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Localization in self-affine energy landscapes
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We discuss the localization behavior of quantum particles in a one-dimensional Anderson model with
self-affine random potentials, characterized by a Hurst exponentH.0. Depending onH and energyE, a new
type of ‘‘strong’’ localization can occur, where all states are localized in a way different from the regular
Anderson localized states. Using scaling arguments, we derive an analytical expression for the phase diagram
and test it by numerical calculations. Finally, we consider a somewhat related model where the variance of the
potential fluctuations is kept fixed for all system sizesL and a transition between localized and apparently
extended states has been reported.
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I. INTRODUCTION

In the past decades, the question of localization in dis
dered systems has attracted much interest~for reviews see,
e.g., Refs. 1,2!. In this work, we discuss, how localization
changed, when the disorder is spatially long-range co
lated. We focus on one-dimensional systems and cons
single-particle electronic wave functions in the tight-bindi
approximation. In this approximation, the Schro¨dinger equa-
tion becomes

Ecn5Vn,n21cn211encn1Vn,n11cn11 . ~1!

Here,E is the energy eigenvalue,ucnu2 is the probability to
find an electron at siten, en are the site potentials, an
Vn,n215Vn21,n and Vn,n115Vn11,n are the hopping terms
between nearest-neighbor sites. In the following, we conc
trate on the Anderson model with diagonal disorder, wh
all hopping terms are set to unity and only theen are
disordered.

It had long been believed that all states of the o
dimensional Schro¨dinger equation in a random potential a
localized exponentially.3,4 However, asymptotic exponentia
localization throughout the energy band in one dimens
was rigorously proven only for completely uncorrelated ra
dom potentials.1,5

Meanwhile, several systems with differing behavior ha
been found. Some systems with correlated disordered po
tials exhibit a certain amount of extended states. Amo
these, we can distinguish between long- and short-range
related potential models. An example for the latter a
random-dimer models, where the local potential has a bin
distribution and one of the two values~here:eA) occurs al-
ways pairwise, giving, e.g., chains with series of site energ

eA ,eA ,eB ,eA ,eA ,eA ,eA ,eB ,eB ,eA ,eA ,eB , . . . . ~2!

It has been theoretically predicted6 and numerically proven
by transfer-matrix methods7,8 that a discrete number of th
eigenstates are extended. Experimental evidence for t
extended states has recently been gained by transmis
measurements on random-dimer semiconductor su
lattices.9
0163-1829/2001/64~13!/134209~8!/$20.00 64 1342
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Extended states occur also in certain one-dimensiona
commensurate systems,10,11 which can be viewed as system
with special long-range correlations. Here, the site energ
are described by a periodic functionen5V(nv), whose pe-
riod 2p/v is incommensurate with the lattice periodicit
i.e., v is an irrational number. Most common is the Harp
model,11 whereV(nv)5(w/2) cos(2pnv). In this model a
localization-delocalization transition occurs. All states a
extended forw,wc54 and localized forw.wc .

In Ref. 12 the inverse localization length was calculat
for one-dimensional systems with stationary long-range c
related potentials, among them incommensurate system
an analytical perturbative approach for energies not too c
to the band center or to the band edges. It was shown, ho
construct site potentialsen , that lead to preset localization
delocalization transitions. The mobility edges of these s
tems were demonstrated experimentally by microwave tr
sition measurements on waveguides with inserted correl
scatterers.13 In view of the following discussion, we would
like to stress that this construction was developed for stat
ary potentialsen!1 ~see below!.

In this paper, we deal with another type of exceptio
namely with wave functions that are localized, but do n
decay in an homogeneous way. We consider the Ander
model in a self-affine landscape. The aim of this paper is
elucidate the conditions leading to nonexponential locali
tion in this case. The crucial point is that the fluctuations
self-affine systems increase with system size. Self-affine
tentials are therefore nonstationary. To estimate these fl
tuations, we note that the local potentialsen are given by the
trace of a fractional Brownian particle with Hurst expone
H.0.14,15 Accordingly, the fluctuations of the potential in
crease with increasing length scalel as

^~en1 l2en!2&; l 2H. ~3!

