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Abstract 

An analytical solution for the well-known quadratic recursion, the logistic map, is presented. 
Our derivation is based on the analogy between this recursion and a probabilistic problem that can 
be solved analytically. The solution is represented as a power of a transfer matrix. The proposed 
method allows to solve a more general quadratic mapping. 

Being one of the famous equations in physics and biology the logistic map needs no 
special introduction (a good review of the problem and relevant references can be found 

in [ 1,2] ). In this paper we present an analytical solution for the logistic map recursion 

f,,+l = A f , ( l - f . ) ,  with f0 = f.  (1) 

We begin with the following auxiliary probabilistic problem. Let a given particle at 

each time step give birth to another identical one with probability p or just survive with 

probability q (q = 1 - p) .  The quantity under question is the probability P,,k to find an 

(n, k)-state, i.e., k particles after n time steps. It can be derived in two ways. 
The first one is to write down a relation for P,,k, 

Pn+l,~ = qPn,k + P ~ Pn,mPn,k-m. (2) 
m 

This formula can be understood by the schematic diagram presented in Fig. 1. By 
switching to a generating function Pn(x) = Y'~k P.,k xk, Eq. (2) transforms to 

P n + l ( X )  = q P n ( x )  + P[  P n ( x )  ] 2. ( 3 )  
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Fig. 1. Contribution of the first step to the branching process [3]. The dashed lines ended by a rectangular 
represent the probability for a given generation (here it is n or n + 1) to have a size shown inside the 
rectangular. 

Fig. 2. Transition from an (n, k)-state to an (n + 1, k) one. There are (kmm) possibilities to get k particles 

from k - tn ones; each possibility has a weight pmqk-2m. 

The second way to calculate P.,k is illustrated in Fig. 2. It is straightforward to see 

that 

[k/21 (,___.,~ k -m m'~)p k-2mpn.k_m, (4) P.+l,k 
m=0 

where [k /2]  stands for the integer part of k/2 and (n) is the binomial coefficient. The 

latter equation can be written in a matrix form as a transfer matrix relation: 

[P.+1) = TIP.),  (5) 

where 

Tj, k = j - -  k pj-kq2k-j and (P.I = (Pn,l,Pn,2 . . . .  ).  

The solution of Eq. (5) is simply 

[P,,} = T"IPo } , ( 6 )  

where [P0) is an initial vector. Since Eq. (2) represents the same problem it means 
that Eq. (6) is its general solution for the case p + q = 1. However, the expression 
(4) is defined for any p and q (not only for p + q = l)  thus the analytic continuation 

of (6) is a solution of Eq. (2) for arbitrary p and q. It is interesting to note that the 
first approach leads to a non-linear relation (Eq. (2) )  while the second approach to the 
same problem leads to a solvable linear recursion (Eq. (4) ) .  

Now we observe that the solution of the auxiliary problem can be related to the logistic 
map (1). Let us suppose that the function fn has a "hidden" continuous dependence, 
say, f .  =-- f . ( x )  = ~ k  Fn,k xk" Then, this function, Fn,k, obeys a convolution relation 
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Fn+l,k = aFn,k -- a E F,,k, Fn,k-k, , (7) 
k ~ 

which is a special case of  Eq. (2)  with q = - p  = a. Thus, the general solution of 
Eq. (7) is (6)  with substitutions q --+ a and p --* - a .  Namely, 

' F " ) = T n ' F ° ) '  withTj 'k=(- -1)J-k (  k ) (8) 

where (F,  I = (F~,1, F,,z . . . .  ). 

To complete the derivation one should perform an inverse transform, i.e., to find the 

"generating" function f , .  This is done by multiplying a ket-vector (F,  I by a bra-vector 
of  powers of  x, (x I = (x,  x 2, x 3 . . . .  ). Thus, 

in = (xlT"IF0). 

To get rid of  arbitrary coefficients Fo,k, one should recall that f _~ fo = ~ k  Fo, kxk" The 
simplest (but not the unique!) choice is (F0l = (el l  = ( 1 , 0 ,  0 . . . .  ) .  Then, f = x and the 
solution of  Eq. ( 1 ) takes the form 

f,, = (flT"lel) , (9) 

where T is defined by Eq. (8)  and (fl = ( f ,  f2,  f3 . . . .  ). Correspondingly, a fix point 
equation for the mapping (9)  reads 

f = ( f lT"le l ) .  

The conditions for the existence of  the solution of  this equation give the well-known 

bifurcation points of  the period doubling. 

The transfer matrix T can be naturally decomposed into combinatoric and a-compo-  

nent matrices: T = CA, where Cj.k = (--1)J-k(jkk) and Aj, k = •j,k ak. These matrices 
are infinite but the calculation of their nth power requires only finite 2" x 2" upper-left 
corners of  them. Since T is a triangular matrix it follows that all its eigenvalues are: a k 

(k = 1 . . . . .  2").  

The ultimate aim of  these manipulations is to study the A-dependence of the mapping 
( 1 ) in the limit n --~ oe. A possible approach to it may be as follow. Let us construct a 

generating function &(y)  = ~ ' ~  f ,y".  Then, 

,;b(y) = ( f l ( I  - y T ) - l l e l ) ,  (10) 

where I is the unit matrix. This calculation is closely related to an eigenvectors problem. 
If  it were possible to calculate the resolvent ( I - y T )  -1 one could proceed with a steepest 
descent of  Cauchy integral 

1 ~(q~(y) d f n = ~ a  ~ y '  (11) 

c0 

where the contour Co includes the origin of  coordinates. 
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However, this approach may face a serious problem. The resolvent is an infinite 

matrix with diagonal elements (eigenvalues) equal to (1 - y A ~ ) - I  k = 1,2 . . . . .  i.e., 

they have poles at yk = A -~. For ~ > I this infinite set has a limit point, y = 0. If  the 

first column of  the resolvent has the same property, the function ~b(y) may have an 

essential singularity at y = 0. Then, (10) does not exist there and Eq. (11) becomes 

unapplicable. This fine point should be studied carefully. 

One more observation can be done: this approach is trivially generalizable for the 

case of  an n-dependent function h, i.e. for the equation fn+l  = . ~ n f n ( l  -- f n ) .  Then, the 
analog of  (9) will be written as 

fn = (fIT,T2"" "T.le,>, 

where T~ = CAe. and (Ae)j,k = 6j .k (Ae)  k. 
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