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Complex systems—biological, social or technological—often 
experience perturbations and disturbances, from overload  
failures in power systems1–3 to species extinction in eco-

logical networks4–6. The impact of such perturbations is often  
subtle: the system exhibits a minor response, but it continues  
to sustain its global functionality7,8. However, in extreme cases,  
a large enough perturbation may lead to a major collapse, with  
the system abruptly transitioning from a functional to a dysfunc-
tional dynamic state9–13 (Fig. 1a–d). When such collapse occurs,  
the naïve instinct is to reverse the damage, retrieve the failed  
nodes and reconstruct the lost links. This, however, is seldom effi-
cient because of the following reasons: (1) we rarely have access 
to all the system components14, limiting our ability to reconstruct 
the perturbed network; (2) even if we could reverse the damage, 
in many cases, the system will not spontaneously regain its lost  
functionality due to hysteresis.

To address this challenge, here we derive a two-step recovery 
process. Step I. Restructuring (Fig. 1e). Retrieving the weighted 
topology to a point where the system can potentially regain its 
functionality. Step II. Reigniting (Fig. 1f). Introducing dynamic 
interventions to steer the system back to its functional state. 
Considering the fact that in most practical scenarios, we cannot 
control the majority of the system components, we design our reig-
niting around micro-interventions, that is, controlling only a small 
number of components. To achieve this, we uncover the recoverable 
phase—a dynamic state in which the system can be driven towards 
functionality by controlling just a single node.

Challenge of irreversible collapse
Consider a complex system of N components (nodes), interact-
ing via an adjacency matrix A, a sparse, potentially directed ran-
dom network with an arbitrary degree distribution P(kin, kout) 
(Supplementary Section 1). Each node is assigned an activity xi(t), 

whose meaning depends on context, for example, capturing a spe-
cies abundance in a microbial network or a gene’s expression level in 
a biological setting. We then track the evolution of xi(t) following15–17

dxi
dt = M0(xi(t)) +

N∑

j=1
AijWijM1(xi(t))M2(xj(t)), (1)

where the interaction dynamics is characterized by the three 
potentially nonlinear functions M0(x), M1(x) and M2(x). The first 
function, M0(xi), captures node i’s self-dynamics, describing mecha-
nisms such as protein degradation18 (cellular), individual recovery19 
(epidemic) or birth/death processes20 (population dynamics). The 
product M1(xi)M2(xj) describes the (i, j) interaction mechanism, 
for example, genetic activation21, infection19 or symbiosis22. The 
strength of the (i, j) interaction is governed by Wij, a random weight 
extracted from the density function P(w), whose average is denoted 
by ω =

∫
∞

0 wP(w)dw.
In the context of recoverability, we seek to revive the activity of 

all the nodes by activating a selected set of nodes; hence, we focus 
on cooperative interactions in which the nodes positively contribute 
to each other’s activity. This is expressed in equation (1) through 
WijM1(xi)M2(xj) ≥ 0 (Supplementary Section 1). Later, in our dis-
cussion on microbiome recoverability, we relax this condition and 
examine the impact of mixed-sign interactions.

Setting the derivative on the left-hand side of equation (1) to zero, 
we obtain the system’s fixed points, namely, xα = (xα,1,…, xα,N)

⊤, 
which, if dynamically stable, represent different states (desirable or 
undesirable) in which the system can naturally reside. Transitions 
between these states often result from perturbations to A or W, 
such as node/link deletion or reduction in link weights. When this 
occurs, it is difficult to reverse the unwanted transition. This is 
because the system often avoids spontaneous recovery, even if we 

Reviving a failed network through microscopic 
interventions
Hillel Sanhedrai1, Jianxi Gao   2,3, Amir Bashan1, Moshe Schwartz4, Shlomo Havlin1 and 
Baruch Barzel   5,6 ✉

From mass extinction to cell death, complex networked systems often exhibit abrupt dynamic transitions between desirable and 
undesirable states. These transitions are often caused by topological perturbations (such as node or link removal, or decreas-
ing link strengths). The problem is that reversing the topological damage, namely, retrieving lost nodes or links or reinforcing 
weakened interactions, does not guarantee spontaneous recovery to the desired functional state. Indeed, many of the relevant 
systems exhibit a hysteresis phenomenon, remaining in the dysfunctional state, despite reconstructing their damaged topol-
ogy. To address this challenge, we develop a two-step recovery scheme: first, topological reconstruction to the point where the 
system can be revived and then dynamic interventions to reignite the system’s lost functionality. By applying this method to a 
range of nonlinear network dynamics, we identify the recoverable phase of a complex system, a state in which the system can 
be reignited by microscopic interventions, for instance, controlling just a single node. Mapping the boundaries of this dynamical 
phase, we obtain guidelines for our two-step recovery.

Nature Physics | VOL 18 | March 2022 | 338–349 | www.nature.com/naturephysics338

mailto:baruchbarzel@gmail.com
http://orcid.org/0000-0002-3952-208X
http://orcid.org/0000-0001-8862-4384
http://crossmark.crossref.org/dialog/?doi=10.1038/s41567-021-01474-y&domain=pdf
http://www.nature.com/naturephysics