Consequently, the potential fluctuations increase with
system size.

Recently, the occurrence of a localization-delocalizat
transition was reported16,17 for a somewhat different model
where one imposes the normalization condition
©2001 The American Physical Society09-1
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s2[^en
2&2^en&

2[
1

L (
n51

L

en
22S 1

L (
n51

L

enD 2

51 ~4!

that keeps the fluctuations fixed for all system sizesL. This
normalization corresponds to dividing allen by LH. In this
case the states near the center of the band seem to be
extended forH.1/2. However, as the normalization cond
tion ~4! depends on the system size, the structural proper
i.e., the local smoothness of the system now become len
dependent. Larger chains are smoother than shorter ch
and this is the origin for the artificial localization
delocalization transition,18 see also Ref. 19@note Fig. 1~b!,
which will be discussed later#.

Here, we study the problem of Anderson localization
self-affine potentials with and without renormalization. Fir
in Sec. II, we explain, how our self-affine chains are co
structed and how the localization lengths are calculated
the transfer-matrix method. In Sec. III we consider the s
tem without renormalization and show that a crossover
wards strongly localized states occurs in this case. T
crossover is accompanied by large fluctuations of the lo
ization length. In Sec. IV, we calculate the wave functions
the strongly localized states and show that they decay n
exponentially and can thus be distinguished from the us
Anderson localization. In Sec. V, we determine the ph
diagram that defines the crossover towards strongly local
states in theE-H plane analytically and confirm it by nu
merical simulations. Finally, in Sec. VI, we consider se
affine potentials with the additional normalization conditi

FIG. 1. Illustration of several normalized potential landscap
In ~a! four types of local potentialsen are shown: Uncorrelated
random potential~top line!, correlated potential withg50.1, and
self-affine potential landscapes withH51/2 and 3/4. The correlated
potential landscapes are shifted by integer multiples of 6. T
curves in~b! show the same potential landscape withH53/4, but
rescaled such that the variances2 is kept fixed (s51) for all
system sizes considered (L593103, 33104, and 105). It is obvi-
ous that for increasing system sizes the potential landscape bec
smoother due to the rescaling.
13420
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~4! and calculate the phase diagram between apparently
tended and localized states in this case.

II. MODEL AND METHODS

In the most common form of the Anderson model~1! with
diagonal disorder, the site potentialsen are uncorrelated ran
dom numbers with zero mean, chosen randomly from a u
form distribution of widthw, i.e., enP@2w/2,w/2#. Here,w
is a positive constant determining the degree of the disor
This model has been thoroughly investigated both anal
cally and numerically, see, e.g., Ref. 1. The wave functio
are all spatially localized in one and two dimensions for a
degree of disorder. Apart from the regions near the ba
edges, the localization lengthl scales asl(w);w22 for
small w.20 Accordingly, l(w) diverges forw→0, but for
sufficiently large systems the eigenfunctions are always
calized, ifw.0.

Less is known for the case of correlated potentials, wh
the correlation functionC( l )[^enen1 l&[(1/L)(n51

L enen1 l

does not vanish forl .0. For long-range correlated poten
tials, C( l ); l 2g, with the correlation exponentg (0,g
,1), the variances2 is independent ofL and the series is
stationary. Results from the transfer matrix method, fro
level statistics, and from a renormalization group techniq
indicate that all eigenfunctions remain localized.16,17,21

Here, we focus on self-affine random potential lan
scapes, which may be considered having stronger corr
tions and can be described by a negative correlation ex
nent g. They can be generated by random walks,22 Fourier
transform,15,23 or by the random midpoint displaceme
method.14,15The potential at siten11 depends on the poten
tial at siten by en115en1dn , where the incrementsdn are
random numbers from an interval of mean^dn&50 and fixed
varianceD2[^dn

