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Introduction
Network science is becoming one of the most fruitful research fields in the last decades 
explaining variety of phenomena in many complex systems such as the human brain 
(Moretti and Muñoz 2013; Sporns 2010) the human microbiome (Smillie et  al. 2011; 
Gibson et al. 2016; Layeghifard et al. 2017), protein-protein interactions (Kovács et al. 
2019; De Domenico et al. 2015; Li et al. 2017), climate (Yamasaki et al. 2008; Fan et al. 
2017; Ludescher et al. 2014), ecology (Paine 1966; Polis and Strong 1996) and infrastruc-
tures (Yang et al. 2017; Latora and Marchiori 2005; Li et al. 2015). Modelling of these 
systems and many others opened a new direction of studying many complex structures 
such as modular (community) networks (Palla et al. 2005; Rosvall and Bergstrom 2008; 
Gross et  al. 2020b; Capocci et  al. 2005; Shekhtman et  al. 2015; Girvan and Newman 
2002), multiplex networks (Nicosia et al. 2013; Gomez et al. 2013; Granell et al. 2013; 
Bianconi 2013), interdependent networks (Wang et al. 2013; Buldyrev et al. 2010; Brum-
mitt et al. 2012; Baxter et al. 2012; Gao et al. 2012; Radicchi and Arenas 2013) and high 
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order interactions networks (Lambiotte et al. 2019; de Arruda et al. 2020; Millán et al. 
2020). These structures were studied under different processes and dynamics such as 
percolation (Bunde and Havlin 1991; Stauffer and Aharony 2018), synchronization (Are-
nas et  al. 2006; Danziger et  al. 2019; De Domenico 2017), reaction-diffusion (Weber 
et al. 2008; Cencetti et al. 2018; Lazaridis et al. 2018; Colizza et al. 2007), and epidemics 
(Pastor-Satorras et al. 2015; Boguá et al. 2003; Wang et al. 2017).

When modeling a process, one should be careful not strictly fitting the model to a spe-
cific scenario which will reduce its generality, and to account for as many as possible 
of the important features of the process in order to make the model valid and useful in 
different scenarios. While recently the study of epidemic spread has been conducted on 
a community structure due to the human social organization (Palla et al. 2007; Jin et al. 
2001), it mainly considered a random organization of the communities while neglecting 
the spatial structure (Salathé and Jones 2010; Valdez et al. 2020; Nadini et al. 2018; Liu 
and Hu 2005).

In this paper, we applied the susceptible-infected-recovered (SIR) model to study the 
epidemic spreading in a 2D spatial community network model (Vaknin et al. 2019; Gross 
et al. 2020c), see Fig. 1, to better describe epidemic spreading in human social commu-
nity organization. Each community can represent a city and the entire network repre-
sents a country. While other epidemic models such as agent-based models (Eubank et al. 
2004; Longini et al. 2005; Ferguson et al. 2005, 2006) and metapopulation models (Ajelli 
et al. 2010; Colizza and Vespignani 2008; Juher et al. 2009; Rvachev and Longini 1985; 
Colizza et al. 2006; Balcan et al. 2009) are widely used and allow tracking of each indi-
vidual trajectory, we show here that the basic SIR model show a rich phenomena of how 
the spatial modular structure affects the epidemic spreading.

Fig. 1  Illustration of the model. The spatial modular model represents a structure of a network of infection 
channels inside cities (modules) and between cities. Inside a city, the infection channels are dense and spread 
randomly between different areas of the city (green links) like in an Erdős–Rényi network having random like 
structure while the infection channels from one city to another is usually possible between neighbouring 
cities (red links) having spatial like structure
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We find that the epidemic spreading in such networks experience two epidemic transi-
tions, a phenomena which not been earlier observed in other spatial dynamic and epidemic 
models (Fernández-Gracia et al. 2014; Braha 2012; Smith et al. 2002; Durrett 1995). The 
first transition is observed at βER

c  when a local outbreak spread in the origin city but not in 
the entire country, and the second at β2D

c  when the epidemic spreads in the entire coun-
try. We find analytically the values of both epidemic thresholds and develop several control 
strategies and optimization methods to mitigate the spreading of the disease. Moreover, we 
show the importance of early actions and how delaying might result in a global spread of 
the epidemic with catastrophic results.

