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Impactful scientists have higher tendency to involve
collaborators in new topics
An Zenga, Ying Fana, Zengru Dia, Yougui Wanga , and Shlomo Havlinb,1

Edited by David Weitz, Harvard University, Cambridge, MA; received April 29, 2022; accepted July 4, 2022

In scientific research, collaboration is one of the most effective ways to take advantage of
new ideas, skills, and resources and for performing interdisciplinary research. Although
collaboration networks have been intensively studied, the question of how individual
scientists choose collaborators to study a new research topic remains almost unexplored.
Here, we investigate the statistics and mechanisms of collaborations of individual
scientists along their careers, revealing that, in general, collaborators are involved in
significantly fewer topics than expected from a controlled surrogate. In particular, we
find that highly productive scientists tend to have a higher fraction of single-topic
collaborators, while highly cited—i.e., impactful—scientists have a higher fraction of
multitopic collaborators. We also suggest a plausible mechanism for this distinction.
Moreover, we investigate the cases where scientists involve existing collaborators in a
new topic. We find that, compared to productive scientists, impactful scientists show
strong preference of collaboration with high-impact scientists on a new topic. Finally,
we validate our findings by investigating active scientists in different years and across
different disciplines.

scientific collaboration | research topics | impactful scientists | controlled surrogate

Coauthored publications in science have increased significantly during the last century
(1, 2). Through collaboration, scientists could bring new ideas and techniques from
different fields, which, in many cases, result in high-quality publications. Indeed, it has
been found that the number of authors in a paper (3) and the less prior collaboration
relations between coauthors (4) are strongly associated with the originality of the paper.
Thus, scientific collaboration seems to be an important key to enhance innovation of
research teams.

Studies regarding scientific collaborations have a long history and have attracted much
attention in recent years (5, 6). Early works on scientific collaboration concentrate
on collaboration networks constructed from scientific publication data (6). Numerous
topological properties of collaboration networks have been revealed, such as small-world
features (7), assortative degree mixing (8), rich motifs (9), and community structure (10).
In recent years, attention has been given to further aspects of scientific collaboration.
Regarding the collaboration frequency as tie strength, weak, strong, and super-strong
ties in scientific careers have been identified, and the super-strong ties have been found
to have a positive effect on productivity and citations (11). For coauthored papers,
methods have been designed to collectively allocate credits among authors (12). Another
trend to understand collaboration relations is from the perspective of scientific teams,
with research questions ranging from team-assembly mechanisms (13) to the effect of
team characteristics on team performances (14–17). A specific type of collaboration—
namely, the mentor–mentee relationship—has been recently shown to influence research
performance (18) and academic rewards of scientists (19).

In recent years, numerous works have been devoted to investigate topic switching in
individual careers. With the help of the field-classification codes in physics, it has been
found that research interest of individual physicists could shift significantly from the
beginning to the end of their career (20). The transition map of scientists from field to
field has also been extracted from the data (21). By applying the community-detection
technique in the cociting networks of individual scientists’ papers, scientists have been
found to have a narrow distribution of the number of major topics during their lifetime
(22). This framework has been later used to understand the careers of Nobel laureates
(23) and identify the key mechanisms for hot streaks in scientists’ careers (24). However,
the characteristics and mechanisms of scientists behind initiating collaboration on a new
topic have not been studied. In fact, scientists’ choice to collaborate on a new topic is
a fundamental process that drives the creativity and impact of the scientific research.
The increasingly in-depth development of science requires specialization and accumulated
knowledge for researchers to work on a topic (25, 26), suggesting a hypothesis that science
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Fig. 1. Illustration of topics in which a typical scientist’s collaborators are involved. A shows a real typical evolution of research topics during a focal scientist’s
career. Each node is a paper published by this scientist, and the colors of the nodes represent the research topics of these papers. Node size represents the
number of citations of this paper. B shows the research topics in which each of the focal scientist’s collaborator is involved. The collaborators are sorted in
descending order from top to bottom according to the number of coauthored papers with the focal scientist. Each line shows the results of a collaborator, with
each node on it representing a coauthored paper with the focal scientist. Thus, the first node and the last node on a line denote, respectively, the starting year
and the ending year of the collaboration. We only show the collaborators who published at least five papers with the focal scientist.

might be dominated by single-topic collaboration. On the other
hand, interdisciplinarity and atypical combination of knowledge
have been shown to promote creativity (27, 28), suggesting an-
other hypothesis that involving collaborators specialized in a topic
with another topic may bring fresh ideas and unexpected solu-
tions. Thus, a series of fundamental questions regarding research
topics in scientific collaboration naturally arise: On how many
different topics do a pair of scientists typically collaborate? How do
scientists differ in involving collaborators in their research topics?
What factors would affect the probability of a collaborator to join
a new topic of a given scientist?