2&. Regarding the correlations of the incre
ments, three cases have to be distinguished:~i! The dn are
uncorrelated and theen are thus essentially constructed b
the trace of a random walk, i.e.,en corresponds to the dis
placement of a random walker aftern steps. Since the mean
square displacement^r 2(t)& at time t obeys Ficks law for
larget, ^r 2(t)&;t, we havê (en1 l2en)2&; l for large l. ~ii !
The incrementsdn are long-range correlated with a correl
tion function^dndn1 l&; l 2g,0,g,1 and theen correspond
therefore to the trace of a fractional random walk~see, e.g.,
Ref. 15!, where ^r 2(t)&;t2H with the Hurst exponentH
512g/2, hence 1/2,H,1. Case~i! corresponds to an
Hurst exponent ofH51/2. Landscapes with Hurst exponen
H.1 can be obtained by successive summations, using
resulting potentials of the previous random walk as the
crements of the following, and so on. Each new summat
will increase the Hurst exponent by 1.~iii ! The increments
dn are long-range anticorrelated, which means that sect
of increments with positive mean (1/m)( i 5n

n1m21d i.0 are
most likely to be followed by sections of increments wi
negative mean (1/m)( i 5n1m

n12m21d i,0 for all section sizesm.
In this case the potentialsen correspond to the trace of
fractional random walk with 0,H,1/2. For all positiveH,
the series are non-stationary and the fluctuations incre
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LOCALIZATION IN SELF-AFFINE ENERGY LANDSCAPES PHYSICAL REVIEW B64 134209
with increasing system sizeL according to Eq.~3!. Figure
1~a! shows, for illustration, potential landscapes for uncor
lated systems~Anderson model!, for correlated systems with
g50.1, and for self-affine systems withH5 1

2 andH5 3
4 .

In the following we consider two models. In the fir
model, the varianceD2 of the incrementsdn is kept fixed and
represents a measure for thelocal fluctuations. In contrast
the variance

s2;^~en1L2en!2&;L2H ~5!

@see Eq.~3!# is a measure for theglobal fluctuations of the
system and increases with increasing system sizeL. In the
second model,s2 is kept constant by imposing the norma
ization condition~4!, which is equivalent to dividing the lo
cal potentials byLH,

en→
en

LH
. ~6!

Figure 1~b! demonstrates that this rescaling smoothens
sequences considerably for larger systems. If the seque
are generated by the Fourier transform method15,23 ~as done
in Refs. 16,17!, the rescaling is implicitly contained in th
normalization factors.

In order to determine the localization behavior of t
eigenstates of Eq.~1!, we computed the localization length
l(E) directly, following the well-known transfer-matrix
method.1,24 In the transfer-matrix algorithm, one writes E
~1! as recursion equation in matrix form

MnS cn

cn21
D 5S cn11

cn
D , Mn5S E2en 21

1 0 D . ~7!

The inverse localization length is defined by

l~E!2152 lim
L→`

1

L
lnUcL

c0
U, ~8!

whereucL /c0u can be obtained for largeL from the smallest
of the two eigenvalues of the product matrix

ML5 )
n51

L

Mn . ~9!

Hence, by diagonalizingML, we obtain both eigenvalues an
thus the localization lengthl. Thel obtained this way may
fluctuate very strongly for different configurations. Ther
fore, in order to obtain thel for a given energyE, we aver-
agedl for N5104 configurationsn by different average pro
cedures

l typ[expF 1

N(
n51

N

ln l (n)G , ~10!

lLyap[F 1

N(
n51

N

~l (n)!21G21

, ~11!

and
13420
-
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-

larith[
1

N(
n51

N

l (n). ~12!

