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Interdependent superconducting networks

I. Bonamassa    1,2,3 , B. Gross    1,3, M. Laav1,3, I. Volotsenko1, A. Frydman    1  
& S. Havlin    1

Cascades are self-amplifying processes triggered by feedback mechanisms 
that may cause a substantial part of a macroscopic system to change 
its phase in response to a relatively small local event. The theoretical 
background for these phenomena is rich and interdisciplinary, with 
interdependent networks providing a versatile framework to study 
their multiscale evolution. However, laboratory experiments aimed 
at validating this ever-growing volume of predictions have not been 
accomplished, mostly because of the lack of a physical mechanism that 
realizes interdependent couplings. Here we demonstrate an experimental 
realization of an interdependent system as a multilayer network of 
two disordered superconductors separated by an electric insulating 
film. We show that Joule heating effects due to large driving currents 
act as dependency links between the superconducting layers, igniting 
overheating cascades via adaptive and heterogeneous back-and-forth 
electrothermal feedback. We characterize the phase diagram of mutual 
superconductive transitions and spontaneous microscopic critical 
processes that physically realize interdependent percolation and 
generalize it beyond structural dismantling. This work establishes a 
laboratory manifestation of the theory of interdependent systems, 
enabling experimental studies to control and to further develop the 
multiscale phenomena of complex interdependent materials.

Catastrophic events such as power-grid outages1,2 or regime shifts 
in urban infrastructures3–5 and other complex systems6–10 are often 
the aftermath of cascading processes11,12 spreading within and across 
multiple layers of the network. Interdependent network theory13,14 has 
provided a framework to study these multiscale phenomena, trans-
lating the mechanisms fuelling the propagation of avalanches into 
the interplay between two qualitatively different types of couplings: 
connectivity links15 that characterize the interactions between nodes 
within layers and dependency links that model functional interac-
tions (for example, positive feedback) of nodes between networks. 
Despite many theoretical efforts made in applying this so-called 
two-interaction scheme to processes as diverse as percolation16–19, 
dynamics20,21 and transport22, developing physics-laboratory realiza-
tions of interdependent systems has remained an elusive challenge, 

meaning that experimental studies to scrutinize and develop the inter-
disciplinary volume of models and predictions collected so far have not  
been possible.

In this Article we present the experimental and theoretical char-
acterization of the first physical interdependent material based on a 
multilayer network composed of two disordered superconductors 
separated by a thermally conducting electrical insulator. We model this 
as thermally coupled networks of Josephson junctions, and elucidate 
the mutual percolation processes that underlie the discontinuous onset 
and fall of global phase coherence observed in our experiments. We 
disclose fundamental features of interdependent interactions related 
to their spontaneous emergence, the strength of their action and the 
suppressive effect they have on the process of functional revival. These 
results establish a laboratory-controlled benchmark of the theories 

Received: 5 August 2022

Accepted: 20 March 2023

Published online: xx xx xxxx

 Check for updates

1Department of Physics, Bar-Ilan University, Ramat-Gan, Israel. 2Department of Network and Data Science, CEU, Vienna, Austria. 3These authors 
contributed equally: I. Bonamassa, B. Gross, M. Laav.  e-mail: bonamassai@ceu.edu

http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-023-02029-z
http://orcid.org/0000-0002-6112-8273
http://orcid.org/0000-0003-1451-0290
http://orcid.org/0000-0001-8225-3578
http://orcid.org/0000-0002-9974-5920
http://crossmark.crossref.org/dialog/?doi=10.1038/s41567-023-02029-z&domain=pdf
mailto:bonamassai@ceu.edu


Nature Physics

Article https://doi.org/10.1038/s41567-023-02029-z

at some finite bulk critical threshold, Tc, whose value depends on the 
disorder of the sample and on the driving current, Ib, flowing through 
it. Since the layers have different levels of disorder—each segment has 
a different critical current and temperature—they exhibit different 
values of Tc. The broad SN transitions become sharper for increasing 
values of Ib but they always remain continuous and non-hysteretic 
(Fig. 1c). On the other hand, when a similar sufficiently large Ib flows 
simultaneously in both layers, as illustrated in Fig. 1b, thermal couplings 
set in between the networks and their SN transitions become mutually 
abrupt and hysteretic (Fig. 1f). Furthermore, we find that the mutual 
superconducting (SC) to normal-metal (N) transitions are dominated 
by the high disordered network (having lower Tc), while the mutual 
N-to-SC (NS) jumps are governed instead by the resistive behaviour 
of the low disordered array (having higher Tc).

Two-interaction mechanism
The unconventional discontinuous SC transitions reported in 
the experiments can be understood within the framework of 

of interdependent systems and enhance our understanding of their 
complexity beyond modelling.