In this paper, we address the above questions by systematically
investigating the coevolution of topics and collaborators during
a scientist’s career, aiming to understand how scientists choose to
collaborate on a new topic of research. We decompose the publica-
tion series of a scientist to partial series that record the coauthored
papers with each of his collaborators, allowing us to understand
the statistics of the topics in which collaborators are involved. The
partial time series also enable us to study the temporal features
of the collaboration-topic formation. By comparing the data of
highly productive and highly cited scientists, we investigate how
successful scientists of these two types differ in involving their
collaborators in new topics. We finally compare active scientists
along the past 80 y and across different disciplines to understand
the evolution and disciplinary differences regarding the topics in
scientific collaboration.

Results

We first describe the method (22) to identify the involved topics of
each collaborator of a focal scientist. The method begins with con-
structing a network of the focal scientist’s publications, where the
links are defined by the cociting relations (SI Appendix, Fig. S1).
We then detect communities in the cociting network, where each
major community represents a different research topic of the focal
scientist. In a scientist’s publication time series, we mark each
paper with a color according to the community to which it belongs
(Fig. 1A). The colored time series thus exhibits how a scientist

switches from one topic to another. To capture the involved topics
of the collaborators, we decompose the series of the focal scientist
to partial series, each of which consists of all the coauthored papers
with a given collaborator. The topics in which a collaborator is
involved can be identified by the marked colors of the coauthored
papers. In Fig. 1, we illustrate the publication time series of a
typical scientist, as well as the decomposed time series of his
collaborators. The figure indicates that many collaborators of this
scientist are involved in a very small number of his topics.

To statistically test, quantify, and understand the pattern illus-
trated in Fig. 1, we analyzed the scientific publication data of
the American Physical Society (APS) journals, as well as five
other datasets from other disciplines (see details in Materials and
Methods). The present study will mainly focus on the APS data.
The results of the other five datasets are similar to those of APS;
see Fig. 6 and SI Appendix, Figs. S12–S18 for a summary. After
name disambiguation (29), the APS data contain 236,884 distinct
scientists. We consider as focal scientists, in order to ensure
meaningful community-detection results, all scientists that have
published at least 50 papers, resulting in 3,420 focal scientists.
The rest of the authors are included in the analysis, as they may
appear as collaborators of these focal scientists.

The first question we ask is: In how many topics is the collab-
orator of a focal scientist typically involved? To this end, for each
focal scientist, we take all his collaborators who coauthored at least
two papers with him and calculate the number of topics in which
each collaborator is involved. The distribution of collaborators in
a number of topics is computed for each focal scientist. Then, we
evaluate over all focal scientists the average fraction of collabo-
rators for a given number of topics, as shown in the probability
distribution in Fig. 2A. The results indicate that, on average, 63%
of collaborators of a scientist are involved in a single topic, and
about 25% are involved in two topics, while 12% are in three or
more topics. To test whether this phenomenon can be explained
by random behavior, we consider a surrogate time-controlled
reshuffling of the coauthored papers of the collaborators. In the
reshuffling process, each paper coauthored by a collaborator and
the focal scientist is exchanged with a randomly selected paper that
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Fig. 2. Number of topics in which collaborators are involved. (A) The distribution of the number of topics in which collaborators are involved with a focal
scientist. For a scientist, on average, about 63% of his collaborators are involved in only one topic. We also show the results of a controlled surrogate case,
where the relations between collaborators and their coauthored papers with the focal scientist are randomly shuffled, which is only about 45%. Note that only
the papers published in the same year are allowed to be shuffled in the randomization (Materials and Methods). (B) For all individual scientists, we calculate the
fraction of their collaborators involved in only one topic (denoted as single-topic collaborators). We show in this panel the distribution of the fraction of single-
topic collaborators for different scientists. It is clearly seen that the majority of scientists tend to have a high fraction of single-topic collaborators compared to
the surrogate control. (C) The distribution of the number of involved topics for collaborators who coauthored at least 10 papers with the focal scientists. For
a scientist, the fraction of these collaborators involved in one topic is close to 20%, suggesting that the number of involved topics is strongly associated with
the number of coauthored papers. In contrast, the controlled surrogate case has about 6% single-topic collaborators. (D) The distribution of the single-topic
collaborator ratio among those having at least 10 copublications with a focal scientist. Around 65% focal scientists have less than 10% single-topic collaborators.
(E) The average number of involved topics for collaborators who coauthored different numbers of papers with the focal scientist. The result shows that the
number of involved topics increases very slowly—i.e., logarithmically—with the number of coauthored papers. The number of involved topics for the surrogate
case is higher than that of the real data, again suggesting the strong tendency of scientists to have single-topic collaborators. (F) The fraction of single-topic
collaborators for the collaborators who coauthored different numbers of papers with the focal scientist.