We define the corresponding relative fluctuationsdl of the
localization lengths by

dl typ[expH F 1

N(
n51

N

ln2l (n)2~ ln l typ!
2G1/2J , ~13!

dlLyap[F 1

N(
n51

N

~1/l (n)!22~lLyap!
22G1/2

lLyap, ~14!

and

dlarith[F 1

N(
n51

N

~l (n)!22~larith!
2G1/2

1

larith
. ~15!

As we will see in the following, these fluctuations sho
large maxima at transition and crossover points betw
states of different localization behavior and we will use t
maxima as indicators for the positions of these points. T
same method has been used to determine the transition p
in the context of electronic wavefunctions in 1D rando
periodic-on-average systems by Deychet al.25

To get more information about the localization behavi
it is useful to determine not only the localization lengths a
their fluctuations but also to calculate some of the eigenfu
tions of Eq. ~1! with diagonal disorder. We have used a
iteration procedure,26 which we briefly describe now. We
consider a chain of 2L811 sites (n52L8, . . . ,0, . . . ,L8)
with periodic boundary conditions. Starting with an initi
value for the energyE, we define the coefficientsa215E
2e21 , a051, anda15E2e1, and recursively set

an5~E2en!an212an22 , ~16!

a2n5~E2e2n!a2(n21)2a2(n22) ~17!

for n52, . . . ,L8. Using these coefficients, Eq.~1! can be
recursively rewritten to become

c05ancn2an21cn115a2nc2n2a2(n21)c2(n11)
~18!

for n51, . . . ,L8. For n5L8, the periodic boundary condi
tions cL8115c2L8 andc2(L811)5cL8 can be inserted, and
after setting the starting valuec051, cL8 andc2L8 can be
calculated. Using these results, allcn andc2n can be calcu-
lated recursively forn5L821, . . . ,1using Eq.~18!. By this
procedure, ~yet unnormalized! results for all cn , n
52L8, . . . ,0, . . . ,L8 are obtained. Since we use an od
number of lattice sites, the only equation that still might n
be fulfilled is Eq. ~1! for n50 @not included in Eq.~18!;
again withc051#:

e01c211c12E50. ~19!

This equation is only fulfilled if our starting value forE is an
eigenvalue. Hence, by varying the starting value forE suc-
cessively until Eq.~19! is fulfilled, we arrive at an eigen-
9-3
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RUSS, KANTELHARDT, BUNDE, AND HAVLIN PHYSICAL REVIEW B 64 134209
value E and an eigenfunctioncn , n52L8, . . . ,0, . . . ,L8,
which is normalized in the last step~eliminating the arbitrary
choicec051).

III. STRONGLY LOCALIZED STATES: LOCALIZATION
LENGTH AND FLUCTUATIONS IN NONRESCALED

SELF-AFFINE ENERGY LANDSCAPES

For our numerical studies we first consider nonresca
self-affine potential landscapes generated by the ran
walk method,22 where the fluctuationss2 of the potential
landscapes increase withL according to Eq.~5!. We first
show in Fig. 2, how the system-size dependent localiza
lengthl(L) and its fluctuationsdl behave close to the ban
center. We calculatedl(L) for different variancesD2 of the
increments and for the different averaging procedures of E
~10!–~12!. The localization behavior of the eigenstates c
be deduced from the dependence ofl(L) on the system size
L. For delocalized states@with l(`)@L#, l(L) increases
linearly with L, whereas, for localized states~in the usual
Anderson model! it approaches a constant value forL→`.
Note that the possible variety of scaling behaviors is m
rich in the case of rescaled potentials~see Sec. VI!.

