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The probability distribution of random walks on linear structures generated by random walks in
d-dimensional space,Pd(r ,t), is analytically studied for the casej[r /t1/4!1. It is shown to obey the scaling
form Pd(r ,t)5r(r )t21/2j22f d(j), wherer(r );r 22d is the density of the chain. Expandingf d(j) in powers
of j, we find that there exists an infinite hierarchy of critical dimensions,dc52,6,10,. . . , each one charac-
terized by a logarithmic correction inf d(j). Namely, for d52, f 2(j).a2j

2lnj1b2j
2; for 3<d<5,

f d(j).adj
21bdj

d; for d56, f 6(j).a6j
21b6j

6lnj; for 7<d<9, f d(j).adj
21bdj

61cdj
d; for d510,

f 10(j).a10j
21b10j

61c10j
10lnj, etc. In particular, ford52, this implies that the temporal dependence of the

probability density of being close to the originQ2(r ,t)[P2(r ,t)/r(r ).t21/2lnt. @S1063-651X~96!13410-3#

PACS number~s!: 05.40.1j, 05.60.1w, 66.30.2h

I. INTRODUCTION

Random fractals represent useful models for a variety of
disordered systems found in nature. In addition to their struc-
tural properties, fractals have attracted much attention in re-
cent years because of their interesting transport properties
@1–4#.

Of particular interest is the question of how the probabil-
ity density of random walks,Pd(r ,t), is changed on fractal
structures with respect to its Gaussian form valid on regular
d-dimensional systems,Pd(r ,t);t2d/2exp(2const3h2),
whereh5r /t1/2. The form ofPd(r ,t) on fractals has been
extensively studied in the asymptotic limitj5r /t1/dw@1
@2,5–12#, where dw is the anomalous diffusion exponent
characterizing the time behavior of the random walks,
^r 2(t)&;t2/dw. As a result of these investigations, it is now
generally accepted thatPd(r ,t) displays a stretched Gaussian
form

Pd~r ,t !;r~r !t2ds/2exp~2const3ju!, j@1, ~1!

wherer(r );r df2d is the density of the fractal structure,df
is the fractal dimension,ds52df /dw is the spectral dimen-
sion @1#, u5dw /(dw21), and is normalized according to
*drr d21Pd(r ,t)51. However, much less is known about
the behavior ofPd(r ,t) in the opposite limit whenj ap-
proaches zero.

In this paper we concentrate on diffusion in linear random
fractal structures generated by random walks@random-walk
chains~RWC!# in d-dimensional systems, wherePd(r ,t) can
be obtained exactly. Recently, using numerical simulations,
it has been suggested that for such linear fractals@13#,

Qd~r ,t !/Qd~0,t !;~12const3jd22!, j→0, ~2!

for all dimensionsd, whereQd(r ,t)5r(r )21Pd(r ,t) is nor-
malized on the fractal chain, i.e.,*drr df21Qd(r ,t)51, with
df52, dw54 for RWC, j5r /t1/4 andQd(0,t) is the prob-
ability density to return to the origin.

In the following, we derive an exact expansion for
Pd(r ,t) in the limit of j→0. Surprisingly,Pd(r ,t) displays

an extremely rich behavior as a function of bothj and di-
mensionalityd. We show, among other results, that Eq.~2!
can only be valid for 3<d<5, and

Pd~r ,t !;r~r !t21/2~12const3j4! for d>7. ~3!

Moreover, we find that the small-j expansion ofPd(r ,t) is
characterized by a hierarchy of critical dimensions,
dc52,6,10,14,. . . , where logarithmic corrections of the
form jdc22ln(1/j) occur. In particular, ford52 we obtain
P2(r ,t).2r(r )t21/2ln(t1/4/r ).

II. RANDOM WALKS ON RANDOM-WALK CHAINS

We consider linear structures generated by random walks
in d-dimensional systems. Such structures are fractals with
fractal dimensiondf52, independently ofd. To study diffu-
sion of particles along such linear chains, we assume that the
diffusing particles~random walkers! can move only along
the structure~path! which has been created sequentially by
the generating walks. Thus, although the structure can inter-
sect itself in space, the walkers see just a linear path. We
denote such paths as random-walk chains.