Model
The spatial community model (Vaknin et al. 2019; Gross et al. 2020c) illustrated in Fig. 1, 
represents the infection channels within and between communities on a 2-dimensional 
square lattice with N = L× L lattice sites, where L is the linear size of the lattice and the 
lattice sites are the nodes of the network. The lattice is divided into smaller squares of lin-
ear size ζ representing communities, e.g., cities. The number of nodes in each community 
is Nc = ζ × ζ . Thus, the number of communities in our model is n = N/Nc = L2/ζ 2 . We 
assume that inside a city the infection channels are dense and spread randomly between 
different sites in the city. Therefore, each community will be connected randomly like an 
Erdős–Rényi network (ER) with an average degree kintra . In contrast, the infection chan-
nels between cities are less dense than within cities and usually connecting neighbouring 
cities. Thus, we assume that in addition to the intra-links linking the nodes in the same 
community, there are fewer inter-links which connect the nodes located in neighbouring 
communities. We assume that each node has inter-links distributed according to a Poisson 
distribution with the average degree kinter ≪ kintra . Each inter-link is connected randomly 
to one of the nodes of the four nearest neighbouring communities occupying adjacent 
squares on the lattice as shown in Fig. 1. This assumption represents the fact that roads or 
railways usually connect neighbouring cities. For brevity of notations, we denote K ≡ kintra 
and Q ≡ kinterζ

2 , where Q is the average number of inter-links emanating from each com-
munity to its four neighbours. To neglect the effect of the system’s edges, we used periodic 
boundary conditions that allow the formation of inter-links between two opposite edges of 
the system creating a torus structure.

This model has two important limits. For ζ → L the models generate an ER network 
while for L ≫ ζ → 0 strong spatial (regular lattice) behaviour is observed. Moreover, for 
intermediate values of L > ζ > 0 mean-field behaviour is observed in small scales (below ζ ) 
and spatial behaviour on large scales (above ζ ). Note that a similar but homogeneous model 
has been studied with similar limits (Danziger et al. 2016; Gross et al. 2017; Vaknin et al. 
2017; Bonamassa et al. 2019). However, due to its homogeneous structure (and not hetero-
geneous as in the present modular model) it experiences very different features compared 
to our model with a single epidemic transition.

Analytical and numerical results
We study the epidemic spread in our model using Monte Carlo simulations of the 
SIR model. In the SIR model, each node can be in one of the three states: susceptible, 
infected, or recovered. We start with a single infected node in a random community 
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while all other nodes are susceptible. At each time step, every infected node attempts 
to infect its susceptible neighbours independently with infection probability β and 
become recovered afterwards (recovery probability 1). The simulation ends when no 
more infected nodes remain. The impact of the epidemic outbreak for different val-
ues of β can be measured as the fraction of the total recovered nodes in the system 
(the recovered cluster), R, once there are no more infected nodes as shown in Fig. 2. 
As expected, for ζ → L the behaviour of the network approaches the behaviour of 
a regular ER with βER

c = 1/K  . It can be seen that for any value of ζ ≫ 1 the recov-
ered cluster has two inflection points. The first (lower) transition at βER

c  when a local 
outbreak spreads within the origin city but does not propagate in the entire country. 
The second (higher) transition at β2D

