective angle between the lines. This angle is obtained

FIG. 6. P( l ur ) vs l for configuration of a point and a line with
r 51 andW5128. From top to bottom, the plots are for the co
figurations shown in Figs. 5~a!, 5~c!, and 5~b!, respectively. We see
that the slopes in configurations where the point is closest to the
of the line @Figs. 5~a! and 5~c!# are the same~with some initial
difference! and they are different from the slope in the configur
tions in which the point is closest to the middle of the line@Fig.
5~b!#.

FIG. 7. P( l ur ) vs l for configuration of a point and a line in
which the point is closest to the end of the line withr 51 andW
5~from bottom to top! 2, 4, 8, 16, 32, 64, and 128. For all plots, th

larger the value ofW, the larger the value ofl > l̂ at which the
behavior changes from point-line behavior to two-points behav

The inset plotsl̂ vs W.
5-3
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sliding the lines toward each other along the line of shor
Euclidean distance between the lines~without changing their
orientations! until they touch; the lines are then coplanar a
the angle between them determines the behavior ofP( l ur ).
Figure 10 contains plots for two configurations which illu
trate this:~i! two coplanar lines withr 51, u590°, andW
5256, and~ii ! the same configuration with the second li
translated out of the plane by distance 8. We see that w
there is some difference in the plots for smalll, the slope of
the two-lines regime is the same for the two plots.

FIG. 8. P( l ur ) vs l for configurations of two lines of differen
lengths withr 51 andW15128. ~a! u57°, W25~from top to bot-
tom! 16, 32, and 64. Three power-law regimes can be seen:
two-lines regime, the point-line regime, and the two points regim
~b! u5180°, W25~from bottom to top! 4, 8, 16, 32, 64, and 128
Only the first two power-law regimes can be seen: the two-li
regime and the point-line regime~the two-points regime would re
quire even larger values ofl ).

FIG. 9. P( l ur ) vs l for configurations of two lines of differen
lengths which ‘‘overlap’’@see Fig. 1~c!# with u57°, r 51, W1a

532, W1b5128, and W25256. Four power-law regimes ar
present: the two-line (u57°) regime ~slope 23.0), the two-line
(u5180°27°) regime~slope21.2), the point-line regime~slope
21.75), and the two-points regime~slope22.35).
06610
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C. Scaling of the crossover between power law regimes

We define the value ofl > l̂ at whichP( l ur ) crosses over
from one power-law regime to another power-law regime
the value ofl where straight lines fit to the power-law re
gimes, between which the crossover takes place, cross
Eq. ~1! the values ofl at which the lower and upper cutoff
occur scale independently asr dmin andLdmin, respectively. By
extension, we would expect that all characteristic values
the distribution, including crossovers between differe
power-law regimes, would also scale asXdmin whereX is the
length in the system that controls the crossover. Thus
analogy with the scaling of the most probable value ofl ,l * ,

l * 5crdmin, ~4!

we would, in fact, expect that the value ofl , l̂ at which
P( l ur ) crosses over from two-lines behavior to two-poin
behavior scales as

l̂ 5c1~u!r max
dmin, ~5!

where

r max5r 12W sin~u/2! ~6!

is the maximum Euclidean distance between the two li
and c1(u) is a slowly varying function ofu. In order for a
two-lines regime to exist, the two-lines regime cutoffl̂ must
be greater thanl * , the maximum value of the distribution
That is,

c1@r 12W sin~u/2!#dmin.crdmin, ~7!

which implies

W.
~c/c1!1/dmin2r

2 sin~u/2!
. ~8!

e
.

s

FIG. 10. P( l ur ) vs l for configurations of two lines of equa
length. The coplanar configuration hasr 51, u590°, andW5256
and the lines are coplanar. The noncoplanar configuration is
tained from the coplanar configuration by moving one of the line
distance 8 perpendicular to the plane defined by the coplanar li
One sees that for largel, the power-law regimes of the two plot
have the same exponent.
5-4
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In Figs. 4~a!, 4~b!, and 4~c!, the insets contain plots ofl̂
versusr max. For u53°, the scaling exponent is consiste
with Eq. ~5! but for u529° and 180 the scaling exponent
1.060.1.

Using the same reasoning that led to Eq.~5!, we would
expect the crossover from point line to two-points behav
to scale as

l̂ 5c2Wdmin, ~9!

becauseW is the length that controls this crossover; as se
in Fig. 7, the larger the value ofW, the larger the value ofl
at which the crossover from point-line to two-points beha
ior occurs. However, as seen in the inset in Fig. 7, the cro
over length scales with an exponent 1.060.1 notdmin .