Experimental results
Figure 1 shows the schematic design of our multilayer material com-
posed of two disordered superconductors23 in two configurations: 
independent networks (Fig. 1a) and thermally interdependent networks 
(Fig. 1b), where cross-layer couplings set in through an electrically 
insulating film with good thermal conductivity (Al2O3). Each layer is 
composed (full details about the sample preparation are given in Meth-
ods) of an electron-beam evaporated amorphous indium oxide (a:InO) 
film, which is a disordered superconductor characterized by a broad 
superconducting transition with a bulk critical temperature, Tc ≈ 3 K, 
determined by the onset of global phase coherence.

The experimental results presented in Fig. 1c,f can be summarized 
as follows. When measured independently and under identical condi-
tions, as illustrated schematically in Fig. 1a, each layer undergoes a con-
tinuous and broad superconductor–normal (SN) phase transition24,25 
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Fig. 1 | Design and experimental setup of thermally interdependent 
superconducting networks. a, Schematic representation and scanning electron 
micrograph (enlarged inset) of the isolated layers, each involving a 2D lattice  
of disordered superconductors (a:InO films on SiO2 substrates, see Methods  
for details). The edges of each network are connected to Au/Ti contacts.  
b, Design of the interdependent superconducting material, with bottom and 
top layers (green grids) separated by a thermally conducting insulating film 
(Al2O3). Inset, scanning electron micrograph of the interdependent sample 
and characterization of the physical dimensions of the layers. c, Experimental 
sheet resistances measured in the isolated top (red) and bottom (blue) layers 
under identical driving currents at zero magnetic field, for increasing (filled 

symbols) and decreasing (empty symbols) values of the cryostat temperature T 
(see the arrows along the curves at Ib = 24 μA). Both layers undergo continuous 
SN transitions at different bulk critical temperatures. d, Illustration describing 
the emergence of local normal-metal (N) hotspots at the SN transition of single 
layers for large enough driving currents. e, In the interdependent setup, local 
hotspots thermally intertwine the SC states of superposed junctions, physically 
realizing the cross-layer dependency links. f, Sheet resistance measured in the 
interdependent superconducting networks for the same set of driving currents 
displayed in Fig. 1c. For Ib ≳ 15 μA the layers become thermally locked in their  
bulk critical temperatures and undergo unconventional mutual first-order  
SN transitions.
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interdependent networks13,26. Each independent layer realizes a typi-
cal instance of the disorder via its characteristic distribution of critical 

temperatures {Tc
ij}i, j≤N  and currents {Icij}i, j≤N , with N being the number 

of nodes in the two-dimensional (2D) lattices, which control the SN 
activation of single junctions due to the Josephson effect. It follows 
that the bulk critical temperature Tc of these disordered media27 
corresponds to the threshold (at constant Ib) where SC clusters 
continuously percolate28–30. The experimental independent sheet 
resistances displayed in Fig. 1c confirm the continuous and revers-
ible nature of the SN transition in the isolated SC networks at two 
independent values of Tc over the range of driving currents tested.

We now consider the interdependent scheme (Fig. 1b). Slightly 
above their independent critical temperatures, single layers lack the 
percolation of SC paths, hosting, instead, the flow of dissipative cur-
rents. Single junctions switching to the N state therefore become local-
ized hotspots (Fig. 1d) randomly distributed across each array, whose 
dissipated heat depends on how much current flows through them31. 
The Al2O3 medium (Fig. 1b, inset) couples thermally the two networks 
by mediating the heat from the hotspots between the layers while 
inhibiting the tunnelling of electrons. In this configuration, physical 
dependency links spontaneously emerge between the layers in the 
form of adaptive thermal couplings sustained by Joule dissipation32,33, 
which thermally intertwine the SC states of superposed junctions 
(Fig. 1e). More concretely, we assume that once a junction aij in layer A 
switches into metal (Fig. 2a), it overheats its superposed junctions in 
layer B, thus raising the vulnerability of the latter junctions to exceed 
their critical temperature. This outcome causes a redistribution of the 
currents in layer B that can activate other junctions, for example bℓm, 
as they cross their critical currents, creating more hotspots that heat 
back their counterparts around aℓm in layer A.