c  when the epidemic spreads in the entire coun-
try. These two epidemic transitions are analogues to the two percolation transitions 
found in Gross et  al. (2020c) in the same model although the analytical solution is 
different. While the position of the first transition does not depend on ζ , the position 
of the second decreases with ζ , and at large ζ it almost coalesces with the first one. 
This behaviour can be clearly seen in the derivative of log(R) as shown in the inset of 
Fig.  2 where the two maximum correspond to the two epidemic thresholds. As we 
will see, the second transition corresponds to the bond percolation threshold of the 
spatial network of communities which has a topology of a square lattice. This is due to 
the known mapping between the SIR model and bond percolation (Grassberger 1983; 
Sander 2002). Near this transition the epidemic spread globally in the country com-
posed of infected cities and the size of their local outbreaks can be found analytically. 
Finally, near the first (lower βc ) transition corresponding to the epidemic threshold of 
ER network, the local outbreak disappears as well and the average recovered cluster 
swiftly goes to zero as β decreases below βER

c .

Fig. 2  Two epidemic transitions. Simulations of the epidemic recovered cluster R as a function of β for 
different values of ζ on a log-linear graph with K = 4 and kinter = 10−3 . The epidemic recovered cluster is 
measured once no infected nodes remain. Two distinct epidemic transitions are observed. The first (lower) 
transition at βER

c = 1/K  (black dashed line) occurs when a small outbreak spread in a city but not in the 
entire country. The second (higher) transition at β2D

c  when a global epidemic spread in the whole country 
is obtained from Eq. (3) and is denoted by black × . The inset shows the derivative of log(R) with respect to 
β for different values of ζ . Two maxima appear corresponding to the two epidemic thresholds for each ζ 
shown with × in the main figure. As ζ increase β2D

c  decreases and for ζ → L the two maximums collide. Here 
N = L× L ∼ 108 ( L = 9960 for ζ = 60 and L = 104 for the other ζ values)
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Next, we demonstrate that the second inflection point (at higher β ) corresponds to 
the bond percolation transition on a square lattice due to the mapping from SIR (Grass-
berger 1983; Sander 2002). To this end we compute the position of the inflection points 
for different ζ analytically using the well known fact that the bond-percolation threshold 
for a square lattice is 1/2 (See Bunde and Havlin 1991 and “Appendix 2”). Here we will 
use the bond percolation threshold value to find the value of β2D

c  at which the epidemic 
spread in the entire country. The probability that one of Q inter-links emanating from 
a given community connects to one of its 4 neighbours is 1/4. Therefore, the number k 
of the inter-links connecting these two neighbouring communities is distributed with a 
binomial distribution Pk(Q) = (1/4)k(3/4)Q−kCk

Q where Ck
Q =

Q!

k!(Q−k)!
 is the binomial 

coefficient. The probability that a randomly chosen node will be part of the local out-
break in a community (city) is given by the epidemic component of ER network (See 
Newman 2002 and “Appendix 1”),

The spread of a local outbreak in a city to one of its neighbouring cities happens through 
the city’s inter-links. Above βER

c  the local epidemic spreads in the whole city and the 
finite non-infected clusters are of size s ≪ ζ 2 and will have a very low chance to have 
more than one interlink for s · kinter ≪ 1 . Thus, assuming a very small kinter , the prob-
ability that a local outbreak in a city will spread to one of its neighbours through a single 
inter-link is Sβ and the probability that a local outbreak will not spread through one of 
the city’s inter-links is

At the lattice epidemic threshold, the probability that a local outbreak will spread to 
neighbouring cities, βb should be 1/2, the bond percolation threshold. Thus, the lat-
tice epidemic threshold, β2D

c  , where the epidemic spread in the entire country can be 
obtained using Eqs. (1) and (2),

Note that if the communities were distributed in a different spatial structure, the ana-
lytical approach above will still be valid but with a different value of βb . For example, if 
the communities would be distributed in an hexagonal structure βb ≃ 0.6257 (Sykes and 
Essam 1964).

At the spatial epidemic threshold β2D
c  , the size of the local outbreak in the infected cit-

ies, S(β2D
c ) , is not zero as it is usually in second order phase transitions since βER

c < β2D
c  

and each infected city is above criticality. The size of the local outbreak at the lattice 
threshold can be found analytically directly from Eqs. (1) and (2),

In the limit of ζ → L , Eq. (4) takes the form

(1)S = 1− e−KβS .