ArticlesNaTure PhysIcs

S
ta

te

S
ta

te

S
ta

te

Topology Topology Topology

Collapsed

Restructuring Reigniting

c d

e f

h

a

b

Active

Time

Topological perturbation

dxi

N

j = 1

AijWijM1(xi)M2(xj)
dt

M0(xi)= +

g

Two-step recovery

x1

x0

x1

x0

x1

x1

x1

x0

�0

�1

xs(t) = Δ

s
xi Δ

s

x0

x0

Fig. 1 | Reviving a failed network. a, Components of our modelling framework: network structure/weights are captured by A and W (grey terms); interaction 
mechanisms are described by M0(x), M1(x) and M2(x) (orange terms). b, Depending on the dynamics—for example, cellular, neuronal or microbial—the 
system exhibits distinct fixed points, active (x1, green) or failed (x0, red). Transitions between these states are driven by perturbations to A and W.  
c, Unperturbed, the system resides in x1, where all xi > 0. In this presentation, here and throughout, the network nodes are laid out on the x–y plane, and  
their activities xi are captured by the z coordinate. Hence, an active system has all the nodes spread along the positive z axis, whereas a failed network is laid 
out around z → 0. We also use colour coding from red (small xi) to blue (large xi) as a visual aid. d, Perturbations to A and W, such as node/link removal or 
weight reduction, result in a collapse to the inactive x0. For this system, under x0, all the activities vanish (z = 0). e, Step I. Restructuring. To revive the failed 
system, we first restructure A and W to a point where it can recover, namely, a point where x1 is potentially stable. f, Step II. Reigniting. After restructuring, 
we revive the active state x1 by controlling a microscopic set of nodes (here the single node s). By using an external forcing to sustain constant activity 
xs(t) = Δ, we drive the network towards x1. g, Following reigniting (xs(t) = Δ; black node at the centre), the forcing signal gradually spreads until the system’s 
activity x1 is restored. h, In this process, we use the natural basin structure of our dynamics. To reignite x1, we steer the system from B0 (red) to any point 
within B1 (green). Once in B1, we cease our forcing, and the system naturally transitions to the desired x1 (dashed arrows).
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Fig. 2 | Can a system be reignited by a single node? a, During reigniting, we select a single source node s and, for a limited time, artificially force it to 
sustain a permanent activity Δ. To track the system’s response, we divide the network into shells Ks(l) comprising all the nodes at distance l from s  
b, Average activity xs(l) of all the nodes at Ks(l) follows the recurrence relation of equation (5), starting from our forcing at s (top equation) and tracking  
its propagation as it penetrates the network shells (bottom equation). Successful reigniting requires xs(l → ∞) ∈ B1, that is, the distant shells were 
driven towards the desired basin. c–e, To track the convergence of the recurrence relation, we plot F(x) (purple) and M2(x) (yellow). The forcing Δ 
determines our initial starting point, and the recurrence follows the red or green trajectories. The final state xs(l → ∞) is reached when the two functions, 
namely, F(x) and M2(x), intersect. We observe three potential scenarios (Supplementary Section 2.5): Case 1 (c). F(x) and M2(x) have a single intersection 
in B0 (red). Under these conditions, regardless of Δ, the recurrence converges to xs(l → ∞) ∈ B0 and hence the system is structurally unrecoverable. 
Case 2 (d). F(x) and M2(x) exhibit two intersections, corresponding to the system’s two stable fixed points x0 (red) and x1 (green); the intermediate 
intersection (white dot) is unstable. Here for Δ < Δc, the system converges to B0, that is, unrecoverable (red trajectory), whereas for Δ ≥ Δc, it approaches 
B1 and hence it is recoverable (green trajectory). Case 3 (e). If F(x) is non-monotonic, the critical forcing Δc is determined by the local maximum point  
of F(x) (Supplementary Section 2.5 provides a detailed analysis of Case 3). f, Structural recoverability is determined by the network topology (A, W) 
through κ, ω and ρ. A structurally unrecoverable (Case 1) system remains confined to B0 and hence cannot be revived, even under arbitrarily large Δ.  
g, A structurally recoverable system (Cases 2 and 3) is unrecoverable if Δ < Δc (left) and recoverable otherwise (right). Hence, the recoverable phase  
is driven by three structural parameters (κ, ω, ρ; grey) and a single dynamic parameter (Δ; orange).
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retrieve the lost nodes, links or weights. To illustrate this difficulty, 
we refer to a concrete example below.

Example 1. Cellular dynamics (Fig. 3). As our first example, 
we consider the Michaelis–Menten model for gene regulation, 
capturing activation interactions between genes (Fig. 3a). Here 
M0(xi) = −Bxai , an ath order depletion process18, M1(xi) = 1 
and M2(xj) = xhj /(1+ xhj ), a switch-like function that saturates 
to M2(xj) → 1 for large xj, representing the process of activa-
tion (Supplementary Section 3.1). The rate of this saturation is  
governed by h.

For sufficiently connected A or large average weight ω, the sys-
tem exhibits an active state x1 in which all x1,i > 0—capturing a living 
cell. However, perturbations to A and W, such as link/node removal 
or weight loss can cause a sharp transition to the inactive state 
x0 = (0,…, 0)⊤, describing cell death. To systematically track this 
transition, we measured the average activity x̄α = (1/N)

∑N
i=1 xα,i, 

which follows x̄α > 0 for α = 1 and x̄α = 0 for α = 0. As we subject 
the system to increasing levels of stress, here reducing all the weights 
W by a factor 0 ≤ q ≤ 1, we observe a sudden transition at q = qc from 
x1 (Fig. 3b, green) to x0 (Fig. 3b, red). Next, we attempt to revive 
the node activities by retrieving the lost weights, finding that the 
system fails to recover. The reason is that although x1 is only stable 
for q ≤ qc, x0 is always stable—both below and above this threshold. 
This leads to a hysteresis phenomenon, where the system remains 
inactive despite the reversal of perturbation.

Example 1, above—although representing a specific scenario—
illustrates the family of challenges that we tackle here: system’s 
with irreversible transitions that are driven by perturbations to 
their weighted topology. To revive such systems, we must not only 
restructure their lost topology but also dynamically reignite them by 
exerting external control over their activities xi(t).

Recoverability
The most natural way to reignite the system is to drive all activi-
ties xi towards an initial condition from which the system naturally 
recovers to the desired x1. Namely, we must steer the system into x1’s 
basin of attraction:

B1 = {x(t = 0) | x(t → ∞) = x1} , (2)

which comprises all the initial conditions x(t = 0) from which equa-
tion (1) converges to x(t → ∞) = x1 (Fig. 1h). The problem is that 
such level of control over the dynamics of all the nodes is seldom 
attainable; hence, we seek to recover the system’s functionality by 
driving only a microscopic fraction f → 0 of forced nodes.