Figure 2~a! shows for fixed energyE50.5, how the local-
ization lengthsl(L) behave with increasing system sizeL in
our case. For smallL, l(L) increases approximately linearl
with L, indicating delocalized states. Contrary to the beh
ior in the usual Anderson model,l(L) does not cross over to
a constant value for largeL, but drops sharply, after havin
reached a maximum value. The drop occurs when the sys
sizeL exceeds a limit valuel that depends sensitively onD,
H, andE, as well as on the averaging procedure. The va
of l will be derived in Sec. IV. ForL. l , l(L) decreases
monotonously withL. At L values much larger than all re
evant length scales in the system, the decay beco
smoother and the localization lengthl becomes several or

FIG. 2. System size dependence of~a! the localization lengthsl
and ~b! its fluctuationsdl for self-affine potential landscapes wit
H51/2 that have been generated by summing uncorrelated ran
numbers with different variancesD2. The calculations were per
formed by the transfer matrix method atE50.5 ~close to but not
directly at the band center! for 104 configurations. The symbols
indicate: typical averages@Eqs. ~10!,~13!# for D50.005 (n), D
50.01 (h), andD50.02 (,); arithmetic average@Eqs.~12!,~15!#
for D50.01 (d); Lyapunov average@Eqs. ~11!,~14!# for D50.01
~filled diamonds!.
13420
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ders of magnitude smaller than the maximum. Since in t
regime l is microscopic, we expect that single parame
scaling27 does not hold in the limit of infinite system size fo
nonrescaled self-affine systems.

This interesting behavior withdecayingl(L) is in con-
trast to the behavior of the localization lengths in the regu
uncorrelated Anderson model. Therefore, it is reasonabl
investigate the fluctuationsdl of the localization lengths,
defined by Eqs.~13!–~15!. They are shown in Fig. 2~b! for
the same parameters as in Fig. 2~a!. The drop ofl(L) is
accompanied by large fluctuationsdl, which show maxima
at the inflection point ofl(L). While the fluctuations of
lLyap andlarith show a lot of noise in the crossover regim
the fluctuations ofl typ ~open symbols in Fig. 2! yield smooth
and symmetric curves. For very small and very large val
of L the fluctuations disappear and the different average
l approach each other for identicalD. In the following, we
concentrate onl typ .

Figures 3~a! and 4~a! show, forH51/2 andH53/2, the
typical localization lengthl typ(E) calculated by the transfer

m

FIG. 3. Plot of~a! the typical localization lengthl typ @Eq. ~10!#
and ~b! its fluctuationsdl typ @Eq. ~13!# versus the energyE for
potential landscapes withH51/2 for five system sizes:L5211

(h), L5213 (s), L5215 (n), L5217 (,), andL5219 (L). 104

configurations have been considered in the averaging proced
The self-affine potentials have been generated by summing un
related numbersdn with D[^dn&

1/250.01.

FIG. 4. Plot of~a! the typical localization lengthl typ and~b! its
fluctuationsdl typ versus the energyE for potential landscapes with
H53/2 for five system sizes~same symbols as in Fig. 3!. The
potential landscapes have been generated by double summati
uncorrelated numbersdn with D5531027.
9-4
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LOCALIZATION IN SELF-AFFINE ENERGY LANDSCAPES PHYSICAL REVIEW B64 134209
matrix method for several fixed system sizes over the wh
energy range and averaged overN5104 configurations ac-
cording to Eq.~10!. For small system sizes andE near the
band center,l typ(E) increases approximately linearly withL,
indicating delocalized states. For largeL and at the band
edges, however, this behavior is reversed:l typ(E) decreases
drastically with increasing system size. We refer to the sta
in this regime asstrongly localized states.

Figures 3~b! and 4~b! show dl for the same configura
tions as in 3~a! and 4~a!, respectively. It can be clearly see
that the fluctuations have maxima at the crossover tha
situated near the band edges for small system sizesL and
moves to the band center for largerL. For very large system
sizes, all states are strongly localized and the fluctuation
l drop to very low values again. This enables us to de
mine the crossover towards strongly localized states by
maxima in the fluctuations~see also Ref. 25 and Sec. V!.