(2)βb =
∑

k

Pk(Q)(1− Sβ)k =

[

3

4
+

1

4
(1− Sβ)

]Q

.

(3)β2D
c =

4(1− 2−1/Q)

1− exp(−4K (1− 2−1/Q))
.

(4)S(β2D
c ) = 1− exp(−4K (1− 2−1/Q)).
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and β2D
c = βER

c = 1/K  as expected.

Control strategies and optimization
When an epidemic spreads in a country it is essential to develop control strategies to 
tame the disease. For this purpose it is very insightful to study the phase diagram in 
the structural parameters space (K, Q) (Fig. 3). A given country is placed in the struc-
tural parameter space according to its inter-degree K and city intra-degree Q for which 
its epidemic threshold can be calculated from Eq. (3). For the case of an epidemic 
with infection probability β > β2D

c (K ,Q) the epidemic will spread in the country and 
an appropriate control strategy should be considered. This scenario can be visually 
observed in the parameter space when the system is placed above the line β = β2D

c (K ,Q) 
(Fig.  3a black dashed line). Since ζ is related to the spatial structure of the cities and 
rarely changes during the timescale of the epidemic, one should try effecting the other 
parameters in order to control the disease. The main goal is to achieve a state such that 
β < β2D

c (K ,Q) and the epidemic will not spread. In such a case the system will be placed 
below the line β = β2D

c (K ,Q) (Fig. 3a grey dashed line). This can be achieved through 
the following strategies:

Social strategy. Since the epidemic propagates through human interactions, the basic 
approach could be based on reducing the infection probability [which has been applied 
in another context (Braha and Bar-Yam 2007)] β → β ′ in such a way that β ′ < β2D

c (K ,Q) 

(5)S(β2D
c ) ≃

4K

Q
ln 2,

a b c

Fig. 3  Control strategies and optimization. A given country (orange pentagon) is placed in the structural 
parameter space (K, Q) with epidemic threshold β2D

c  obtained from Eq. (3). For an epidemic spread with 
infection probability β it is desired to position the country in such a way that β < β2D

c (K ,Q) , such that there 
will be no epidemic. This can be achieved by the following strategies: a Social strategy. Assume that the 
natural epidemic infection rate is β = 0.8 > β2D

c  (thick black dashed line) above the epidemic threshold 
of the country. By using social distancing or mask-wearing the infection probability could be reduced to 
β ′ = 0.7 < β2D

c  (grey dashed line) and thus becomes below the epidemic threshold and the disease will not 
spread. b Quarantine strategies. By reducing the infection channels in and between the cities (reducing K and 
Q respectively) the country’s position in the structural parameter space can be changed and the epidemic 
threshold will increase such that the infection probability will be below the epidemic threshold. Three ways 
are suggested: (1) local quarantine strategy within cities by reducing K → K ′ . (2) Global quarantine strategy 
between cities by reducing Q → Q′ . (3) Mixed strategy by reducing both K → K ′′,Q → Q′′ . c Strategies 
optimization. A weight function, W(β) , can be evaluated for optional locations for the parameters space of 
the country based on economical, health, and social arguments such that βc(K ,Q) → β+ . Optimization 
of the weight function will yield the optimal location for the country (Kopt ,Qopt) . Here we used the 
Euclidean distance in the parameters space as a weight function W(β) =

√

(K − K ′′)2 + (Q − Q′′)2 and its 
optimization (minimizing) will yield the shortest Euclidean distance which represents minimal reduction of 
the inter and intra links
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as shown in Fig.  3a. This can be achieved by social distancing, mask-wearing, etc to 
reduce the probability of an infected person to infect others. This approach and its effec-
tiveness vary between countries and populations due to many factors such as population 
dynamics.