To achieve this, we consider the limit f ~ 1/N where our reig-
niting is typically attempted through a single, randomly selected 
source node s, whose activity we force to follow xs(t) = ϕ(t). In many 
practical applications, our ability to exert such control—even on 
a single node—is restrictive, limiting the potential forms of ϕ(t). 
Hence, below, we reignite equation (1) using an extremely simple 
input, namely, ϕ(t) = constant. Other practically accessible forms of 
ϕ(t) are further considered in Supplementary Section 4. As simple 
as it is, the constant forcing itself is also constrained, as our forcing 
capacity is often bounded by ϕ(t) ≤ Δ. Therefore, we seek the con-
ditions where such restricted interventions—controlling just one 
node and with a forcing bounded by Δ—can push the remaining 
nodes into the desired B1.

During our intervention, the remaining N − 1 nodes continue to 
follow the natural system dynamics of equation (1), as they respond 
to the s forcing. In technical terms, the failed state of the system, x0, 
captures the initial condition of equation (1), and the forced node 
imposes a strict boundary condition at s. In a recoverable system, 
after some time, the activities will enter B1, at which point we can 
cease our external control and allow the system to naturally transi-
tion to x1, following its internal dynamics. If, however, the system is 

non-recoverable, such single-node reigniting is insufficient and the 
system remains at B0; once we lift our forcing, it relaxes back to x0, 
resulting in a failed reigniting.

To analytically track the system’s response to our forcing at s,  
we divide the rest of the network into shells Ks(l) = {j∣Lsj = l}, com-
prising all the nodes located at distance l from s (Fig. 2a). In this 
notation, Ks(0) = {s}, Ks(1) is the group of s’s nearest outgoing  
neighbours, Ks(2) its next-nearest neighbours and so on. Then, 
starting with xs(t) = Δ, we track the average activity of nodes  
in Ks(l) via

xs(l, t) =
1

|Ks(l)|
∑

i∈Ks(l)

xi(t), (3)

where ∣Ks(l)∣ represents the number of nodes in Ks(l). The shells 
adjacent to the source (small l) will be forced to respond to s’s acti-
vation Δ. However, the distant shells (at l → ∞) may be unaffected 
and therefore still remain within B0. Under these conditions, upon 
the termination of our Δ forcing, all the shells retreat back to x0, 
rendering the system unrecoverable. Successful reigniting, there-
fore, requires that

xs(l → ∞, t → ∞) ∈ B1, (4)

capturing a state in which the forcing at s can penetrate the network 
and affect the activity of even the most distant nodes at Ks(l → ∞). 
This represents a recoverable system that will naturally revert to 
x1 once our forcing Δ is deactivated. Note that in equation (4), we 
use the ∈ sign loosely, as strictly speaking, B1 includes the initial 
conditions of the form x and not scalar averages such as xs(l, t). 
Hence, equation (4) should be taken to imply the shell average 
xs(l → ∞, t → ∞) is congruent with a state x ∈ B1.

To obtain the final shell states xs(l) = xs(l, t → ∞), we use the fact 
that despite its potentially broad degree/weight distribution, our 
network is otherwise wired and assigned link weights at random 
(Supplementary Section 1). Therefore, (1) A features little degree 
correlations and hence the nodes in Ks(l) are statistically similar to 
those in Ks(l′) (for l, l′ ≥ 1); (2) A is locally tree like, and therefore, 
asymptotically, there are almost no short-range loops surrounding 
the source s. Below, we relax both approximations when numeri-
cally testing our method against empirically constructed networks, 
which indeed feature both loops and measurable degree correlations 
(Supplementary Section 5.5). However, to advance analytically, we 
use approximations (1) and (2) above to translate equation (1) into 
a direct set of equations for xs(l). We arrive at the recurrence relation 
(Supplementary Section 2)

{
xs(0) = ∆,

F (xs(l)) = M2 (xs(l− 1)) ,
(5)

where

F(x) = 1
ω
R(x)− ρκM2

(
R−1 (ωM2(x) + ωκM2(x̄0))

)

−(1− ρ)κM2 (x̄0) ,
(6)

in which R(x) = −M0(x)/M1(x) and R−1(x) is its inverse function. In 
equation (6), parameter x̄0 represents the mean activity of nodes 
in Ks(l > 1) under the failed state x0 (Supplementary Section 2.4). 
The remaining parameters are directly extracted from the weighted 
topology (A, W) as follows: ω is the average weight

κ =
1
N

N∑

i=1

1
|Ki(1)|

N∑

j=1
A⊤

ij kj,in − 1 (7)
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active state x1. As q increases (weight loss), xi become smaller (centre), until the system collapses into the inactive x0 (bottom). d, Retrieving the lost 
weights does not revive the system since x0 is always stable. Therefore, we must dynamically reignite the failed system. e, F(x) (purple) and M2(x) (yellow) 
as obtained from the left-/right-hand sides of equation (9) with κ = 3, ω = 0.7 and ρ = 1. We observe Case 1 (Fig. 2c) with a single intersection at B0 (red). 
This describes a structurally unrecoverable system. f, Under a denser A (κ = 10), F(x) changes form and the system now follows Case 3 in Fig. 2e  
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κ (green) and ω (red), to be expanded in k–m. k, The (κ, ω) phase diagram, as obtained from 5 × 104 scale-free networks (Supplementary Section 5.3). Each 
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represents the average neighbour’s residual in degree13,23, and 
ρ = P(Aij = 1|A⊤

ij = 1) describes the network’s reciprocity, captur-
ing the probability to observe a link i → j given the existence of j → i 
(for undirected networks, ρ = 1).

Equations (5) and (6) represent our key result. They approxi-
mate the recoverability of equation (1), a multidimensional 
nonlinear dynamic equation, through a manageable first-order 
recurrence relation. This recurrence takes the system’s weighted 
topology (κ, ρ and ω) and its nonlinear dynamics (M0, M1 and 
M2) as the input, and, together with our intervention con-
straints (Δ), predicts the system’s recoverability as the output. 
Indeed, for any given forcing Δ, the recurrence in equation (5) 
either converges to xs(l → ∞) ∈ B1, satisfying the recoverabil-
ity condition in equation (4), or to xs(l → ∞) ∈ B0, indicating a  
failed recovery.