is published in the same year by another collaborator and the focal
scientist (see SI Appendix, Fig. S2 for illustration). By comparing
the real data and the controlled surrogate in Fig. 2A, one can see
that the high fraction of scientists involved in a single topic, 0.63,
cannot be explained by the controlled surrogate, which is signif-
icantly smaller, 0.45, suggesting the significant tendency of focal
scientists to involve collaborators in fewer topics than expected
by the surrogate (for significance test, see SI Appendix, Fig. S3).
To further support this, we calculate for all focal scientists the
probability density of the fraction of their collaborators involved
in only one topic. As seen in Fig. 2B, the distribution of the
fraction of single-topic collaborators follows a roughly normal
distribution, with the most probable value around 0.65, very close
to the mean value. The surrogate of reshuffled data also follows
a roughly normal distribution, yet with a much smaller most
probable value, close to 0.4. We further compute the distribution
of the number of involved topics for collaborators who coauthored
at least 10 papers with the focal scientists. Collaborators with
many joint papers have a higher chance to be involved in more
than one topic (Fig. 2C ). Nevertheless, despite the smaller fraction
of single-topic collaborators in real data, 0.2, it is still much higher,
over a factor of 3, than that of reshuffled data, 0.06. We also
show in Fig. 2D the distribution of the fraction of single-topic
collaborators among those who coauthored at least 10 papers with
a focal scientist. It can be seen that the distribution is no longer
normal as in Fig. 2B, and the majority of focal scientists in this
case have a very low fraction of single-topic collaborators.

The results in Fig. 2 A–D also indicate that the number of in-
volved topics is strongly associated with the number of coauthored

papers. To quantify this effect, we study directly in Fig. 2E the
relation between the number of involved topics and the number
of coauthored papers. The results suggest a positive correlation
between these two quantities. Note that the nearly linear relation
under the logarithmic x axis indicates that the number of involved
topics increases very slowly—i.e., logarithmically—with the num-
ber of coauthored papers. Note also, in Fig. 2E, that the number
of involved topics in real data are consistently smaller than those
of reshuffled surrogate data for different number of coauthored
papers. This further supports that collaboration with the same
collaborator on several topics is limited—i.e., lower than expected
in a surrogate control. We also compute, in Fig. 2F, the fraction of
single-topic collaborators for collaborators with different number
of coauthored papers with the focal scientists. One can see that the
fraction of single-topic collaborators decreases with the number
of coauthored papers. Nevertheless, the fraction of single-topic
collaborators in real data is constantly higher than that in the
surrogate data, confirming the tendency of collaborators to join
efforts in a single topic.

We further ask how successful scientists are associated with
their collaborators in different topics. There are many ways to
define a successful scientist. In this paper, we consider two widely
adopted metrics—namely, the productivity (in terms of total
publications) and impact (in terms of the mean citations c10 per
paper). Here, c10 is the number of citations that a paper receives
during the 10 years since it was published (29). We show in Fig. 3A
that these two metrics are almost uncorrelated; thus, selecting the
top scientists according to each of the two metrics independently
would result in two very different groups of scientists. Indeed, in
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Fig. 3. Productive and impactful scientists associate differently with single-topic collaborators. (A) Scatterplot of the productivity (measured by the number of
papers) and average impact (measured by the mean citations c10 per paper) of scientists, where each dot represents a scientist. c10 is the number of citations
that a paper receives in the 10 y since it was published. The results show that the correlation between productivity and average impact is very weak, indicated
also by the low Pearson correlation of 0.08. Therefore, the scientists with high productivity and the scientists with high impact are two very different groups.
(B) The fraction of single-topic collaborators for the collaborators who coauthored different numbers of papers with the focal scientist. We compare the 1%
most productive scientists (productive in terms of number of published papers) and the 1% most impactful scientists (impactful in terms of mean citations per
paper). (C) The distribution of the number of topics for the collaborators who coauthored at least 10 papers with the focal scientists. The productive scientists
have a significantly higher fraction of single-topic collaborators, while the highly cited scientists have a lower fraction of single-topic collaborators. (D) The
fraction of single-topic collaborators (among those having at least 10 copublications) for focal scientists with different productivity. More productive scientists
have a significantly higher single-topic collaborator ratio. We fix the impact of the focal scientists and show in D, Inset the Kendall’s τ positive correlation
between a scientist’s single-topic collaborator ratio and his productivity. The dashed line in D, Inset marks the overall correlation. (E) The fraction of single-topic
collaborators (among those having at least 10 copublications) for focal scientists with different impact. Higher-impact scientists have a significantly smaller
single-topic collaborator ratio. We fix the productivity of the focal scientists and show in E, Inset the Kendall’s τ negative correlation between a scientist’s single-
topic collaborator ratio and his impact. The dashed line in E, Inset marks the overall correlation. (F) The fraction of single-topic collaborators (among those
having at least 10 copublications) for focal scientists with different numbers of topics. The legend in F is the same as that in C.