Quarantine strategy. In the case that social strategies are not effective enough and after 
applied still β ′ > β2D

c (K ,Q) , one can apply quarantine strategies by reducing the infec-
tion channels in and between cities. The first approach reduces the degree within cities 
K → K ′ such that β < β2D

c (K ′,Q) as shown in the first option in Fig. 3b. K ′ should be 
reduced below the critical value Kc obtained from β = β2D

c (Kc,Q) which can be analyti-
cally found from Eq. (3),

The second approach reduces the degree between cities Q → Q′ (through kinter since ζ 
is usually fixed) such that β < β2D

c (K ,Q′) as shown in the second option in Fig. 3b. The 
value of Q′ should be reduced below the critical value Qc which can be graphically evalu-
ated from Eq. (3).

The third approach involve combining the above two options by reducing both the 
degree in and between cities (K ,Q) → (K ′′,Q′′) such that β < β2D

c (K ′′,Q′′) as shown in 
the third option in Fig. 3b.

When considering which approach to adopt, an optimization method can be devel-
oped. To this end, a weight function W (β) can be evaluated for optional locations for 
the country in the parameters space based on economical, health, and social arguments. 
W (β) is evaluated on the βc(K ,Q) → β+ line as shown in Fig. 3c. Optimization of the 
weight function will yield the optimal location for the country (Kopt ,Qopt) in the param-
eter space. In Fig. 3c we used the Euclidean distance in the parameters space as a weight 
function W (β) =

√

(K − K ′′)2 + (Q − Q′′)2 and its optimization (minimizing) will yield 
the shortest Euclidean distance which represents the minimal reduction of the inter and 
intra links, i.e., minimal restrictions. However, in a real scenario much more complex 
function is required. This function should take into account the economic cost of reduc-
ing the degree in and between the cities, social cost of quarantine, and many other col-
lateral damage factors.

Consequences of late intervention and early quarantine removal
While well-performed control strategies (Fig. 3) will result in epidemic extinction, the 
timing of the intervention plays a significant role. In many cases, early action can control 
the disease rapidly with a low amount of infections while late reply may not be efficient 
since the epidemic may already spread globally. To understand the effect of intervention 
timing we study the spatial propagation of the epidemic as a function of time. In Fig. 4 
we show the average maximal extent of the epidemic from the origin, 〈rmax〉 , as a func-
tion of time at β2D

c  . The value of 〈rmax〉(t) is measured as the average of the maximum 
distance from the disease origin of the newly recovered nodes until time t, and describes 
the spatial propagation of the disease. Assuming a small kinter , at early times the spatial 
structure of cities around the origin city can be observed in the spatial propagation of 
the diseases. In the beginning, the disease spread locally within the origin city (zeroth 

(6)Kc = −
1

4(1− 2−1/Q)
log

[

1−
4(1− 2−1/Q)

β

]

.



Page 8 of 14Gross and Havlin ﻿Appl Netw Sci            (2020) 5:95 

circle) with �rmax� ∼ ζ . The timescale of this stage is τ0 which generally depends on ζ , K, 
and kinter . Afterwards, the epidemic spread in the first circle of cities around the origin 
city with timescale τ1 and later in the second circle with timescale τ2 . τx is the timescale 
of crossing between circles. Interestingly, the timescale of the disease spread in each cir-
cle gets shorter as the disease spread further and eventually completely disappear. At this 
point, a clear 2D spatial propagation (of fractal type-since the system is at criticality) is 
observed with �rmax� ∼ t1/d

2D
min = t1/1.13 (Bunde and Havlin 1991) as shown in Fig. 4. The 

reason for the disappearance of the distinction between circles at later times is because 
the epidemic may spread faster in a given area and slower in another leading to incon-
clusive distinction between circles.