IV. STRONG LOCALIZATION: WAVE FUNCTIONS

In order to determine the origin of these strongly localiz
states, we have investigated the explicit form of the eig
functions. Figure 5 shows three examples of eigenfuncti
for E'0, E'1, andE'21 together with the correspond
ing potential landscapes. Let us first look at the wavefunct
with E'0: It can be seen that the amplitude sharply drop
sites where the local potentialen exceeds a value of 2 or22.
The drop increases drastically with increasing size of
region where the potential is outside these bounds~shaded
regions in Fig. 5!. With increasing system size, the fractio
of sites with potentials exceeding the bounduenu52 in-
creases and the wave function becomes more and m
strongly localized.

For wave functions with eigenenergyEÞ0 the bounds for

FIG. 5. Three examples of strongly localized wave functio
~lower curves, right scale! with ~a! E'0, ~b! E'1, and ~c! E
'21 in energy landscapes~upper curves, left scale! with H51/2,
where several site energies~in the shaded regions! are larger than
E12 or smaller thanE22. It can be seen in all cases that the
site-energies cause a sudden drop of the amplitude.
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strong localization are shifted byE and becomeuen2Eu52,
as can be seen in Figs. 5~b!,5~c!. Now, the wave functions
drop, as soon asen becomes larger than 21E or smaller than
221E. This behavior can be understood by the followin
considerations: If we apply Eq.~1! to a linear chain with all
en50, the band of allowed eigenenergies is given byE
P@22,2#. If all local potentials are the same,en[e, Eq. ~1!
depends only on (E2e) and not onE and e separately. In
this case, the band is shifted to values of@221e,21e#. For
fluctuating en , we can define a local band, following th
potential landscape and ranging locally from221en to 2
1en . In regions, whereuen2Eu exceeds 2,E is outside this
local band and the respective eigenstates are stro
damped and show a sharp decay. In a very large self-af
system, where the local potentials are growing towards v
large values, only strongly localized states can occur. Th
considerations are valid for all self-affine potential lan
scapes withH.0. The ‘‘critical’’ system size, where the po
tential en of one site exceeds the bound, defined byuen
2Eu52, for the first time, depends onH.

We would like to note that this strong localization beha
ior for self-affine potentials has to be distinguished from t
usual Anderson localization, where the wave functions h
an irregular structure and their amplitudes decay roughly
ponentially. In contrast, in the case of strong localization,
wave functions decay practically instantaneously, when
self-affine potentials exeed the critical value. At the cro
over towards strongly localized states, the potentials fluc
ate between the upper and the lower bound and are
subsequently lying above and below the critical values. A
consequence, decay regions and roughly constant region
ternate, yielding a nonexponential, patchy decay of the w
functions. From this we can understand the large fluctuati
of the localization lengths in the crossover regime. We th
that the usual definition of localization lengths by th
Lyapunov exponent is not appropriate in this situation, b
cause of the nonexponential decay of the wave functio
Instead, the typical~log! average and its fluctuations show
much more smooth and symmetric behavior.

A different approach may measure the size of the regi
where the wave function is large. For values ofH,1 this
can be done by random walk theory: We know that the wa
functions begin to become strongly localized, whenuen2Eu
exceeds 2 within the system sizeL. The self-affine energy
landscapeen can be considered as the trace of a on
dimensional random walk with the step lengthdn5en
2en21, where the ‘‘first passage time,’’ i.e., the number
‘‘steps’’ l required for reaching a given ‘‘distance’’ê scales
as

l ~ ê !

A1
5S A2ê

D
D 1/H

. ~20!

Here,D[^dn
2&1/2 is the mean step length andA1 andA2 are

nonuniversal parameters.15 Identifying ê with the minimum
of 22E and 21E, i.e., with 22uEu, we finally get

l ~E!