SI Appendix, Fig. S5, we show that the mean citations per paper
of the scientists with the highest productivity (top 1%) is roughly
the same as the mean citations per paper over all scientists. Also,
the productivity of scientists with the highest mean citations per
paper (top 1%) is almost the same as the average productivity of
all scientists. In Fig. 3B, we show the relation between the fraction
of single-topic collaborators and the number of coauthored papers
and compare between the behavior of focal scientists with the 1%
highest productivity and the 1% highest impact (the top 5% and
top 10% scientists show similar trends; SI Appendix, Fig. S6). It
is seen that there is no significant difference between these two
groups of focal scientists when considering the occasional col-
laborators (those who coauthored at most five papers). However,
for the frequent collaborators who coauthored at least 10 papers
with the focal scientists (marked by copub ≥ 10), it is clearly seen
that productive and highly cited scientists behave very differently
in involving scientists in research topics. Productive scientists
have a higher fraction of single-topic collaborators, yet impactful
scientists have a lower fraction of single-topic collaborators, which
means a higher fraction of multitopic collaborators. This differ-
ence is supported by Fig. 3C, where we show directly the distribu-
tions of the number of involved topics for frequent collaborators.

To support the finding in Fig. 3B, we calculate the fraction
of single-topic collaborators among frequent collaborators (copub
≥ 10) for scientists with different productivity and impact in
Fig. 3 D and E, respectively. An increasing trend in Fig. 3D and

a decreasing trend in Fig. 3E can be observed. This suggests that
the fraction of single-topic collaborators is positively correlated
with focal scientists’ productivity and negatively correlated with
focal scientists’ impact. To quantify the correlation, we directly
compute the Kendall’s tau correlation (τ ) between the fraction
of single-topic collaborators (copub ≥ 10) of a scientist and the
scientist’s productivity or impact. Fig. 3 D, Inset shows the corre-
lation between the fraction of single-topic frequent collaborators
and the focal scientists’ productivity, given different impact of the
focal scientists. The results suggest that the positive correlation
exists, even when fixing the impact of the focal scientists, and
the correlation is stronger for scientists with smaller impact.
Fig. 3 E, Inset shows the correlation between the fraction of
single-topic frequent collaborators and the focal scientists’ impact,
given different productivity of the focal scientists. The results
suggest that the negative correlation exists, even when fixing the
productivity of the focal scientists, and the correlation is stronger
for scientists with higher productivity. In Fig. 3F, we show the
fraction of single-topic collaborators (copub ≥ 10) of focal sci-
entists with different numbers of topics. The results indicate that
scientists working on more topics tend to have a lower fraction
of single-topic collaborators. When fixing the number of topics
that a scientist has, the fraction of single-topic collaborators of
productive scientists is still higher than average, and the fraction
of single-topic collaborators of impactful scientists is consistently
lower than average.
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and in the degree-preserved reshuffled counterparts, respectively (Materials and Methods). All the points are located above the diagonal line Qreal = Qrand,
indicating that the community structure in real networks is truly significant. (B) To quantify the research-interest similarity between a focal scientist and each
of his collaborators, we measure the Jaccard similarity of the references given by their papers before collaboration (see SI Appendix, Fig. S7 for results of other
similarity metrics). We show the distribution of the mean similarity for all focal scientists. (C) Qreal/Qrand for focal scientists with different productivity or impact.
A larger Qreal/Qrand indicates a more significant community structure. (D) The mean reference similarity for focal scientists with different productivity or impact.
Productive scientists and their collaborators have limited research interest in common, while impactful scientists and their collaborators have more common
research interest.