This positive electrothermal runaway, that physically realizes the 
two-interaction interplay theorized in interdependent percolation13, 
ignites avalanches of switching junctions whose non-local growth 
across the layers can encompass a large fraction of the system’s size 
(Methods), causing the mutual first-order SN transitions displayed in 
Fig. 1f. In particular, heating the networks from low temperatures real-
izes the propagation of damage created by cascading failures (here, N 
states) in interdependent percolation, yielding the mutual fragmenta-
tion of the SC phases in both layers. On the other hand, when cooling 
the system from its mutual N phase, thermal interdependence defers 
the formation of global phase coherence to temperatures below the 
Tc of each isolated array, producing areas of hysteresis. In this cooling 
process, the dissipating hotspots sustain the mutual N phase by sup-
pressing the merging of SC clusters, realizing a mechanism opposite to 
cascading failure that is analogous to spanning-cluster-avoiding per-
colation34. In fact, we provide support based on our theoretical model 
below (Fig. 2a) that compact SC clusters become dense at low T until 
they suddenly merge into a giant percolating SC component (see also 
Supplementary Figs. 3 and 4 and Supplementary Videos 1 and 2), yield-
ing an abrupt onset of global coherence in both arrays that nicely repro-
duces the mutual NS transitions found in the experiments (Fig. 1f). We 
stress that qualitatively similar results are found by assuming a global 
thermal coupling between the layers instead of a local one between 
superposed junctions (see equation (3) and details therein). Moreover, 
the effect of the lattice structure of our experiment is qualitatively 
negligible for the general problem of the two-interaction mechanism 
in interdependent networks. In fact, because of the random distribu-
tion of the critical currents and temperatures of each bond, the current 
flowing through each of the two arrays follows diluted backbones with 
strongly dissimilar profiles (see Supplementary Videos 1 and 2). Such 
heterogeneity and asymmetry, together with the interweaving of the 
current redistribution due to the thermal couplings between the layers 
(Fig. 2a), result in a degree of complexity qualitatively analogous to the 
one observed in many real-world systems (Discussion).

Theoretical modelling
To microscopically characterize the electrothermal feedback underly-
ing the mutual SN phase transitions observed in the experiments, we 
develop a framework (Fig. 2a) of thermally interdependent disordered 
2D lattices of resistively shunted Josephson junctions (RSJJs). In this 
model (see Methods for details), the state (SC, intermediate, N) of a 
given bond, (i, j), is set via a Josephson current–voltage (I–V) charac-
teristic (Fig. 2b) defined by the junction’s critical current Icij  and its 
normal-state resistance Rn

ij , whose values depend on the local tem-
perature, Tij, reached around it. We describe the latter by generalizing 
the de Gennes relation35 to a local form given by

Icij(Tij) = Icij(0)(1 − Tij/Tc
ij)

2
, (1)

where Icij(0) is the zero-T critical current of the junction (i, j) and Tc
ij  is 

its activation temperature, whose values (caption, Fig. 2c) are extrap-
olated from the experimental data (Methods). To control the degree 
of disorder in the lattices, we consider a normal distribution with zero 
mean and standard deviation σ, in terms of which we generate the zero-T 
critical currents of each junction, their critical temperatures Tc and the 
N state resistances Rn

ij.
When the driving currents Ib,A and Ib,B injected in the two arrays are 

kept constant, an increase (decrease) of the cryostat temperature, T, 
controls the SN phase transitions of each layer since it reduces 
(increases) the critical current of single junctions as in equation (1). 
This response generally depends on the presence of Joule heating 
effects, which can intertwine the states of the overlapping junctions. 
If thermal couplings are absent, then the local temperatures TA

ij  and TB
ij  

in the arrays coincide with T and the distributions of the critical currents 
vary homogeneously with the temperature. In this case, local phase 
perturbations are damped out and produce rapid transients during 
which the current optimally redistributes its flow over new isoresistive 
paths. By solving numerically36 the Kirchhoff equations (Methods) of 
the isolated RSJJ networks, we find that this redistribution of the cur-
rents yields only continuous SN transitions, with resistive curves  
(Fig. 2c) whose broadness and threshold depend on the degree of 
disorder of each array (Supplementary Fig. 1).

This scenario changes when the RSJJ networks are thermally inter-
dependent. In this case, the states of two overlapping junctions, for 
example aij in layer A and bij in layer B, interact with each other through 
their local temperatures. To include this mutual overheating effect, we 
consider the dissipation 𝒫𝒫ij,t = Rij,tI2ij,t  of the junctions at the t-th stage 
of the overheating cascade, where Rij,t is the resistive state of the junc-
tion (Methods, equation (M1)), so that the local temperatures TA

ij  and 
TB
ij  at the t-th overheating cascade are iteratively given by

Tμ
ij,t = T +

τp
τe

γ−1𝒫𝒫μ′
ij,t−1. (2)

Here, γ (W K−1) is the thermal conductance of the coupling medium 
and μ′ ≠ μ, with μ,μ′ = A,B. In equation (2), the ratio τp/τe between the 
two relevant time scales (τp for phonons and τe for electrons) character-
izing the heat rate transferred through the coupling medium and the 
one emitted by Joule dissipation (see Methods for details) have values 
that generally depend on the geometry of the sample as well as on the 
physical properties of the superconducting materials. To support 
equation (2) we stress that, in our experiment, the thickness of the 
Al2O3 layer is roughly two orders of magnitude (Fig. 1b, inset) smaller 
then the lattice spacing within each array and its thermal conductivity37 
is about 50 times larger then the SiO2 (ref. 38) substrate (respectively, 
10 W m−1 K−1 versus 0.2 W m−1 K−1). This indicates (Methods) that the 
junctions are weakly thermally coupled within the layers so that equa-
tion (2) is valid, at least to leading orders. Under this condition, the 
iterative two-interaction interplay set between the layers by equation 

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-023-02029-z

(1) and equation (2) yields an adaptive and heterogeneous response of 
the critical currents to local thermal fluctuations that describes math-
ematically the electrothermal runaway effect triggered by cross-layer 
interdependent couplings.