A1
5S A2

22uEu
D D 1/H

~21!

s

9-5
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RUSS, KANTELHARDT, BUNDE, AND HAVLIN PHYSICAL REVIEW B 64 134209
as a characteristic length scale in the self-affine systems.
relation will help to identify the crossover towards the r
gime of strongly localized states as shown in the followi
section. We would like to note that the characteristic len
scale l (D,H,E) is distinct from the characteristic lengt
scale l s recently introduced by Deychet al. in Ref. 27 to
describe the crossover to regimes where single param
scaling is violated.

V. THE PHASE DIAGRAM IN A SELF-AFFINE ENERGY
LANDSCAPE

Next we investigate how the crossover towards stron
localized states occurs. If the potentialsen reach the critical
value 22uEu within the system size, the states becom
strongly localized. Therefore, it is obvious, that for suf
ciently large values ofL all states are strongly localized. Fo
sufficiently small chains and sufficiently small values of t
Hurst exponentH, on the other hand,l (E) can reach the
system sizeL ~or even larger values! and strongly localized
states can not occur. For fixedL, the critical linesH(E) can
be estimated with the help of Eq.~21!. If l (E) is smaller than
the system size, the states are strongly localized. For a g
system sizeL, we have therefore a critical energyEc , where
l (Ec)5L, that defines a crossover towards a regime of str
localization. Rearranging Eq.~21!, we get

Ec56F22
D

A2
S L

A1
D HG . ~22!

Figure 6 shows the resulting phase diagram in theE-H
plane for several values ofD and two values ofL. The sym-
bols have been obtained by transfer-matrix calculations,
vestigating again the fluctuations of the localization lengt

FIG. 6. Phase diagram for the Anderson model with self-affi
potentials generated by Fourier transform and following single s
mation. The crossover towards strongly localized states, obta
from numerical simulations, is shown in theH-E plane for the
following lengths L and disorder strengthsD: L5216, D50.01
(h), L5216, D50.002 ((), L5216, D50.001 (n), and L
5218, D50.001 ~filled squares!, L5218, D50.0002 (d), L
5218, D50.0001 ~filled triangles!. The theoretical curves@Eq.
~22!# are included for eachD by solid lines forL5218 and by
dashed lines forL5216. To determine the parametersA1 andA2, we

have calculatedl ( ê) for several values ofH. By plotting D l H/ ê
versus H in a semilogarithmic scale~see inset!, we obtain A1

515.261.0 andA250.5860.03 by a linear fit@see Eq.~20!#.
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The remaining parametersA1 andA2 have been determine
by separate calculations ofl ( ê), as explained in the figure
caption of Fig. 6. Figure 6 shows, that the simple relations
~22! describes surprisingly well the dependence ofEc on D,
on L and onH for self-affine potential landscapes withH
,1. The wave functions become strongly localized abo
the crossover. The critical lines are symmetric,H(E)
5H(2E) and the extent of the regime of strongly localize
states~upper part of Fig. 6! increases with increasingD.

VI. THE PHASE DIAGRAM IN A RESCALED
SELF-AFFINE ENERGY LANDSCAPE

Next we consider a related model of rescaled poten
landscapes, suggested by de Moura and Lyra,16 where the
variances2 of the potentials is kept constant@see Eq.~4!#.
For sufficiently large values ofs all states are strongly lo
calized, while for sufficiently small values ofs ~and suffi-
ciently large values ofH), the local fluctuations of the re
scaled potentials decrease drastically, and we can ex
apparent ‘‘extended’’ states@see Fig. 1~b!#. In Ref. 16, an
approximate phase diagram has been determined for this
parent transition for one value ofs. According to Ref. 16,
below H51/2, only localized states occur.

For 1/2,H,1, we can again generate the potentials
the trace of a random walk and find an analytical express
for the critical lines that separate regions of localized sta
from regions of apparently extended states. When the po
tials are rescaled, the mean step lengthD depends onL and
on the variances2 by

D

B2
5sS B1

L D H

, ~23!

whereB1 andB2 are parameters, similar toA1 andA2 in Eq.
~20!. Inserting Eq.~23! into the relation~22!, we obtain for
the critical energyEc

Ec56F22s
B1

HB2

A1
HA2

G . ~24!