To obtain xs(l → ∞), we extract the stationary states of equation 
(5), requiring24,25

F(x) = M2(x), (8)

which, in turn, provides xs(l) = xs(l − 1). Depending on κ, ω and ρ, 
we observe two characteristic behaviours (Fig. 2 and Supplementary 
Section 2.5). Structurally unrecoverable (Fig. 2c,f): if F(x) and M2(x) 
have a single intersection x ∈ B0, then the series in equation (5) 
inevitably converges to that point. This captures structural unrecov-
erability, where regardless of Δ, single-node reigniting is prohibited. 
Structurally recoverable (Fig. 2d,e,g): if, on the other hand, F(x) and 
M2(x) have several intersections, then the convergence of equation 
(5) depends on the boundary condition xs(0) = Δ, whose magnitude 
is determined by our forcing capacity. For Δ < Δc, our forcing is too 
small, and the system approaches B0, a failed reigniting. For Δ ≥ Δc, 
it will reach B1, capturing a successful reigniting. In case a system is 
structurally recoverable and Δ ≥ Δc, we say that it is in the recover-
able phase—a state in which one can revive the system by forcing 
only one node (Fig. 2i).

Taken together, for a given dynamics M0(x), M1(x) and M2(x), our 
formalism predicts a four-dimensional phase diagram in the phase 
space of κ, ρ, ω and Δ, defining the boundaries of recoverability. 
Next, we investigate this phase space on a range of relevant systems, 
from cellular dynamics (Example 1) to neuronal and microbial sys-
tems. In our first example below, we consider, for simplicity, undi-
rected networks (ρ = 1), reducing our phase space to three relevant 
dimensions, namely, κ, ω and Δ. Our final example (reviving a dys-
functional microbiome) examines recoverability under directed 
interactions (ρ < 1).

Applications
Example 1 cellular dynamics. As our first application (Fig. 3 
and Supplementary Section 3.1), we return to Example 1, regu-
latory dynamics, where M0(x) = −xa, M1(x) = 1 and M2(x) = xh/
(1 + xh) and therefore R(x) = xa and R−1(x) = x1/a. Equation (8) under  
ρ = 1 becomes

1
ω
xa − κx h2

a

x h2
a + ω−

h
a (1+ xh)

h
a
=

xh
1+ xh , (9)

whose roots (x) determine the potential fixed points of the reig-
nited system. Clearly, x = 0 is a solution, capturing the fact that 
the failed state x0 = (0,…, 0)⊤ ∈ B0 is always stable. Hence, the 
question is under what conditions do we observe a second solution 
x > 0, representing a potential convergence to B1. To answer this, in  
Fig. 3e,f, we plot M2(x) versus x (yellow) and observe its intersec-
tions with F(x) (purple) as we vary the values of κ and ω. This allows 
us to graphically observe the potential convergence of the system to  
B0 or B1.

First, we consider κ = 3 and ω = 0.7 (Fig. 3e). We find that 
equation (9) exhibits only one solution, represented by the single 
intersection at x = 0 (red dot). This guarantees that equation (5) 
converges to xs(l → ∞) = 0, independently of Δ. Consequently, the 
system is structurally unrecoverable. Indeed, Fig. 3g indicates that 
despite the forcing Δ at s, the system fails to reactivate.

Increasing the network density to κ = 10, however, changes 
the picture; now, equation (9) features three intersection points  
(Fig. 3f): an intermediate unstable point (white) and two stable 
points at x = 0 (red) and x > 0 (green), representing convergence 
to B0 and B1, respectively. Hence, the system is now structur-
ally recoverable, with critical forcing Δc = 1 (vertical dashed line), 
above which it enters the recoverable phase. This prediction 
is corroborated in Fig. 3h,i: under Δ = 0.9, the system remains 
in B0, but for Δ = 1.1, just above Δc, it successfully reignites, as  
precisely predicted.

This uncovers the existence of a previously overlooked dynamic 
phase of the Michaelis–Menten model. Indeed, the regulatory sys-
tem shown in Fig. 3a has been previously13 shown to follow two 
phases: inactive (where only x0 is stable) and bistable (where both 
x0 and x1 are stable) (Fig. 3b–d). Yet, we now unveil a third phase, 
recoverable, a subspace of the bistable phase in which the system 
can be reignited from x0 to x1 by controlling a single node.

To systematically examine this phase space, we present the 
recoverability phase diagram (Fig. 3j). For small κ and ω, we 
observe the structurally unrecoverable regime in which recover-
ability is unattainable even with arbitrarily large Δ (red patch in the 
κ–ω plane). The remaining area in (κ, ω) represents the structurally 
recoverable regime, which is split between the unrecoverable phase 
(for Δ < Δc (below surface)) and the recoverable phase when Δ ≥ Δc  
(above surface).

Setting Δ as constant, in Fig. 3k, we construct the (ω, κ) phase 
diagram by numerically simulating the regulatory dynamics on 
an ensemble of 5 × 104 scale-free networks, covering 2,500 dis-
tinct combinations of ω and κ (Supplementary Section 5.3).  
Each data point in Fig. 3k captures the fraction of successful  
recoveries η among 20 independent reigniting trials, from zero  
successes (η = 0; yellow) to 100% successful recovery attempts 
(η = 1; blue); the white solid line represents our theoretical  