Mutual transitions and microscopic kinetics
To study the system of interdependent superconductors, we solve 
numerically the thermally coupled Kirchhoff equations (Methods, 
equations (M1)–(M3)) set by the process described above for disordered 
lattices whose physical properties (caption, Fig. 2c,d) match those in 
the experiments. During each stage in the cascade of overheatings, 
we compute the current, electronic state and the power dissipated by 
each junction in order to track their spatio-temporal evolution (Sup-
plementary Figs. 2 and 3 and Supplementary Videos 1 and 2).

Macroscopically, we find that with currents Ib,A, Ib,B ≥ 15 μA the 
system enters a regime of mutual first-order SN transitions (Fig. 2d) 
accompanied by different relaxation processes. Figure 2e,f shows, in 
particular, the bulk resistances of the layers and the local power 

dissipated by single junctions when letting the system evolve from the 
mutual SC phase to the mutual N phase at a temperature T slightly above 
the first-order SC-to-N threshold, Tc,>. As displayed in Fig. 2e, above Tc,> 
the mutual SC phase develops a long-lived plateau relaxation character-
ized by nearly constant resistances, whose duration (Fig. 2g) 
τ ∝ (T − Tc, > )

−ζ with exponent ζ ≈ 0.65 diverges at Tc,> (Supplementary 
Fig. 4c,d). In the cooling direction, the evolution from the mutual N 
phase to the mutual SC phase exhibits an analogous metastable regime 
(Supplementary Fig. 4a,b) whose duration (Fig. 2g) diverges at the 
N-to-SC threshold, Tc,<, as τ ∝ (Tc,< − T)−ζ , with exponent ζ ≈ 0.5.

Microscopically, the different critical exponents (Fig. 2g) of the 
metastable lifetime can be adopted as proxies for the underlying cas-
cading processes39, indicating that the SC nuclei grow faster than the 
N nuclei. During the heating plateau, this can be explained in terms of 
the pinning of the interfaces between SC clusters and N nuclei, which 
halts the branching of the latter, while the smaller (in fact, mean-field40) 
exponent of the cooling plateau hints at the sudden merging of ther-
mally suppressed SC clusters. The critical nature of these microscopic 
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Fig. 2 | Thermally interdependent networks of RSJJs. a, Illustration of the 
electrothermal runaway caused by the local hotspots and the redistribution of 
the currents when transitioning from the mutual SC phase to the mutual N phase. 
A description of the cascading stages in the heating (SC-to-N) and cooling 
(N-to-SC) processes is given in the text. b, Josephson I–V characteristic adopted 
to model the switching of single junctions between their electronic states (details 
about the RSJJ model are given in Methods). c, Continuous SN transitions in the 
global resistances of two thermally decoupled arrays with 1,860 junctions with 
mean critical thresholds Ic0,A = 52μA  and TA

c = 2.4K  (top layer, red symbols), 
Ic0,B = 76μA  and TB

c = 2.7K  (bottom layer, blue symbols), with variances σA = 0.06 
(high disordered layer) and σB = 0.04 (low disorder layer). We adopt the normal 
resistive factors section ρA = 1.24 and ρB = 0.77, matching the experimental ratio 
RA/RB ≈ 1.61. d, Mutual resistive transitions in interdependent RSJJ networks 
obtained by solving numerically the thermally coupled Kirchhoff equations 