This phenomenon of spatial identification of the disease in different circles at early 
times and its disappearance at later times has significant consequences for intervention 
timing. At early times when the epidemic can be identified in a given circle, quaran-
tine strategies (Fig. 3b) can be applied locally around the circle and control the disease 
without affecting the whole country [as could have been done around Hubei province 
in China in the case of COVID-19 (Gross et al. 2020a)]. In contrast, in later times the 
identification of the disease location becomes inconclusive and intervention should be 
applied on much larger scales to control the disease. Moreover, while in the close circles 
the spatial identification is valid as shown in Fig. 4 for the first and the second circles, 
the time window for action gets shorter and shorter ( τ0 > τ1 > τ2 ) and require fast deci-
sions. In Fig. 5 we tested different control strategies discussed in Fig. 3 applied in dif-
ferent timing, tx . In order to test if the intervention was successful, it is of interest to 
compare 〈rmax〉x , the epidemic extent at tx , and the epidemic extent once the epidemic 
stop spreading 〈rmax〉f  . As shown in Fig. 5 the intervention was successful in controlling 

Fig. 4  Epidemic spatial propagation. The average maximum extent of the epidemic, 〈rmax〉 , is measured as 
a function of time at β2D

c  . At early times the epidemic spread locally within the origin city (zeroth circle) for 
a period of time τ0 with a constant �rmax� ∼ ζ . Afterwards, the epidemic spread to the first circle of cities 
around the origin city for a period of time τ1 and later to the second circle of cities for a period of time τ2 . The 
transition time between the circles is denoted by τx . As the epidemic evolves the distinction between circles 
decreases and identifying the distance of the disease from the origin is less clear. At later times the distinction 
of circles disappear completely and a clear spatial propagation is observed with �rmax� ∼ t1/d

2D
min = t1/1.13 

(Bunde and Havlin 1991). The reason for the disappearance of the distinction between circles at later times 
is because the epidemic may spread faster in a given area and slower in another leading to inconclusive 
distinction between circles. Here we used ζ = 100 , K = 4 , kinter = 10−3 , L = 1000 and β2D

c = 0.407
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the disease with �rmax�f ≈ �rmax�x . Nonetheless, while the control strategies at early 
times successfully stop the disease propagation, the extent of action required to con-
trol the disease increases as the intervention is performed later resulting with a larger 
amount of infections as the epidemic spreads further. These results highlight the impor-
tance and impact of early actions.

To complete the picture we also analyze the effect of temporal quarantine strategy by 
temporally reducing the degree within cities (Fig. 5b, K → K ′ ) at time tx and increas-
ing it back after quarantine window of tq ( K ′ → K  ). Figure  6 show the effect of tem-
poral quarantine within cities for different quarantine windows. As can be seen, the 
quarantine window highly affect the final extent of the epidemic, 〈rmax〉f  , and while early 
removal of the quarantine will result with the epidemic still propagating in the system, 
a finite quarantine window can completely stop the propagation of the disease with 
�rmax�f ≈ �rmax�x . Note that longer quarantine windows will be required for lower recov-
ery probability. These results show that while early actions are essential, early removal of 
them will not result with the control of the disease and therefore quarantine removal 
should be perform with maximum caution.

Summary and discussion
In this work, we applied the SIR model to study the epidemic spreading on a spatial 
modular network model which can represent cities in a country. We find that two epi-
demic thresholds exist, the first representing a local outbreak within a city, and the sec-
ond when the epidemic spreads globally in the entire country. We find analytically both 
epidemic thresholds and based on them we developed control strategies and a method 
to optimize them. The first strategy uses social measures to reduce the infection prob-
ability, and the second uses quarantine measures by reducing the infection channels 
within and between the cities. We also study the effect of intervention timing and show 
that early actions are essential to prevent the global spread of the disease.