Fig. 4 | Two-step recovery for reviving a failed cellular system. a, Unperturbed yeast protein interaction network. For visibility, we focus on the circled 
subnetwork. b, As expected, the unperturbed network is in the active state x1; hence, all xi > 0. c,d, After extensive perturbation in which 30% of nodes/
links (grey and red) were deleted, the state of the network collapses to the inactive x0, in which all xi = 0. The challenge is that some of the deleted 
components (nodes/links) are inaccessible and hence cannot be retrieved (red). This captures restructuring constraints that are, indeed, inevitable 
in realistic scenarios. The circle at the centre: we focus on the same subnetwork shown in a, the deleted nodes/links appear in grey and red, and the 
remaining unperturbed components are highlighted. e, Step I. Within the given constraints, we restructure the network by reintroducing nodes/links or 
strengthening link weights. We map these interventions into their impact on the two relevant control parameters, namely, κ (blue) and ω (orange). For 
illustration, we show the highlighted subnetwork of c as it restructures, acquiring nodes, links and increased weights (subnetworks along the x axis).  
f, Restructuring paths in the phase diagram of (κ, ω). A successful path leads the network from the collapsed phase (red) into the recoverable phase (blue). 
Using our predicted phase boundary (white solid line), we design several alternative paths, affording us flexibility to, for example, focus on increasing 
weights ω (Net 1; light-blue path) or enhancing network density κ (Net 3; purple path); as dictated by the nature of our constraints. g, Step II. Once the 
network is in the recoverable phase, we can revive it via single-node reigniting, demonstrated here on each of our restructured networks, namely, Nets 1–3.
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prediction based on analysing the intersections of equation (9).  
We find that the boundaries of recoverability (Fig. 3k–m, yel-
low/blue regions) can be well approximated by our analytical  

framework. We also present the phase diagram in the (ω, Δ) and 
(κ, Δ) spaces (Fig. 3l,m, respectively), further confirming our  
predicted transitions.
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To test our predictions in an empirical setting, we collected 
data on two real biological networks, capturing protein interac-
tions in human26 (κ = 29) and yeast27 (κ = 12) cells. Varying ω and 
Δ, we measured the reigniting success rate η. In both networks, we 
observe a sharp transition into the recoverable phase (Fig. 3n–q), 

which precisely falls on the theoretically predicted phase boundary 
(ωc; vertical dashed lines).

Restructuring guidelines. In case our system is not in the recover-
able phase, we must design appropriate restructuring interventions 
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Fig. 5 | Recoverability of neuronal dynamics. a, Wilson–Cowan neuronal dynamics (we use a modified version of the model that can be cast in the form 
of equation (1); Supplementary Section 3.2). b, The system exhibits three states: suppressed x0 (red) when κ and ω are small; active x1 (green) under 
large κ and ω; bistable (centre; shaded grey) in which both x0 and x1 are stable. c, The three states, namely, suppressed (red), active (green) and bistable 
(grey), as obtained from 5 × 104 scale-free networks capturing distinct combinations of κ and ω. d,e, The recoverability phase diagram in the (κ, ω) space 
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success rate η of the modular brain network along the phase diagram of (ωIntra, ωInter) (Methods). We observe three phases: unrecoverable in which no 
module can be revived (η = 0; yellow); recoverable in which both modules reactivate (η = 2; blue); and modular in which reigniting is constrained to a single 
module (η = 1; green). h, Setting ωInter = 1 and ωIntra = 2 in the unrecoverable phase (yellow circle), we indeed find that reigniting fails to revive both of the 
modules. i, In the modular phase (green circle), M1 recovers, but fails to reactivate M2. j, In the recoverable phase (blue circle), reigniting successfully 
crosses over from M1 to M2. k, The average activity x̄ of M1 (blue) and M2 (red) versus t, as obtained from numerically simulating neuronal dynamics 
on the brain network. Adding noise, we observe sporadic fluctuations, some causing a transition to the suppressed state. The first collapse occurs to M1 
at t ≈ 20. Soon after, M2 also collapses at t ≈ 40, and the entire network irreversibly fails. l, Increasing the intermodule weights to ωInter = 5, we enter the 
recoverable phase. Now, when one module fails, the other module reignites it. This captures a fail-safe system whose modular structure provides internally 
embedded self-recoverability.
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to push ω or κ towards recoverability (Fig. 4). In a cellular envi-
ronment, this can be achieved through biochemical interventions 
that help catalyse or inhibit specific reactions28. The phase diagrams 
shown in Fig. 3j–m, which map the boundaries of the recoverable 
phase, can help us design such interventions.

To illustrate this, in Fig. 4a–d, we simulate a cellular network 
(yeast) that has been driven towards inactivity due to a series of 
node/link deletion (grey nodes/links). Some of the removed com-
ponents are inaccessible (red) and hence cannot be retrieved during 
restructuring. With these constraints in mind, we incorporate our 
two-step strategy: Step I. Restructuring. We design a sequence of 
accessible interventions on (A, W) to bring the network closer to 
the recoverable phase. An example of such a sequence is shown in 
Fig. 4e (along the x axis). On the y axis, we present the accumu-
lating impact of these restructuring interventions on κ (blue) and 
ω (orange). To revive the system, we seek paths of such accessible 
interventions that help deliver the network into the bounds of the 
recoverable phase (Fig. 4f). Our goal, we emphasize, is not to sim-
ply retrieve the lost components but to achieve recoverability. This 
designates not a single point but rather an entire subspace in (κ, ω) 
(Fig. 4f, blue area), affording us some level of restructuring flexibil-
ity. Indeed, despite the network’s irretrievable components, we were 
able to design three distinct restructuring paths, leading to different 
destinations—namely, Nets 1, 2 and 3—all within the recoverable 
subspace (Fig. 4f, blue area). Step II. Reigniting. Once in the recov-
erable phase, we can revive the system via single-node reigniting as 
shown in Fig. 4g for Nets 1, 2 and 3.

This example illustrates how the phase diagrams of recover-
ability provide guidelines for restructuring. For example, in Fig. 4f, 
path 1 mainly builds on controlling the interaction strengths (ω), 
but assumes little freedom to add nodes or links (κ). In contrast, 
path 3 involves a significant component of adding nodes/links to A, 
affecting not only ω but also κ. The optimal restructuring path is, 
therefore, determined by the nature of our constraints, for example, 
the relative difficulty in adding weights versus adding nodes/links. 
Although the potential space of structural interventions in Step I 
is incomprehensibly vast, our phase diagrams reduce this space 
into only two relevant control parameters, κ and ω (and ρ if A is 
directed). This reduction allows us to assess the contribution of all 
potential interventions by quantifying their effect on these two (or 
three) parameters—providing optimal pathways towards recover-
ability (Supplementary Section 3.1.3).