(Methods, equations (M2) and (M3)) set by the two-interaction interplay between 
equation (1) and equation (2) with γ = 8 × 10−3 W K−1 and τp/τe ≈ 1.7 × 106 (Methods). 
The remaining parameters are identical to those in c. e, Evolution of the 
marginally stable mutual SC phase for Ib = 24 μA slightly above the heating 
first-order SN threshold, Tc,> = 2.08 K, displaying the emergence of a long-lived 
plateau with nearly constant resistances. f, Stroboscopic snapshots of the power 
dissipated by single junctions during the heating plateau in e; notice the 
propagation of local hotspots (dark red links) between the layers A and B due to 
the overheating cascades. g, Scaling of the metastable lifetime as a function of 
the temperature, τ(T), at Ib = 24 μA of the heating (orange) and cooling (purple) 
plateau close to the heating threshold (Tc,> = 2.08 K) and to the cooling one 
(Tc,< = 1.88 K), respectively. Notice the two scaling exponents hinting at the 
different growth processes (see the main text for details) that underlie the two 
jumps of the abrupt transition (Supplementary Fig. 4).
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dynamics manifests itself in the evolution of the cascading trees gener-
ated by state-switching junctions (Fig. 3). At criticality, the avalanche 
size S(t), which is the number of junctions cascading to the SC/N state 
at time t, develops a long-lived plateau during which its relative growth 
is a zero fraction of the system size. However, while at Tc,< the SC phase 
nucleates symmetrically out of the N phase (Fig. 3f)—indicating a bal-
anced process—at Tc,> the evolution becomes asymmetric, reflecting the 
slower growth of the N nuclei (see Fig. 3a and details in the caption). The 
convergence of the branching factor, η(t) ≡ S(t + 1)/S(t), to ηc = 1 shown 
in Fig. 3d demonstrates that, at Tc,>, N nuclei spontaneously undergo a 
critical branching process (Fig. 3b) yielding an average lifetime 〈τ〉 ∝ L2/3 
(Fig. 3e) and an N avalanche distribution π(S) ∝ S−3/2 (Fig. 3c) whose scal-
ing nicely agrees with what is expected from interdependent percola-
tion41. We find that also the symmetric birth–death process underlying 
the N-to-SC transition (Fig. 3f) undergoes a balanced critical branching 
or pruning of the SC/N-cascading trees (Fig. 3i) featuring the same scal-
ing exponents describing the typical length (Fig. 3j) and the avalanche 
distribution (Fig. 3h) observed at the SC-to-N transition. Despite the dif-
ferent nature of the two microscopic kinetics—percolating cascades at 
Tc,> (Fig. 3b) versus avoiding cluster merging34 at Tc,< (Fig. 3g)—their criti-
cal exponents indicate that both processes belong to the mean-field 
universality class of self-organized branching42.

Mean-field solution
To further corroborate our findings, we develop an analytical mean-field 
solution of the thermally interdependent Kirchhoff equations under 
the two-interaction interplay set by equation (1) and equation (2).  
We build our mean-field solution on the Halperin–Nelson (HN)  
formula43RHN(T) = R0 exp{−β(T − Tc(Ib))

−1/2} —where R0, β  and 
Tc(Ib) = Tc,0 − ωIb are material parameters (caption, Fig. 4a)—which char-
acterizes the resistance of a 2D superconductor slightly above its 

continuous SN transition. We advance a global-coupling hypothesis 
(see Methods for details on its validity) by adopting an all-to-all network 
of thermal dependency couplings between the layers so that the RSJJ 
arrays interact through their collective phases. This is done by replac-
ing the local quantities in equation (2) by their global counterparts, 
which coarse grains the system of 4L(L − 1) local temperatures, where 
L is the linear size of the lattices, into two global ones. Since the length 
of dependency links is random (and of the order of 𝒪𝒪(L)), the global 
overheating at the t-th stage of the cascade on layer μ due to the power 
dissipated by layer μ′ can be computed via the HN resistance of μ′ at 
the effective temperature induced by μ on μ′ at the previous stage, t − 1, 
and so forth in a recursive fashion. We can then represent the evolution 
of overheating cascades via the recursion sequence of adaptive global 
temperatures:

Tμ←μ′
eff,t = T + γRμ′

HN(T
μ′←μ
eff,t−1)I

2
b,μ′ , t = 1, 2,… (3)

for μ′ ≠ μ and μ,μ′ = A, B, with the initial seed TA←B
eff,0 ≡ T . In the limit 

t → ∞, the fixed points of equation (3) yield a system of self-consistent 
equations for the mutual bulk resistances

⎧
⎨
⎩

RA
HN(T) = RA

0e
−βA/√T−TAc (IAb)−γR

B
HN(T),

RB
HN(T) = RB

0e
−βB/√T−TBc (IBb)−γR

A
HN(T),

(4)

that can be solved numerically for suitable choices of the 
material-dependent parameters (caption, Fig. 4).

We find that the mean-field theory agrees with the numerical 
results (Fig. 4a) and correctly captures the phenomenology of mutual 
SN phase transitions observed in the experiments within the accessible 
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T = Tc,> = 2.08 K). Time steps have units of successful switches (meaning that  
zero variations of S(t) are traced out from the time series); notice that, while  
N states are stable at Tc,>, SC states switch unstably to the intermediate state  
(Fig. 2b and Supplementary Fig. 5a). b, Illustration of the evolution of the 
N-cascading trees (red symbols), branching through the junctions of the 
interdependent system and progressively hindering the formation of SC paths 
(yellow curve). c, N/SC-state avalanche size distribution, π(S), at Tc,< reported 
in lattices of linear size L = 20, 30, 40, 50, 70 over a total of 2,000 samples. 
d, Evolution of the branching factor, η(t), for the SC/N state avalanches for 