Along the linear path, the probability density of random
walkers, at chemical distancel along the RWC from their
starting point after timet, p(l ,t), subject to the initial con-
dition p(l ,0)5d(l ), approaches the well-known Gaussian
distribution

p~ l ,t !5
2

~2pt !1/2
expS 2

l 2

2t D , ~4!

normalized according to*0
`dl p(l ,t)51. Thus, diffusion

along the chain~i.e., l space! is normal and̂ l 2&5t. On the
contrary, in Euclideanr space diffusion is anomalous with
dw52df54 ~see, e.g.,@2#!.

To obtain the behavior of the probability density inr
space, averaged over all RWC configurations,Pd(r ,t), we
note that it is related top(l ,t) by
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Pd~r ,t !5E
0

`

dl Fd~r ,l !p~ l ,t ! ~5!

and is normalized according to*ddrPd(r ,t)51. Another
possibility is a normalization on the RWC fractal, i.e.,
*0

`drr df21Qd(r ,t)51. Both distributions are simply related
to each other byPd(r ,t)5r(r )Qd(r ,t).

In Eq. ~5!, Fd(r ,l ) represents the probability for a site
r to belong to a RWC at distancel from the origin along the
chain. The chemical distancel plays the role of the time
variable in Eq.~4!, and one can immediately write

Fd~r ,l !5AdS 1

2pl D d/2expS 2
r 2

2l D , ~6!

where Ad is a normalization factor such that
*ddrFd(r ,l )51. Therefore, by inserting~4! and ~6! in ~5!
we infer @4,14#

Pd~r ,t !5S 1

2p D d/2 2Ad

~2pt !1/2E0
`

dl l 2d/2expS 2
r 2

2l D
3expS 2

l 2

2t D . ~7!

Now, the elementary transformationx5l /r 2 brings ~7! to
the form

Pd~r ,t !52Ad~2p!2~d11!/2r2df d~j!, ~8!

where the scaling functionf d(j) is defined by

f d~j!5j2E
0

`

dxx2d/2expF2
1

2 S j4x21
1

xD G ~9!

for the scaling variablej[r /t1/4. If the RWC normalization
is chosen, the distribution Qd(r ,t)5r21(r )Pd(r ,t)
>t21/2f̃ d(j), where f̃ d(j)5j22f d(j).

To deal now with the evaluation off d(j) whenj→0, it is
convenient to rewrite the integrand exponent as

expF2
1

2 S j4x21
1

xD G5expF2
1

2 S j4x21
1

x2D G
3expF2

1

2x S 12
1

xD G
and expand the second exponential factor in Taylor series.
The remaining integrals can be solved exactly~see, e.g.,
@15#!, and one arrives at the following expression for~9!:

f d~j!5j2(
n50

`
1

n! S 2
1

2D
n

(
k50

n

~21!kS nkD jd/2211n1k

3K1/2~d/2211n1k!~j2!, ~10!

whereKn is the modified Bessel function of ordern.
Let us consider Eq.~10! in some particular cases of inter-

est. The results for spatial dimensionsd<7 are summarized
in Table I. All the coefficients were calculated numerically
by computing the double sums explicitly. In some cases they

are available in analytic form, but we include their numerical
values to make the table uniform.

However, besides the coefficients, the main properties of
these expansions can be obtained readily as follows. The key
parameter iss5 1/2 (d/221). The corresponding values of
d52(2s11) for integers should be referred to ascritical
dimensions, dc52,6,10, . . . . Each order in the expansion
has its own critical dimension. The leading term hasdc52,
the first correction term hasdc56, the second correction
term hasdc510, etc. This has to do with the functional form
of f d(j) in the corresponding order which ford,dc depends
on d, at d5dc it has a logarithmic correction and for
d.dc becomes independent ofd. In particular, the leading
term of f d(j) behaves asj for d51 and j2ln(1/j) for
d5dc52 and asj2 for all d.dc52, the first correction
term behaves asjd for 2<d,6, and for d5dc56 as
j6ln(1/j) and asj6, for all d.dc56, and so on.