We further explore the possible reasons leading to the findings
in Fig. 3. We first test an interesting hypothesis that our findings
are a result of systemic effects that engagement in various fields
yields higher impact. If this were the case, the top interdisciplinary
scientists would tend to have more citations and higher impact.
Their collaborators would, most likely, be interdisciplinary sci-
entists as well—i.e., engaged in multiple topics. However, we
find that the mean citations per paper of individual scientists is
negatively correlated with their number of research topics (see
SI Appendix, section 4 for more details). This observed pattern
suggests that our findings are not due to systemic effects, but more
likely a result of individual behavior of scientists. Specifically, a
productive scientist is usually a principal investigator and, thus,
has a large research team, in which each topic has a specific group
of collaborators working on it. This is supported by the evidence in
Fig. 4 A and C that the collaboration network among collaborators
of a productive scientist has more significant community struc-
ture, which suggests that collaborators of a productive scientist
tend to form clusters (possibly according to topics), and they
are more likely to work with each other in the same cluster. As
the collaborators of a productive scientist tend to work on the
topic in which they are specialized, the fraction of single-topic
collaborators would be high. On the other hand, the high fraction
of multitopic collaborators of highly cited scientists might be
associated with their tendency to work with collaborators who
share similar interests. This is indeed supported by the higher
fraction of common references between an impactful scientist’s
papers and his collaborators’ papers before their collaboration
started, as shown in Fig. 4 B and D. Therefore, the selected
collaborators are not only suitable for the initially collaborated
topic, but also are preferred collaborators for further topics, which
results in a higher fraction of multitopic collaborators.

The next question we ask is: What are the features of the
collaborators involved in single or multiple topics of a focal
scientist? We focus on how the collaboration history with the
focal scientist is related to the probability of the collaborator to
be involved in the next new topic of the focal scientist. The overall
probability of an existing collaborator to be involved in the next
new topic of a focal scientist is close to 0.11. We show in Fig. 5A
the probability to be involved in the next topic of a focal scientist
as a function of the number of past coauthored papers. The results
suggest that collaborators who published more papers with a focal
scientist have significantly higher probability to be involved in the
next topic. Considering that collaborators with many coauthored
papers might have started collaboration with the focal scientist
long ago and may no longer be actively collaborating with the
scientist, we further show in Fig. 5A the probability among recent
collaborators who have coauthored papers with the focal scientists
within the past 2 y. The average probability of a recent collaborator
appearing in the next new topic of a focal scientist is 0.25, much
higher than the overall probability, indicating that a scientist is
significantly more likely to involve recent collaborators in a new
topic. When considering recent collaborators, the probability to
be involved in the next topic still significantly increases with the
number of past coauthored papers. The increasing relations can
be further quantified by the Kendalls’ τ correlations, given in the
legend of Fig. 5A. In Fig. 5C, we also show the correlation for
focal scientists with different productivity or impact. One can see
that the correlation becomes weaker for productive scientists, yet
it becomes stronger for impactful scientists. Fig. 5B depicts the
relation between the probability to be involved in the next topic
and the mean citations of past coauthored papers. Like in Fig. 5A,
we compute here also the probability among recent collaborators
to become a collaborator of a new topic. Interestingly, in both
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Fig. 5. Factors associated with the probability of an existing collaborator to join a new topic of a focal scientist. (A) For a focal scientist that starts to work on
a new topic, we calculate the probability of his existing collaborators to join him in the new topic. The overall probability of an existing collaborator to join the
new topic of a focal scientist is close to 0.11. We compute also the probability among recent collaborators who have coauthored papers with the focal scientists
within the past 2 y and find it to be much higher (i.e., the mean is close to 0.25). Both probabilities show an increasing trend with the number of past coauthored
papers, indicating that more intensive past collaboration increases the probability of a collaborator to join a new topic of a focal scientist. (B) The probability of a
collaborator to join the next topic of the focal scientist versus the mean citations of their past coauthored papers. Both the overall probability and the probability
among recent collaborators (which is much higher) show an increasing trend, suggesting that the collaborators who published highly cited papers with the focal
scientist have higher probability to join the next topic of the focal scientist. (C) The Kendall’s τ correlation between the probability to join the next topic and
the number of past coauthored papers of a collaborator, for focal scientists with different productivity or impact. (D) The Kendall’s τ correlation between the
probability to join the next topic and the citations per past coauthored paper of a collaborator, for focal scientists with different productivity or impact. (E)
The probability of a collaborator to join the next topic in different career stages of the focal scientists. Both the overall probability and the probability among
recent collaborators show a decreasing trend, suggesting that the focal scientists tend to have higher fraction of single-topic collaborators in their later careers.
(F) The Kendall’s τ correlation of the collaborators’ performance and the probability to join the next topic in different career stages of the focal scientists. The
correlations tend to be weaker in the later career stage of the focal scientists.

cases, positive correlations are again observed, suggesting that
collaborators having published higher-impact papers with a focal
scientist have significantly higher probability to become involved
in the next topic of the scientist. In Fig. 5D, we show that
correlation becomes even stronger for impactful scientists. We also
investigate the features of selected collaborators for their first topic
with a focal scientist, finding similarly that initial collaborators of
impactful scientists tend to have much higher mean citations per
past paper, up to a factor of 4 compared to low-impact scientists
(SI Appendix, section 2 and Figs. S8 and S9). These results imply
that a pair of high-impact scientists have significantly higher
probability to initiate collaboration on a new topic, compared to
a pair of low- and high-impact or a pair of low-impact scientists.