10 samples of linear size L = 70. While ηN(t) ≈ 1 (N nuclei are critical), the SC 
branching factor is often subcritical; this is because its kinetics are strongly 
coupled with the neutral (ηIN(t) ≈ 0) intermediate state (Supplementary Fig. 5a–d).  
e, Scaling of the average lifetime of the critical branching process at Tc,> 
with the lattice linear size, L. Both N state and SC state processes follow the 
interdependent percolation41 scaling 〈τ〉 ∝ L2/3. Error bars correspond to the 
standard deviation. f, Plateau relaxation of the avalanche size analogous to a here 
measured at the N-to-SC transition threshold, Tc,< = 1.88 K; notice the symmetric 
evolution of the SC/N states (see also Supplementary Fig. 5e for the role of 
intermediate states). g, Illustration of the avoiding cluster-merging process 
underlying the balanced nucleation of SC states (blue symbols) out of the N phase 
at Tc,<. h–j, Same as in c–e, respectively, for Tc,< = 1.88 K.
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range of parameters (see also Supplementary Figs. 6 and 7). Depending 
on the values of the driving currents, we identify three main coupling 
regimes of increasing strengths (blue-to-red colour bar, Fig. 4a): (i) 
weak interdependence (Ib ≲ 17), where both layers undergo continuous 
SN transitions (Fig. 4c,d); (ii) moderate interdependence (17 ≲ Ib ≲ 40), 
where two-step (continuous and first-order) transitions are observed 
(Fig. 4e–g); (iii) strong interdependence (Ib ≳ 40) where the system 
undergoes only mutual first-order SN transitions (Fig. 4h). In particu-
lar, in the intermediate regime, the continuous SN transition of layer 
A—meaning the one having the lowest bulk critical temperature—is 
reversible only for Ib ≲ 20 (orange and red symbols, Fig. 4e,f) and it is 
always followed by a mutual first-order jump to the full N phase. For 
Ib ≳ 20, layer A enters a marginally stable partial N phase (red symbols, 
Fig. 4g and orange full line in Fig. 4a) whose threshold rapidly con-
verges to the bulk SN heating one (dashed red curve, Fig. 4a) when Ib 
is increased. Instead, when cooling the system from its mutual full N 
phase, for Ib ≳ 20 both layers undergo coupled first-order NS (mean-
ing N-to-SC) phase transitions whose thresholds (blue dashed curve,  
Fig. 4a) rapidly decrease for increasing currents. In particular, when 
Ib ≳ 40 (star symbol, Fig. 4a) the partial N branch vanishes and the 
two layers become fully thermally interdependent (see also Sup-
plementary Fig. 6). In this regime, the mean-field theory predicts a 
zero-temperature mutual metal ground state that coexists with the 
mutual SC one (phase vii, Fig. 4a) in a thermally bistable electronic 

state. A full classification of the mutual phases in the system (Fig. 4a, 
inset) is given in the caption to Fig. 4a.

Discussion
Over the last decade, the lack of experimental realizations of inter-
dependent systems has contrained our understanding of their com-
plexity within the realm of mathematical modelling. The system of 
thermally coupled superconductors we introduced here grounds the 
theory of interdependent networks to the physical laboratory, allow-
ing further study in a systematic way. For example, instead of being 
thermal, dependency links may emerge as magnetic, capacitive or 
inductive feedbacks in other physical systems—for example, coupled 
Berezinsky–Kosterlitz–Thouless vortices between two layers of 2D mag-
nets44,45—whose experimental realization would foster the development 
of further interdependent materials embodying the two-interaction 
paradigm. We notice that, although the networks adopted in this work 
are inherently random and their current flow is asymmetric and hetero-
geneous (as discussed above), our experiment raises the challenge of 
fabricating disorder-controlled multilayer materials that more visibly 
replicate the structural and functional disorder of previously studied 
interdependent systems by employing lithographic techniques to 
further control the disorder of superconducting material. Moreover, 
from a more applied perspective, the discontinuity of the SN transi-
tion in coupled networks demonstrated in this work may provide an 
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Fig. 4 | Mutual phase diagram showing theory versus experiments.  
a, Theoretical thresholds (symbols) characterizing the mutual transition 
thresholds in the globally interdependent Kirchhoff equations versus the 
analytical thresholds (curves) obtained via the interdependent HN resistances, 
equation (4). To solve the latter, the parameters R0, β, ω, Tc,0 and γ (measured in 
arbitrary units (a.u.)) have been extracted by best-fitting RHN to the numerical 
resistive curves of the two layers, taken independently, yielding βA = 0.40, 
βB = 0.65, TA

c,0 = 2.30, TB
c,0 = 2.75, ω = 10−2 and γ = 4 × 10−3; we set RA

0 = 1 and 
RB
0 = 0.65, matching the experimental ratio (caption, Fig. 2c). Inset, mutual 

stability: (i) mutual SC phase, meaning both A and B are stable superconductors; 
(ii) and (iv) A is a stable metal and B is a stable superconductor; (iii) mutual N 
phase, meaning both A and B are stable metals. Mutual metastability: (v) A-partial 
N and B-SC with the mutual N phase; (vi) and (vii) mutual N phase with mutual SC 