Our model provides an analytical solution for epidemic spreading in spatial system, 
however, in order to achieve that, some simplifications were applied and should be 
improved in future work. The first is the assumption that all cities have the same size ζ 2 

a b c

Fig. 5  Intervention timing. Here we show the effect of different control strategies performed at intervention 
timing tx at different circles’ timescales corresponding to Fig. 4 and compare them to the scenario of no 
intervention corresponding to the case of tx = ∞ . The epidemic start spreading with the parameters 
ζ = 100 , K = 4 , kinter = 10−3 , Q = 10 , L = 1000 and β = βc = 0.407 . a Social strategy. β → β ′ = 0.3 . b 
Quarantine strategy within cities. K → K ′ = 3 . c Quarantine strategy between cities. Q → Q′ = 1 by reducing 
kinter → k′inter = 10−4 and keeping ζ fixed. The epidemic extent at tx is 〈rmax〉x and when the epidemic stops 
to spread it is 〈rmax〉f  . In all cases the intervention successfully stop the disease spatial propagation with 
�rmax�f ≈ �rmax�x
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which in fact should follow a certain realistic distribution. Nonetheless, we expect quali-
tatively similar results as we showed here. The second is the absence of long-range con-
nections. While in some cases such as a epidemic outbreak when quarantine are applied 
this assumption is valid since only short range connection is allowed, future work should 
also include realistic long range links into consideration which could be related to the 
Watts-Strogatz model (Watts and Strogatz 1998). Despite these simplifications, our 
model, control and optimization strategies will still be applicable when including more 
realistic features.

In addition, another direction for future work is a spectral analysis of the network 
model which has been shown to explain many phenomena in percolation (Bollobás et al. 
2010) and may provide a new perspective to the phenomena we observed here. Moreo-
ver, it may assist in the effort of spectral analysis study of clustered networks which is 
not yet fully understood today (Zhang 2017).
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Fig. 6  Temporal quarantine strategy. Here we show the effect of quarantine strategy within cities (Fig. 5b) 
for different quarantine time windows tq . At time tx = 30 we temporally reduce K → K ′ within cities (black 
dashed line) and at time tx + tq remove the quarantine K ′ → K  . The quarantine window highly affects 
the final extent of the epidemic, 〈rmax〉f  , and while early removal of the quarantine will result with the 
epidemic still propagating in the system, a finite quarantine window can completely stop the propagation 
of the disease with �rmax�f ≈ �rmax�x . Here we used ζ = 100 , K = 4 , K ′ = 3 , kinter = 10−3 , L = 1000 and 
β = β2D

c = 0.407
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Appendix 1 Epidemic spread in ER networks
To develop an analytical solution for epidemic spread in ER networks we will follow the 
formalism developed by Newman (2002). We will use the generating functions:

for the degree distribution and the outgoing edges distribution respectively. In order to 
find the size of the epidemic outbreak we need the generating functions for the distribu-
tion of the occupied edges. Thus, following Newman (2002) the generating function for 
the occupied edges for epidemic with infection probability β is:

and

For the case of ER networks pk = Kke−K

k!  , thus:

where K is the average degree. The size of the epidemic outbreak is S(β) = 1− G0(u;β) 
and u(β) = G1(u;β) . Thus, S = 1− u and a self consistent equation can be written:

with the epidemic threshold βER
c = 1/K  . Theory and simulation show excellent agree-

ment as shown in Fig. 7.

(7)G0(u) =
∑

k

pku
k ,

(8)G1(u) =
1

K
G′
0(u).

(9)G0(u;β) = G0(1+ (u− 1)β).

(10)G1(u;β) = G1(1+ (u− 1)β).

(11)G0(u;β) = G1(u;β) = e−Kβ(1−u)

(12)S = 1− e−KβS

Fig. 7  Epidemic spread in ER networks. Theory is obtained from Eq. (12) and simulation performed with 
N = 106 and K = 4 . The epidemic threshold is βER

c = 1/K = 1/4
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Appendix 2 Epidemic spread in 2D square lattice
The mapping between bond percolation and the SIR model yield the same epidemic 
threshold for 2D square lattice β2D

c = 1/2 (Grassberger 1983; Sander 2002). Simulations 
of the SIR model on a 2D square lattice are shown in Fig. 8 with the epidemic threshold 
β2D
c = 1/2 as expected.
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