Example 2 neuronal dynamics. As our second example (Fig. 5 and 
Supplementary Section 3.2), we consider the Wilson–Cowan neu-
ronal dynamics29,30,31 in which equation (1) follows the form shown 
in Fig. 5a (we use a modified version of the model that can be cast 
in the form of equation (1); Supplementary Section 3.2.) The system 
naturally exhibits two dynamic states (Fig. 5b): suppressed (x0, red) 
in which all the activities are constricted; active (x1, green) where 

xi are relatively large (green). In between these two extremes lies a 
bistable phase in which both x0 and x1 are potentially stable (shaded 
grey). This predicts a hysteresis phenomenon in which a system 
driven to the left of the grey area will avoid spontaneous recovery.

To observe the predicted phases, in Fig. 5c, we numerically anal-
yse our ensemble of 5 × 104 scale-free networks. We indeed find the 
active (green) and suppressed (red) phases, separated by the strip of 
bistability (grey). Our formalism, however, predicts an additional 
dynamic phase, recoverable. This phase (Fig. 5d,e, blue area) identi-
fies a subspace within the bistable regime, under which the system 
can be driven to x1 via single-node reigniting; the theoretically pre-
dicted phase boundaries are also shown (white solid lines), precisely 
capturing the numerically observed transitions (yellow/blue area).

In Methods, we further demonstrate how the brain’s modular 
structure impacts the recoverability phase space. We also character-
ize conditions under which modularity provides a fail-safe mecha-
nism in which one module revives the other upon failure.

Example 3 microbial dynamics. As our final example (Fig. 6 and 
Supplementary Section 3.3), we consider the gut microbiome, a 
microbial community whose functional state has been shown to 
crucially impact human health32,33. Following perturbations such as 
antibiotic treatment, the abundance of different species may reach 
critical levels, potentially leading to a dysfunctional microbiome34. 
We, therefore, examine below how our two-step revival strategy can 
help steer a failed microbiome back to functionality.

To construct the interaction network, we collected data35 
describing the metabolic in/out flux of N = 838 microbial species, 
allowing us to map their complementary chemical interactions. A 
cooperative link i → j appears when species i produces a resource 
consumed by j (ref. 36); an adversarial link i ↔ j is assigned if both i 
and j compete over the same resource37. The weight Wij of each link 
captures the level of interspecies reliance: for example, if i is the sole 
producer of j’s only consumed nutrient m, then j’s growth strongly 
depends on i. If, however, there are many alternative producers of 
m or if m is only one of j’s many consumed nutrients, then Wij will 
be small. We arrive at a directed and highly diverse network with 
broadly distributed weights, and most crucially, with ~75% adver-
sarial interactions, in which Wij < 0 (Fig. 6b,c and Supplementary 
Section 3.3.3). This challenges our theoretical framework, which is 
primarily designed around cooperative interactions, and therefore 
helps us test its applicability limits.

To track the microbial populations, we used the dynamics shown 
in Fig. 6a. The self-dynamics combines logistic growth with the 
Allee effect38, and the interspecies cooperative/adversarial interac-
tions follow the Lotka–Volterra dynamics22. The parameter F cap-
tures the externally introduced microbial influx. Out of the original 
pool of N species, we find that 32% cannot be supported by the net-
work and undergo extinction. The remaining 568 species, compris-
ing the actual microbiome composition, exhibit two potential fixed 

Fig. 6 | Recoverability of microbial dynamics. a, Population dynamics. b, Export (orange)–import (green) network, linking microbial species to the nutrients 
they produce/consume. Cooperative links (blue) are assigned when i’s exports are imported by j; adversarial links (red) are assigned when i and j share 
mutual import(s). c, The resulting gut microbiome, a diverse weighted and directed network with mixed cooperative (blue) and adversarial (red) links.  
d–f, The system exhibits two states (d): functional x1 (e, green diamond) or dysfunctional x0 (f, red diamond), with a broad range of bistability (shaded grey). 
g, Propagation of a reigniting signal: s → i → j. In Methods, we show that an effective i → j link must satisfy Wi→j > w0. h, Counting only effective links, we obtain 
the reigniting capacity of s (Rs) as the number of potentially reactivated nodes (blue). i, We ranked all the microbial species based on Rs, identifying the 
network’s most effective reigniters. The top 26 nodes stand out, with Rs that is orders of magnitude higher than the rest. j, Visibly dense effective network 
surrounding B. bifidum (Rs = 360). As expected, B. bifidum successfully reignites the microbiome (right). k,l, We examined two lower-ranked species  
(P. putida (k) and P. distasonis (l)) that failed to revive the network. Specifically, P. putida—despite having a high Rs—only causes a local impact but fails to 
revive the network. m, To reignite with P. putida, we employ our two-step strategy. In Step I, we use nutritional supplements (green) to eliminate competitive 
links (red dashed link) by ensuring nutrient availability. n, We ranked nutrients based on their contribution to the adversarial links. The top three nutrients 
by rank are highlighted (green). o, Supplementing these three nutrients via dietary interventions, we restructure the microbial network, reducing adversarial 
interactions (red). The insets allow a visible comparison, showing the removed adversarial links (red). p, In Step II, we administer probiotics to boost the 
population of a specific species. q, After restructuring, we find that P. putida, an originally failed reigniter, can now successfully revive the microbiome.
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points (Fig. 6d–f), functional x1 and dysfunctional x0. Our goal is to 
apply our two-step recoverability strategy to drive a dysfunctional 
microbiome at x0 back towards x1.

Selective reigniting. In Methods, we show how to evaluate each 
node’s reigniting capacity Rs, allowing us to rank all the candi-
date reigniter species in the microbiome, based on their potential 
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to revive the system (Fig. 6g,h). For a random topology, where all 
the shells Ks(l) are statistically similar, we expect minor differences 
in Rs between the nodes. Here, however, we find that Rs is highly 
diverse, with the top 26 species having Rs > 300, and the remain-
ing species with Rs that is one or two orders of magnitude lower 
(Fig. 6i). Such diversity—a consequence of the unique non-random 
structure of the microbiome—indicates that in this system, the top 
26 nodes represent preferred candidates for reigniting. To examine 
this, we attempted to sequentially reignite the microbiome with 
each of the nodes, finding that, indeed, success was by far more 
likely among the top-ranked reigniters (Fig. 6j–l and Methods).