Finally, we would expect that for different length line
the crossover from two-lines behavior to two-point behav
would scale as

l̂ 5c3~u!W2
dmin, ~W2,W1!, ~10!

becauseW2 is the length that controls this crossover; as se
in Fig. 8, the larger the value ofW2, the larger the value ofl
at which the crossover occurs. Again, the insets in Fig
indicate that the crossover scales with exponent 1.060.1.

We cannot explain why in some cases the crossover sc
with dmin and in others it scales with an exponent close to
It is, of course, possible that corrections to scaling are str
and that we are not seeing the true asymptotic behavio
the scaling of the crossover. These corrections to sca
might reflect the nondilute nature of the cluster close to
lines; a scaling exponent of 1 would be consistent with t
nondilute regime. If this is the case, the question still rema
as to why the corrections to scaling are strong in some c
figurations and not in others. This area is a subject for furt
study. Simulations for larger configurations than can feas
be performed at present may help us understand the obse
behavior of the crossover.

IV. PARALLEL WELLS

A. Simple configurations

As with nonparallel wells we first consider the simp
configurations shown in Fig. 11~a! in which the parallel wells
are of the same length. Figure 12~a! plots P( l ur ) versusl for
r 51 and variousW. The initial decay of the plots increase
with increasingW because the longer the wells, the lower t
probability for long shortest paths. Eventually, all plots cro
over to a power-law regime with slope consistent with th
for two points. To see if this initial decay is a lattice effec
Fig. 13 plots of the scaled distributionsr dminP( l /r dminuW) for
variousr andW where the aspect ratio,

R5
W

r
, ~11!

is fixed at R532. Changingr and W but keepingR fixed
results in scaling all lengths in the geometry by the sa
factor and the plots collapse as expected. Again, we note
06610
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initial strong decay of the distribution followed by a two
point power-law regime. The good collapse for smallx
5 l /r dmin indicates that the strong initial decay is not a latti
effect.

Because of the small values ofl at which the crossover to
the two-point regime occurs it is difficult to differentiate b
tween a power law and~stretched! exponential decay. We
will proceed as if the decay were either a power law w
slope ḡ(R) or equivalently an exponential with ‘‘effective
slope’’ ḡ(R).

One might argue as follows that the initial decay
P( l ur ) for parallel lines must be exponential: Since the tw
lines regime of the probability distribution for a parallel we
configuration must always decay faster than the two-lin
regime of a configuration with small but nonzerou and since
we believegl(u) goes to infinity asu goes to zero, the deca
for parallel lines must be exponential~i.e., faster than any
power-law decay!. This, however, need not be the case.
order for a two-lines regime to exist, Eq.~8! must hold. So as
we decreaseu, we must increaseW, increasing the aspec
ratio R, to maintain a two-lines regime. But since the effe
tive slope for parallel wells,ḡ(R) increases with increasing
R, the decay can be a power law and still always hav
greater slope than the configuration with small but nonz
u.

FIG. 11. Example configurations for parallel wells.~a! Simple
configuration of wells of equal length.~b! Configuration of wells of
unequal length (W1.W2). ~c! Configuration in which shortest line
between the end of one well and the other well does not termina
the end of the other well (Wa1,W2,W1b).

FIG. 12. P( l ur ) vs l for configurations of two parallel lines o
equal length withr 51 andW5~from top to bottom! 0 ~two points!,
4, 8, 16, and 32. The slopes of the power-law regimes of the p
for all configurations are the same but the initial decay of the p
increases with increasingW.
5-5
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B. Complex configurations

The treatment of the more complex configurations sho
in Figs. 11~b! and 11~c! follows that of nonparallel wells.
P( l ur ) for configurations of the type in Fig. 11~b! would
contain an initial two-line regime with slopeḡ(R5W2 /r ), a
point-line regime, and finally a two-point regime.P( l ur ) for
configurations of the type in Fig. 11~c!, with W1b!W2
!W1a would contain an initial two-line regime with slop
ḡ(R5W1b /r ), a two-lines regime with slopegl(u5p), a
point-line regime, and a two-point regime.

C. Quasi-Euclidean regime

When the length of the wells is very large and the dista
between the wells is small the behavior of the most proba
shortest path between the wells is close to a straight l
This can be seen in Fig. 14 in which we plotl * , the most
probable value of the shortest path, versusr for various
lengthsW. For long enough wells, there is a regime ofr in
which

l * 5r , ~12!

as one would expect in Euclidean space in which the sho
path is a straight line path of occupied bonds. As also see
Fig. 14, for a given well length, asr increases, there is
value of r, r * , at which the behavior crosses over to that
3D percolation. We can develop a simple expression to e
mate r * as follows: The probability that all bonds in
straight line path between two wells separated by distanr

FIG. 13. P( l ur ) vs l for configurations of two parallel lines o
equal length with (W,r )5~from top to bottom! ~32,1!, ~64,2!,
~96,3!, ~128,4!, ~160,5!, and~196,6!, ~b! plots of ~a! scaled with the
variable x5 l /r dmin. The plots in~b! collapse nicely as would be
expected since they all have the same aspect ratio,W/r . The good
collapse for smallx indicates that the smallx behavior is not a
lattice effect.
06610
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are occupied ispc
r . The probability that one or more bonds

the straight line path is not occupied is thus 12pc
r and the

probability that one or more bonds in theW possible straight
line paths between the wells are not occupied is (12pc

r )W.
The probability that at least one straight line path has
bonds occupied is then

P~r ,W!512~12pc
r !W. ~13!