The observation in Fig. 5 C and D might be well explainable by
the results in Fig. 4. A focal scientist with high productivity usually
has a large research team, in which each topic has a specific group
of collaborators working on it. Therefore, the collaborators are
very different in their specialization. When a focal scientist selects
collaborators for a new topic, he has to take into account both their
past performance and their suitability for this topic. Therefore, the
productive focal scientists exhibit a lower correlation between
the collaborators’ past performance and their probability to join
the next topic. The impactful focal scientists, on the other hand,
tend to work with collaborators who share similar interests to
them. The collaborators are generally more likely to be suitable
candidates for the new topic of the focal scientists. Taking out
the factor of suitability, the past performance of the collaborators
thus plays a more important role in affecting the probability to
join the next topic. Therefore, for impactful focal scientists, one

can observe a higher correlation between the collaborators’ past
performance and their probability to join the next topic.

Another factor that may affect the probability of collaborators
to become involved in a new topic of a focal scientist is the career
stage of the focal scientist. We thus show in Fig. 5E the probability
of a collaborator to join the next topic in different career stages
of the focal scientist. In addition to the overall probability, we
also provide the probability of recent collaborators. One can
see that the probabilities decrease with the career years of focal
scientists, suggesting that scientists in later career stages tend to
have a lower fraction of multitopic collaborators (i.e., a higher
fraction of single-topic collaborators); see SI Appendix, Fig. S11
for further support. A possible reason for this could be that senior
scientists may have research groups, each of which consists of
specialized collaborators. In Fig. 5F, we compute the Kendall’s
τ correlation of the collaborators’ past performance (coauthored
papers or citations per coauthored paper) and the probability to
join the next topic in different career stages of the focal scientists.
The results show that both correlations decrease with the career
years of the focal scientists, suggesting that senior scientists are less
sensitive to the past collaboration performance when involving
existing collaborators in a new topic.

We further study how the single-topic-collaboration phe-
nomenon evolved in the past decades. To this end, we consider
focal scientists who started their career in different years and
calculate the fraction of their single-topic collaborators. We
consider only scientists in their first 30 career years, making
scientists who start their career in different years comparable.
In Fig. 6A, we observe a decreasing fraction of collaborators
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Fig. 6. Evolution in the last century and discipline comparison. (A) The fraction of single-topic collaborators of scientists who started their career in different
years. We consider only scientists’ first 30 career years, making scientists that started their careers in different years comparable. The career starting years are
marked by symbols, and the first 30 career years are denoted by the dashed lines. One can see that in more recent years, scientists have a lower fraction of
single-topic collaborators, yet the fraction is always significantly higher than surrogate control. The observed trend is supported by A, Inset, where we show
the fraction of single-topic collaborators for the collaborators who coauthored different numbers of papers with the focal scientist. We compare two groups
of scientists whose first 30 career years are, respectively, from the 1940s to the 1970s and from the 1970s to the 2000s. (B) The distribution of the number
of topics in which collaborators are being involved. We compare data from different disciplines, including physics, chemistry, biology, computer science, social
science, and multidisciplinary science. (B, Inset) The fraction of single-topic collaborators for the collaborators who coauthored different numbers of papers with
the focal scientist. We observe a strong tendency of single-topic collaboration, with the fraction of single-topic collaborators being particularly high in biology
and chemistry. (C) The average fraction of single-topic collaborators for the top 10% productive and the top 10% impactful scientists whose first 30-y careers
are in different periods. (D) The average fraction of single-topic collaborators for productive scientists and impactful scientists in different disciplines. In C and
D, the fraction of single-topic collaborators is calculated among collaborators who coauthored at least 10 papers with the focal scientists. Asterisks between
two adjacent bars indicate the P values from the Kolmogorov–Smirnov test of the corresponding distributions. * P ≤ 0.1; ** P ≤ 0.01; *** P ≤ 0.001. Almost all
pairs of distributions significantly differ from one another. The large P values for the 1940s through the 1970s in C are due to the small sample sizes.

involved in a single topic, indicating that in the last century, as
time evolved, more collaborators of scientists tended to work in
multiple topics. Nevertheless, the fraction of scientists involved
in a single topic is still significantly higher than surrogate control,
and the difference seems to have become more prominent as
time evolved, supporting the significant tendency of single-topic
collaborations. We further compare in Fig. 6 A, Inset two groups
of scientists whose first 30 career years are, respectively, from
the 1940s to the 1970s and from the 1970s to the 2000s. The
results show that recent scientists (career from the 1970s to the
2000s) indeed have a lower fraction of single-topic collaborators
for a given number of coauthored papers. In Fig. 6C, we show
the average fraction of single-topic collaborators for top-10%
productive and top-10% impactful scientists whose first 30-y
careers are in different periods. One can see that, in each time
period, the impactful scientists have a lower fraction of single-
topic collaborators compared to overall, while the fraction is
higher for productive scientists. In SI Appendix, Fig. S10, we
additionally examine the correlation between the probability to
join the next topic and the past collaboration performance of a
collaborator for focal scientists who started their career in different
years. The results show that scientists from different years exhibit
similar trends as Fig. 5 C and D.