One exception that we identified among these top reigniters is 
P. putida, which despite having Rs = 359 and ranking sixth in the 
reigniters list, still falls short of reviving the system (Fig. 6k). This is 
due to the fact that P. putida’s reigniting capacity is hindered by its 
many surrounding adversarial interactions. Indeed, reigniting—by 
its nature—builds on the positive activation that the source species 
s exerts on its neighbours at Ks(l). Such a positive impact is under-
mined by negative links. Next, we use P. putida’s restricted reignit-
ing capacity as an opportunity to examine our two-step strategy in 
a realistic setting.

Two-step recovery of a dysfunctional microbiome. Consider a 
microbial network at state x0 that we wish to recover. Among the 
many practical constraints on our potential interventions, one cru-
cial constraint is that we lack control over the majority of microbial 
species and hence we must achieve recovery with a handful of acces-
sible reigniting nodes. Specifically, let us assume that our top acces-
sible candidate for reigniting is precisely P. putida, which cannot 
revive the system by itself (Fig. 6k). Hence, we employ our two-step 
strategy. Step I. Restructuring. To enhance P. putida’s reigniting 
capacity, we wish to inhibit the adversarial interactions, which stand 
in the way of the system’s reactivation. We consider two poten-
tial interventions. (1) Removing selected nodes that have many 
adversarial interactions (competition hubs) by means of targeted 
narrow-spectrum antibiotic treatment. (2) Deleting or weakening 
adversarial links through nutritional or biological interventions39,40. 
For example, if i and j compete over metabolite m, we prescribe 
dietary supplements to ensure the availability of m, thus eliminating 
the (i, j) competitive interaction (Fig. 6m). Since antibiotic interven-
tion on an already dysfunctional microbiome may cause additional 
risks, here we implement restructuring via intervention (2) above. 
First, we rank all the nutrients based on their relative contribution 
to the adversarial weights in W (Fig. 6n and Supplementary Section 
3.3.3). We then supplement the top three nutrients in the list (green) 
to restructure the network. Eliminating the competition over these 
now freely available nutrients, we arrive at our restructured net-
work, which—owing to our interventions—now has a more suitable 
balance of cooperative versus adversarial interactions (Fig. 6o). Step 
II. Reigniting. In the microbiome, forcing can be implemented by 
administering probiotics, a common therapeutic practice that helps 
artificially sustain a desired abundance of a selected species41. The 
rate of probiotic intake determines the average activation force, set 
to be above the reigniting threshold Δc. Having restructured the net-
work, we now attempt, once again, to reignite it with P. putida. We 
find that the originally failed reigniter is now capable of reviving the 
inactive microbiome (Fig. 6p,q).

Applicability limits. Our theoretical analysis helps construct the 
precise phase diagrams in the (κ, ω, Δ) phase space, predicting the 
bounds of the recoverable phase. These analytically tractable obser-
vations rely on a specific set of assumptions, mainly that A features 
marginal degree correlations and has a scarcity of short-range loops 
and that the dynamics is of the form of equation (1) and has primar-
ily cooperative interactions. A precise description of these model-
ling assumptions is provided in Supplementary Section 1.

Our applications, however, provide insights that extend well 
beyond these analytical limits. For example, all our empirical net-
works—cellular, neuronal and microbial—exhibit non-negligible 
deviations from the above assumptions; yet, our analysis correctly 
predicted their recoverability (Supplementary Section 5.5). The 
gut-microbiome analysis helped us derive implementable guide-
lines for reigniting, also including the notion of selective reignit-
ing, despite the network’s strong degree correlations and significant 
share of adversarial links (Fig. 6). In Supplementary Section 3.4, 
we further consider diffusive interactions in which the govern-
ing equation is generalized beyond the form of equation (1). We 
also analyse alternative forms of reigniting, using periodic activ-
ity boosts, which in certain applications may be more acces-
sible than the time-independent forcing (Δ) considered here  
(Supplementary Section 4).

Discussion and outlook
While the structure of complex networks has been deeply investi-
gated over the years, our understanding of their dynamics is still 
emerging. The challenge is often focused on prediction, aiming to 
foresee a network’s dynamic behaviour. Here we go a step further 
and focus on influence, showing how to steer a system towards a 
desired behaviour.

Our solution seals a crucial gap in our pursuit of the control-
lability of a nonlinear system42. Existing approaches often rely on 
specific system symmetries43–45, which do not cover complex sys-
tems of the form of equation (1). In the absence of such symmetries, 
complex system control is frequently studied by means of linear-
ization46,47, using linear approximation to help capture the system’s 
local behaviour in the vicinity of each of its fixed point. Such local 
analysis, however, is insufficient in the context of recoverability, 
as here we seek to drive the system outside its current basin and 
consequently beyond the linear regime. To overcome this restric-
tion of locality, cross-basin control was recently developed using 
time-varying inputs that adapt until the system is pushed—step by 
step—into the desired basin of attraction14. Although highly effec-
tive, such interventions require a detailed control over the nodes’ 
dynamics, first monitoring the system’s response and then updat-
ing—in real-time—the form of our intervention. Such level of 
observation/control is not always guaranteed.

To break this gridlock, we seek non-local control across basins, 
but with simple dynamic interventions that do not require highly 
detailed input signals. Our recoverability phase diagram addresses 
this by identifying unique conditions where such control is attainable. 
On the one hand, pushing the system between macroscopic states, 
but on the other hand, using an extremely crude and simple control 
input—a time-limited constant activation Δ that is applied to only one 
or few nodes. No fine-tuning or real-time update of the input signal 
is required. Indeed, all that is needed is a strong enough jolt to the 
system, after which it naturally relaxes to its desired target state.