Mathematically, this behavior can be explained by the
intrinsic properties of the Bessel functionKs(j

2). By its
definition, Ks(j

2)5(p/2)csc(ps)@ I s(j
2)2I2s(j

2)# for
nonintegers and, in turn, I s(j

2)5j2s(k50
`bk(s)j

4k and
j2sI2s(j

2)5(k50
`bk(2s)j4k. As one can see this expan-

sion hass-independentpowers ofj that form theinvariant
part of f d(j). The first terms ofj2sKs(j

2) expansion are

j2sKs~j2!'b0~s!j4s1b1~s!j4s141•••2b0~2s!

2b1~2s!j42•••.

Thus, for 0,s,1 ~i.e., 2,d,6) f d(j) has the form
f d(j)'j2@a0(2d)2a0(d)j

d22#. We see that the first term
of this expansion is the invariant part~up to numerical coef-
ficients! of f d(j), which remains unchanged when varying
d. The same argument shows that for 1,s,2 (6,d,10)
f d(j) takes the form f d(j)'j2@a0(2d)2a1(2d)j4

1a0(d)j
d22# and nowtwo first terms of this expansion are

the invariant part off d(j). A special case in our problem is
d51, i.e., s521/4,0. Then the leading term off d(j) is
j2j24usu5j, which is easily seen by noting that
K2s(j

2)5Ks(j
2).

For integer values ofs, the small-j expansion of
j2sKs(j

2) has a logarithmic term of form
j4sln(1/j)5jd22ln(1/j) @15#.

In general, there are@s#11 (@s# is the integer part ofs)
terms in the invariant part off d(j).

TABLE I. The leading and correction terms for the series ex-
pansion off d(j), with j[r /t1/4, whenj→0, Eq.~10!, as a function
of dimensiond.

d Leading term First correction Second correction

1 2.1558j 22.5066j2 O(j5)
2 2j2ln(1/j) 0.1738j2 O(j6)
3 2.5066j2 20.0609j3 O(j6)
4 2j2 21.2533j4 O(j6)
5 2.5066j2 21.4372j5 O(j6)
6 4j2 2j6ln(1/j) 20.3369j6

7 7.5199j2 21.2533j6 0.8244j7
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III. CONCLUSIONS

We have studied analytically the small-j expansion of the
mean probability density,Pd(r ,t), of random walks on
random-walk chains ind-dimensional space. We have shown
that the leading terms of the expansion of,Pd(r ,t), behaves,
in the limit j5r /t1/4→0, as

Pd~r ,t !}r~r !t21/2~12adj
d22! when 3<d<5,

and as

Pd~r ,t !}r~r !t21/2~12cdj
4! when d>7,

where r(r );r df2d and df52. This implies that the prob-
ability densityQd(r ,t)5Pd(r ,t)/r(r ) on the fractal chain
behaves ford>7 asQd(r ,t);t21/2(12cdr

4/t), consistent
with the behavior of diffusion in l space, i.e.,
p(l ,t);t21/2(12l 2/2t), for l 2!t, and the fact that
Qd(r51,t);p(l 51,t) when d→`. We see that this al-
ready occurs whend>7.

We have shown that logarithmic corrections occur at criti-
cal dimensionsd5dc54n12, with n50,1,2,. . . , i.e.,
dc52,6,10,. . . , for thetermsjdc22ln(1/j). In particular for
d52, Q2(r ,t).t21/2ln(t1/4/r ), for r!t1/4, and the probabil-
ity density for the random walker to be close to the origin,
Q2(r ,t) behaves ast21/2lnt. This logarithmic correction is
due to the fact that in two dimensions the RWC returns to its
starting point with probability 1. In one dimension,
Q1(r ,t).t21/4/r , and ind53, Q3(0,t).t21/2. One can say
thatd52 plays the role of a marginal dimensionality for the
probability density of being at the origin of random walks on
RWC, while for largerr each order in the expansion has its
own critical dimension.
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