Finally, we compare data from different disciplines, including
physics, chemistry, biology, computer science, social science, and

multidisciplinary science. In Fig. 6B, we find a similar form
of the distribution of collaborators’ topic numbers in different
fields. We further find in SI Appendix, Fig. S12 that the fraction
of single-topic collaborators in these disciplines is higher than
that of the corresponding surrogate control. Fig. 6 B, Inset shows
that the fraction of single-topic collaborators is particularly high
in biology and chemistry. The reason for this is probably since
these two disciplines have many experimentalists whose research
fields require expensive equipment and long-term accumulation of
knowledge and mastery of techniques, which makes them focus on
fewer topics (SI Appendix, section 3 and Fig. S13). We addition-
ally show in Fig. 6D that in all considered disciplines, impactful
scientists have a lower fraction of single topic than overall, while
productive scientists have higher fraction of single topic than
overall (see SI Appendix, Figs. S14–S18 for more details).

Discussion

Scientific research increasingly depends on teamwork. It is thus
critical to understand the collaboration behavior of scientists. De-
spite much effort that has been made to investigate the structure
and the strength of collaboration networks, how scientists involve
collaborators in their research topics remains poorly understood.
In this paper, we find that the actual number of topics in which
the same collaborator is involved is significantly smaller than
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expected from surrogate time-controlled reshuffling, suggesting
the preference of recruiting collaborators for a single topic. We
interestingly find that productive scientists have a higher fraction
of single-topic collaborators, yet highly cited scientists have a
higher fraction of multitopic collaborators. Our analysis suggest
that the observed difference is associated with their tendency
in selecting collaborators. The impactful scientists tend to have
collaborators sharing similar research interests, while productive
scientists tend to have collaborators specialized in a topic. We
further study for a focal scientist: What are the features of his ex-
isting collaborators when starting a new topic? We find a stronger
tendency of highly cited scientists to involve collaborators with
many publications and high citations per paper, yet, in contrast,
highly productive scientists have a much weaker such tendency.
By comparing active scientists in different years, we observe a
rising probability, but still significantly smaller than the controlled
surrogate, of involving collaborators in multiple topics. We finally
validate our findings across different disciplines, finding that in all
considered disciplines, impactful scientists have a higher tendency
to involve collaborators in new topics.

Our findings can be useful for improving the organization of
science. First, our analysis shows that the productivity of a scientist
and the average impact per paper of the scientist are almost uncor-
related. Productive scientists usually derive their productiveness
from large teams, but our results suggest that these teams do
not produce works with above-average impact. Therefore, policy
makers could consider balancing resources between large and
small teams. Secondly, despite much literature having pointed out
that the challenges of the modern world are increasingly inter-
disciplinary (7), our work shows that science is still dominated
by single-topic collaborations. As multitopic collaborations are
associated with higher impact, proper reorganization of science in
terms of encouraging multitopic collaboration might be helpful
for advancing science. Finally, we find that impactful scientists
tend to choose impactful scientists as collaborators for a new
topic. It implies that successfully breaking new ground is still
a task that is hard to do alone. Thus, there are probably still
obstacles to performing interdisciplinary science that need to be
removed.

This work may provide a perspective for understanding indi-
vidual scientists’ careers. In recent years, numerous patterns in
individual scientists’ careers, such as the random-impact rule (29)
and the hot streak (30), have been revealed. However, related
analyses inevitably take into account coauthored papers in scien-
tists’ careers, causing the risk of regarding collaborators’ behavior
as the focal scientist’s behavior. It is thus still unclear how to
separate the true behavior of a scientist from the publication
records. The method of decomposing publication time series
developed in this paper may shed light on this challenging issue.
In addition, the framework proposed in this paper can be easily
extended to other systems with collaboration, such as film actors,
patent design, and software development. Finally, we note that
our research has limitations. Despite revealing the distribution
of topics in scientific collaboration, our work cannot distinguish
who is the one initiating their collaboration on these topics. Is it
dominated by the focal scientists or by their collaborators? Future
investigation on this issue could deepen our understanding on the
origin of the observed phenomena in this paper.