For values ofH>1 we obtain non-stationary increments a
the theoretical derivation is not valid in this case.

Figure 7 shows the resulting phase diagram in theE-H
plane for several values of the variances2. In addition to the
renormalization of the potentials, the numerical proced
has been the same as for Fig. 6 and again, the trans
points have been determined from the maxima of the fl
tuations of the localization length. Note that now the pha
diagram is independent ofL. The critical lines are symmet
ric, H(E)5H(2E) and the width of the regime of ‘‘ex-
tended’’ states~near the band center forH.1/2) decreases
with increasing variances.

For Hurst exponentsH,1, we can compare our numer
cal results with the theoretical predictions of Eq.~24!. The
parametersA1 ,A2 are the same as in Fig. 6 andB1 ,B2 are fit
parameters. The agreement between the theoretical pre

e
-
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tion and the numerical findings forEc is reasonable. Below
H51/2, the localization lengths increase slower than the s
tem sizeL.

VII. CONCLUSIONS

In conclusion, we have investigated the localization b
havior of quantum particles in linear potential landscap
with self-affine random potentials, characterized by a Hu
exponentH.0. In this case, the potentials are nonstation
and we found that a new type of ‘‘strong’’ localization ca
occur, as soon as the local potentials exceed the valueE
62, whereE is the energy. While in the usual Anderso
model, the wave functions have an irregular structure

FIG. 7. Phase diagram for the Anderson model with resca
self-affine potentials generated by Fourier transform~similar to Ref.
16!. The transition from apparently extended states to locali
states is shown in theH-E plane for six disorder strengths,s2

50.05 ~crosses!, 0.1 ~boxes!, 0.2 ~circles!, 0.3 ~triangles up!, 0.5
~triangles down!, 1.0 ~diamonds!. For H,1, the theoretical curves
@Eq. ~24!# are included in the figure for eachs ~dashed lines!. The
parametersA1 and A2 are the same as in Fig. 6 andB158.8 and
B251.83 are fit parameters. It has been verified by separate ca
lations that they are in the right order of magnitude. ForH,1/2,
apparently extended states do not appear, in agreement
Ref. 16.
ns

i-

13420
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-
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decay roughly exponentially, we find strong localizatio
characterized by a patchy structure and a nonexponentia
cay of the wave functions. In the regime of strong localiz
tion the system-size dependent localization lengthdecreases
with increasing system size. This behavior is drastically d
ferent from the usual Anderson model with uncorrelated
tentials, but is a universal feature of all self-affine potenti
with given H independent of the way they are constructe
Indeed, the potentials always have similar properties as f
tional Brownian motion and show similar universal feature
Accordingly, all eigenfunctions are strongly localized, if th
chains are long enough. For each finite chain of lengthL, we
find a crossover towards strongly localized states, that
pends onH andE. In this intermediate case, the usual de
nition of localization lengths is no longer appropriate, sin
the fluctuations become very large. We applied random w
theory to define a characteristic length scalel (E), which
describes the mean size of the region, where the patchy w
function is large. Using scaling arguments, we derived
analytical expression for a phase diagram defining~for a
given chain lengthL) the crossover towards a regime
strongly localized states. We tested this relation for the cr
cal lines by numerical simulations, using the transfer ma
method.

Finally, we considered a somewhat related model wh
the variances2 of the potential fluctuations is kept fixed fo
all system sizesL. Recently, a localization-delocalizatio
transition has been reported for this model forH.1/2,
which, however, is not a generic feature of self-affine pot
tials with H.1/2, but due to the rescaling of the potentia
We also determined the phase diagram for this case and
plied random walk theory to obtain an analytical descripti
for H,1.
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