phase. Phases (iv) and (vii) differ from, respectively, phases (ii) and (vi) in their 
mutual transitions (see plots c–h). b, Experimental phase diagram extracted 
from the resistive curves displayed in Fig. 1f. Inset, decoupled thresholds 
describing the continuous SN transitions in Fig. 1c. c–h, Analytical mutual 
transitions at increasing interdependence strengths. Weak couplings, c and d:  
A and B undergo nearly independent continuous SN transitions until a cusp forms 
in layer B. Moderate couplings, e and f: A undergoes a two-step transition, with a 
continuous step from a SC phase to a partial N phase and a first-order jump to the 
fully N phase. Strong couplings, g and h: the partial N branch of A becomes 
metastable (red symbols) until the continuous SN threshold of layer A merges 
with its first-order jump (star symbol, Fig. 4a). Above this point, the system is 
purely metastable (h) below the bulk SC melting threshold, Tc,>, in its mutual N 
phase and mutual SC phase.
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opportunity to design innovative technologies, such as ultra-sensitive 
sensors46 or multistack memory devices47, that exploit the spontaneous 
emergence of mutual macroscopic phases due to the back-and-forth 
cascade of microscopic perturbations.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Sample preparation
The interdependent superconducting system (see the schematic rep-
resentation in Fig. 1b, main text) was prepared as follows. (i) On a (Si/
SiO2) substrate we electron-beam evaporated a thin film of 50 nm a:InO 
with partial oxygen pressure (6–8 μTorr), resulting in a disordered 
superconductor with a bulk critical temperature Tc ≈ 3 K. The layer was 
patterned to form a network consisting of 31 × 31 stripes, each one 
being 4 μm wide and 720 μm long (Fig. 1b, inset), thus resulting in a 
superconducting lattice composed of segments with dimensions 
4 × 20 μm2 and height h ≈ 50 nm. (ii) For the electrically insulating 
medium, we evaporated a thin film of 100–150 nm of Al2O3 on top of 
the network at high partial O2 pressure in order to achieve a pinhole-free 
film. (iii) On the top of the Al2O3 layer, we evaporated a second super-
conducting network sample, perfectly overlapping the first one (Fig. 
1b, inset). (iv) We then fabricated two Au contacts of 4-nm-thick Cr + 
35 nm Au at the edges of each network in order to enable independent 
transport measurements. The adoption of Al2O3 as a coupling medium 
is motivated by its strong electrical insulating properties and relatively 
large thermal conductivity (κAl2O3 ≈ 10Wm−1 K−1

 at T ≈ 3 K, from ref. 37), 
which enables the realization of cross-layer heat transfer without the 
hopping of electrons.

Measurements
We performed d.c. transport measurement using a Keithley 2410 
sourcemeter and a Keithley 2000 multimeter for each network. The 
cryostat temperature was tuned via a LakeShore 330 using a 25 Ω heater 
and a DT-670 thermometer was placed inside the cryostat. We started 
by measuring the global sheet resistance of each superconducting 
array with adiabatic heating–cooling cycles in the temperature range 
base to 10 K for different values of the driving current, Ib. After charac-
terizing the phase diagrams of each isolated array (Fig. 4b, inset), we 
checked the absence of shorts between the layers by measuring the 
junction resistance between each pair of cross contacts. The cross-layer 
couplings are created by passing the same current within both layers 
simultaneously, thus generating dependency links sustained by heat 
transfer. D.c. transport measurements were then performed in the 
thermally interdependent setup with adiabatic heating–cooling cycles 
for the same currents as in the isolated case, yielding the curves in Fig. 
1f and the coupled phase diagram in Fig. 4b.

RSJJ model of disordered superconductors
To characterize the SN transitions observed in the experiments, we 
model each disordered superconductor via a disordered 2D lattice of 
RSJJs. Isolated networks of RSJJs undergo continuous SN phase transi-
tions at low temperatures that, in the limit of large tunnelling conduct-
ances (that is, g ≫ 1), are generally independent of the ratio between 
the Josephson EJ and the Coulomb EC energies48–50. In this regime, each 
junction’s state can be characterized by the value of its normal- 
state resistance, Rn(T), and by its critical current, Ic(T), which  
generally depend on the ratio between the temperature T of the cry-
ostat and the junction’s SN activation threshold Tc. When dealing with 
ordered superconducting arrays, the letter quantities satisfy in the 
so-called dirty limit51,52 the Ambegaoakar–Baratoff relation53,54 
Ic(T)Rn =