Materials and Methods

Data. We study in this paper six large-scale datasets, including the disciplines
of physics, chemistry, biology, computer science, social science, and multidis-
ciplinary science. The physics dataset consists of the scientific publication data

of the APS journals (29). The computer science data are the AMiner dataset,
obtained by extracting scientists’ profiles from online web databases (31). The
chemistry data contain the publication data of the American Chemical Society
journals. The biology data contain the publication data of Cell Press journals. The
social science data contain the publication data of SAGE publishing group jour-
nals. The multidisciplinary science data contain all papers in five representative
multidisciplinary journals, including Nature, Science, PNAS, Nature Communica-
tions, and Science Advances. The data of chemistry, biology, social science, and
multidisciplinary science are extracted according to the DOIs of papers from a
large publication dataset freely downloaded from Microsoft Academic Graph (32).
More detailed data description is given in SI Appendix, section 1.

Decomposing Time Series. We first construct for each scientist a cociting
network, in which each node is a paper authored by this scientist, and two papers
have a link if they share at least one reference (SI Appendix, Fig. S1). The commu-
nities in the cociting networks are detected via the fast-unfolding algorithm (33),
with each significant community (more than 5% of papers) representing a major
topic of the scientist. As the cociting network needs to be large enough to ensure
meaningful community-detection results, we consider only the focal scientists
with at least 50 papers. For each focal scientist, we generate the time series
presented in Fig. 1A describing the growth history of the network. In the time
series, each point is a paper, and different colors represent different communities
in the cociting network. Since many of the publications of a focal scientist have
resulted from teamwork, the time series is actually aggregated from coauthored
papers with different collaborators. We then decompose the publication time
series of a scientist to various time series, each of which records the coauthored
papers with a specific collaborator, as shown in Fig. 1B. The time series of a col-
laborator clearly exhibits the key information of the collaboration, including the
number of involved topics, the starting year of the collaboration, the collaboration
length, and so on. For better illustration, we show in Fig. 1B the time series of
the collaborators with at least five coauthored paper with the focal scientist. The
illustration of the time series of all collaborators is given in SI Appendix, Fig. S1.
We show also in SI Appendix, Fig. S4 the statistics of collaboration years and the
number of coauthored papers on a topic.

Surrogate Time-Controlled Reshuffling. To examine the significance of an
observed pattern in real data, one has to compare it to the result of randomized
cases. In this paper, we consider a surrogate time-controlled reshuffling proce-
dure in which the relations between a scientist’s collaborators and his papers
are iteratively randomized. Specifically, a paper coauthored by a collaborator
and the focal scientist is exchanged with a randomly selected paper coauthored
by another collaborator and the focal scientist. There is time constraint in the
procedure that these two papers must be published in the same year, avoiding
the case where a collaborator is assigned to a paper that was published even
before they started collaboration. In this way, the timing of the collaboration is
preserved for each collaborator, yet their involved topics are randomized. The
illustration of the surrogate time-controlled reshuffling procedure is presented
in SI Appendix, Fig. S2.

Computing the Probability to Join the Next Topic. A scientist may work
on multiple topics during his career. When a scientist starts to work on a new
topic, we calculate the fraction of his existing collaborators that will coauthor
at least one paper with the scientist in the new topic. The overall probability is
obtained by averaging the fraction over all topics, except the first topic (as the
scientist has no existing collaborators when starting the first topic). One possible
concern is that the probability might be underestimated, as some collaborators
may have already stopped working with the focal scientist long before the focal
scientist starts a new topic. We thus further examine the case where all inactive
collaborators are removed. Specifically, we calculate the probability to join the
next topic only among the collaborators who have coauthored at least one paper
with the focal scientist in the testing year or 1 y before.

Detecting Communities in the Collaboration Network among Collabo-
rators of a Scientist. In Fig. 4, we construct a collaboration network for each
focal scientist in which nodes are collaborators of this scientist and links are
their coauthorship relations in the scientist’s papers. We detect community struc-
ture in each of these collaboration networks with the fast-unfolding algorithm
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(33). We calculate the maximized modularity Qreal of the real networks and the
maximized modularity, Qrand, in their degree-preserved reshuffled counterparts.
The modularity function (34) is defined as

Q =
1

2m

∑

i,j

[Aij −
kikj

2m
]δ(ci, cj), [1]

where A is the adjacency matrix of the network, ki is the degree of node i, m is
the total number of links in the network, ci is the community to which node i is
assigned, and the δ function δ(ci, cj) is one for ci = cj, and zero otherwise. The
communities are obtained when the function Q is maximized.

Data Availability. Previously published data were used for this work. The
APS data are available upon request submitted to https://journals.aps.org/
datasets (35), the AMiner data can be freely downloaded via https://www.
aminer.cn/aminernetwork (36), and the Microsoft Academic Graph data can be
accessed in Zenodo (37).
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