FIG. 14. Most probablel vs r for configurations of two parallel
lines of equal length.~a! W516, r 51, 2, 4, 8, and 14.~b! W
532, r 51, 2, 3, 4, 8, and 16.~c! W564, r 52, 4, 5, 6, 7, 8, 16, and
32. ~d! Combined plot of~a!, ~b!, and ~c!. The upper and lower
dashed lines have slopedmin ~1.374! and 1.0, respectively. The
larger the value ofW, the larger the value ofr at which scaling
crosses over from Euclidean behavior to fractal behavior.
5-6
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The shortest path will exhibit linear behavior,l * 5r when
P(r ,W) is of the order unity. SettingP(r * ,W)5a in Eq.
~13!, we find

r * 5
ln~12a1/W!

ln pc
. ~14!

In Fig. 15 we plot the observed values ofr * and the values
predicted by Eq.~14! with a value ofa50.55 that gives the
best fit to the observed values.

V. RELATIONSHIP BETWEEN PARALLEL WELLS
AND ‘‘CLOSE TO PARALLEL’’ WELLS

For a givenr, we expect that a configuration with a sma
but nonzero angle will have a power-law regime slope v
close to the~effective! power-law regime slope of a configu
ration of parallel lines with the sameW. This at first leads to
a seeming paradox: If we increase or decreaseW, but keep
the angle of the nonparallel wells fixed, the slope of t
two-lines regime of the nonparallel well configuration do
not change as discussed in Sec. III A 1. However, if we c
sider this configuration as a parallel configuration, chang
W changes the aspect ratio that changes the power-law
gime slope as discussed in Sec. IV A. This seeming inc
sistency is resolved as follows: On the one hand, for a tw
lines regime to exist,W must be at least as large as the va
given by Eq.~8!. If W is too small, there will be no two-lines
regime and both the parallel and small-angle configurati
will look like the configuration for two points. On the othe
hand, ifW is increased, keepingr andu fixed, the greater is
the deviation from parallel lines and there is no reason w
the parallel and small-angle configurations should have
same slopes in their power-law regimes.

Thus, only for the very small range of W for which th
power-law regime exists and for which the configurati
with small but nonzerou is ‘‘close to parallel’’ ~i.e., the

FIG. 15. Value ofr at which behavior changes from linear
fractal, r * , vs W. For r ,r * (W), l;r while for r .r * (W), l
;r dmin. The dashed line is a prediction of Eq.~14!.
,

d
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difference between the values ofr andr max is small! should
the slopes of the parallel configuration and the configurat
with small but nonzerou be equal. That is,

ḡ@W/r #'gl~u!, ~15!

whereḡ(R) is defined in Sec. IV A.

VI. DISCUSSION AND SUMMARY

Motivated by the need to more realistically model t
geometries found in oil recovery activities, we have det
mined the scaling form for the distribution of shortest pa
between two lines in three-dimensional percolation syste
Using simple scaling arguments we explained the rich fra
behavior of the shortest path in these systems.

While it is doubtful that features other than the initi
peak and the first power-law regime will be observed w
measurements of actual oil fields, one can make the an
portant inference about the actual behavior of the distri
tions of shortest paths and breakthrough times: Because
slope of the power-law regime decreases with increas
angle between the wells, the uncertainty in the predic
shortest path or breakthrough times increases as the a
between the wells is increased. So, although certain op
tional considerations may favor configurations with lar
angles between the wells, a price is paid in the increa
uncertainty in predictions of the most probable shortest p
or breakthrough time.

A number of challenges, however, remain:
~i! Qualitatively, why does the power-law regime exp

nent gl(u) depend on angle? Why below some angleuc is
gl(u) greater than the corresponding power-law exponent
the two-points configuration and smaller aboveuc?

~ii ! Can one develop an expression forgl(u)? An exact
expression forgl for two points in two-dimensions was ob
tained by Ziff @5# using conformal invariance arguments
Cardy@14#. Possibly this approach could be extended to fi
gl for point-line and two-line configurations, at least in tw
dimensions.

~iii ! How is the fact that the crossover from one powe
law regime to another does not scale with the exponentdmin
explained? Is this simply an artifact of corrections to scal
which would disappear if we could simulate much larg
systems or is the scaling of the crossover actually anoma
in certain configurations?
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