The microscopic behaviour of complex networks is driven by 
countless parameters, from the fine structure of A and W to the 
specific rates of each node’s dynamic processes. Our analysis, how-
ever, shows that their large-scale functionality can be traced to a 
manageable set of relevant parameters, namely, κ, ω, ρ and Δ. Such 
dimension reduction is the fundamental premise of statistical phys-
ics, allowing the analysis of systems with endless degrees of free-
dom using a limited set of statistical entries. We believe that such an 
approach to network dynamics can help us understand, predict and 
ultimately influence the behaviour of these complex multidimen-
sional systems.
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Methods
Recoverability of modular networks. Applying our formalism to an empirically 
constructed brain network48 allows us to examine its predictive power beyond 
our analytical assumptions of a random A. Indeed, the brain—with its two 
hemispheres—provides a highly structured (non-random) modular network, 
partitioned into two clearly distinctive communities M1 and M2 (Fig. 5f). It, 
therefore, offers meaningful insights into recoverability across modules. The 
question is can reigniting one module, say M1, spill over to also revive M2. Our 
analysis indicates that this depends on the average strength of the links within the 
modules, ωIntra, versus that of the links between the two modules, ωInter (Fig. 5g). 
Clearly, if ωIntra is too small, then both M1 and M2 are—in and of themselves—
unrecoverable, and reigniting will inevitably fail (Fig. 5h). If both ωIntra and ωInter 
are sufficiently large, then the reactivated nodes at M1 will further reignite their 
neighbours at M2, allowing a complete recovery of both modules via single-node 
reigniting (Fig. 5j). In between these two extremes, we observe a third phase in 
which reigniting is confined to M1 but fails to penetrate M2 (Fig. 5i).

The result is a three-state phase space (Fig. 5g): recoverable (blue) in which 
reigniting at M1 can reactivate also M2; unrecoverable (yellow) in which both 
modules cannot be revived; and modular (green) where M1 recovers but the 
reigniting signal fails to penetrate M2. To construct the phase diagram shown in 
Fig. 5g, we simulated neuronal dynamics on the brain network shown in Fig. 5f,  
scanning 2,500 distinct combinations of ωIntra and ωInter. For each combination, 
we attempted 20 independent realizations of reigniting with randomly selected 
nodes. We then extracted η as the average number of revived modules over the 
20 attempts. Hence, η = 0 means that no module was revived (yellow) and η = 1 
indicates that (on average) reigniting was restricted to only the source node’s 
module (green), but did not cross over to the other module. Finally, if η = 2, then 
both modules were reactivated (blue).

This observation highlights the potential benefits of network modularity 
for self-recovery. Indeed, if one module fails, say M2, the other module, M1, if 
still active, can revive it. This is because M1’s active nodes can themselves help 
reignite the inactive M2. Hence, modularity offers a fail-safe network architecture 
in which, unless both modules simultaneously fail, one module can reactivate 
the other. This ensures sustained activity in the face of sporadic failures. To 
observe this, we simulated neuronal dynamics on our brain network, setting the 
intermodular link weights to ωInter = 2. Starting at x1, we introduce external noise 
that causes the activity of both modules to fluctuate, until a sufficiently large 
perturbation (randomly occurring at around t ≈ 20) leads M1 to irreversibly fail 
(Fig. 5k, blue). Shortly after, a similar fate meets M2 (red) and the entire system 
collapses to x0.

We now repeat the exact same experiment but with ωInter = 5, bringing the 
system into the fully recoverable phase (η = 2; Fig. 5l, blue). Now, at every instance 
in which, say M1 fails, M2’s active nodes reignite it back into activity (Fig. 5l). 
Hence, modularity can afford the system a fail-safe dynamics driven by its capacity 
for self-recoverability.

Selective reigniting in the microbiome. A unique aspect of our empirically 
constructed microbiome network is that it significantly deviates from a random 
topology. Indeed, in a random network, as degree correlations are negligible, 
the statistical properties of the shells Ks(l) become approximately independent 
of s for l > 1. In simple terms, although nodes may have diverse degrees, that is, 
Ks(1) ̸= Ks′ (1), their second or third neighbours at Ks(l > 1) are statistically 
similar. Under these conditions, once a system is in the recoverable phase, one can 
reignite it using any desired node, as, indeed, all the nodes have roughly identical 
shells in their surrounding. If, however, the environments Ks(l) vary significantly 
across the nodes, we expect that certain nodes become better reigniters than 
others. This gives rise to selective reigniting in which the system’s recoverability is 
not only a function of the network but also depends on the specific source node s 
and its unique reigniting capacity.

Consider the reigniting signal as it propagates from source s and penetrates 
through the shells Ks(1), Ks(2),…. At a certain instance, it revives a node i ∈ Ks(l) 
and then advances from i to impact its neighbour j ∈ Ks(l + 1) and so on (Fig. 6g). 
In Supplementary Section 3.3.3, we show that such propagation across shells,  
where a revived i can indeed reactivate its more distant neighbour j, requires that 

the i → j link weight exceeds a threshold w0. Hence, links with weight Wij ≥ w0 
constitute effectual links that help propagate the reigniting signal. The remaining 
links with Wij < w0 have but a marginal contribution to the reigniting. We, 
therefore, construct an effective network comprising only the effectual links (Fig. 
6h, blue links/nodes). This more selective network represents the relevant set of 
interactions that actively participate in the reigniting process. By constructing this 
network, we obtain the effectual shells surrounding each node s, whose number of 
nodes captures s’s reigniting capacity Rs. Nodes with large Rs are surrounded by 
many effectual links, and therefore, they have a higher reigniting capacity.

In a random topology, where all the shells are statistically similar, we expect 
minor differences in Rs between the nodes. In the microbiome, however, we 
find that Rs is highly diverse, with the top 26 species having Rs > 300, and the 
remaining species with Rs that is one or two orders of magnitude lower (Fig. 6i).  
Such diversity—a consequence of the unique structure of the microbiome—
indicates that in this system, the top 26 nodes represent the preferred candidates for 
reigniting. To examine this, Supplementary Fig. 7 shows η versus the Rs ranking 
for all the nodes in the microbiome. We clearly observe that the top-ranked nodes 
have a much higher probability to successfully reignite the system.

Data availability
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