π
2e
Δ(T) tanh(Δ(T)/2kBT), where the energy gap, Δ(T), follows the 

Bardeen–Cooper–Schrieffer mean-field spectral relation 2Δ(T) ≈ αkBTc 
with α ≈ 3.53. In the previous relations, kB is the Boltzmann constant 
and e is the elementary charge. In disordered superconductors, on the 
other hand, disorder-induced spatial inhomogeneities of the SC state 
break the ideal Bardeen–Cooper–Schrieffer scheme in the above, 
yielding striking phenomena55 such as non-monotonic variations of 
the sheet resistance56, suppression of Tc towards zero57 and large val-
ues24 of the spectral gap ratio Δ(T)/Tc. When modelling these networks 
via RSJJs, an Arrhenius activation law at low temperatures58 is invoked 
to include the presence of large resistive areas due to the emergence 

of insulating islands. The a:InO samples fabricated in the present work, 
however, have bulk SN thresholds large enough to ensure that junctions 
rarely undergo a metal–insulator transition. In light of this, we consider 
a model of RSJJ with only three electronic states: superconducting (SC), 
intermediate (IM) and normal metal (N), defined according to the 
Josephson I–V characteristic displayed in Fig. 2b. Hence, the junction’s 
resistance is defined piecewise as:

Rij =
⎧⎪
⎨⎪
⎩

Rϵ, ifVij < RϵIcij(T)(SC),

Rn
ij , ifVij > Rn

ij I
c
ij(T)(N),

Vij/Icij(T), otherwise (IM),

(M1)

where Rϵ is the resistance in the SC state (Rϵ = 10−5 Ω in the simulations, 
see equation (M4) for details) and Vij is the potential drop measured at 
the junction’s ends. For the critical currents, we propose a local gener-
alization of the de Gennes relation, that is equation (1), where Icij(0) is 
the junction’s critical current at T = 0. We control the degree of disorder 
in the arrays by considering a quenched normal distribution 𝒳𝒳ij ∈ 𝒩𝒩(0,σ)
—where variables match the junctions’ labels in each array—with zero 
mean and variance σ as a generator for the other system’s observables. 
In particular, we define Icij(0) = Ic0(1 +𝒳𝒳ij) ,  Tc

ij = Tc(1 +𝒳𝒳ij)  and 
Rn
ij = ρRq(1 +𝒳𝒳ij), where Rq ≈ 6.45 kΩ is the quantum resistance for pairs, 

so that junctions with a large zero-T threshold have a comparably large 
critical temperature and normal resistance. The values of Ic0, Tc and ρ 
can be extrapolated from the experimental data; Tc, in particular, can 
be found by fitting to the resistive curves the Aslamazov–Larkin cor-
rection59,60 or, similarly, the HN relation61 adopted in the main text. Best 
fitted values for Ic0, Tc and ρ are listed in the caption to Fig. 2.

Thermally coupled Kirchhoff equations
To characterize the mutual SN phase transitions reported in the experi-
ments, we have developed a model of thermally coupled RSJJs networks 
with local thermal couplings sustained by the heat dissipation of single 
junctions. Alike simulations in interdependent networks62, numerical 
solutions for the mutual order parameter (here, the global sheet resist-
ance, R) can be obtained recursively by making the layers to adaptively 
interact through their isolated behaviours36. In our model of thermally 
interdependent RSJJ networks, this is achieved by solving the Kirchhoff 
equations of each array under the adaptive effect set by the 
‘two-interaction’ interplay between equation (1) and equation (2). We 
consider therefore two layers, A and B, each being a 2D lattices with linear 
size L, whose left and right boundaries are connected to an external super-
node (source) where the bias current is injected and to the ground, respec-
tively. Each junction has a Josephson I–V characteristic with Rij defined as 
in equation (M1), where we assume Rϵ = 10−5 Ω for both the arrays and mean 
normal resistance Rn = ρRq, with ρA = 1.24 and ρB = 0.77. We initiate the 
algorithm by randomly assigning two vector potentials Vμ with μ = A, B 
with same values for all junctions at the zeroth iteration. When starting 
from the mutual SC state, the junctions’ resistances in both layers are set 
as RA

ij = RB
ij = Rϵ, whilst RA

ij = Rn
ij,A and RB

ij = Rn
ij,B when the layers start from 

their mutual N phase. The algorithm evolves iteratively as follows:

 (1) at the t-th stage (t ≥ 1) of the overheating cascade, the local 
effective temperatures, equation (2), are computed using the 
resistances and the local currents found at the stage (t − 1);

 (2) the critical currents Icij(T) are updated via equation (1), and their 
resistive state is determined via equation (M1) after computing 
the potential drop Vij,t from the vector Vt;

 (3) the (symmetric) conductance matrices Ḡμ with μ = A, B are 
generated via the junctions’ resistances in (2) with entries

Gij =
⎧⎪
⎨⎪
⎩

0, if (i, j) ∉ E

−1/Rij, if (i, j) ∈ E

∑k∈∂i1/Rik, if i = j

(M2)
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where E is the set of edges in each array and ∂i the set of nearest neigh-
bours of node i;
 (4) the potential vectors, Vμ,t+1, are updated by solving numerically 

the Kirchhoff matrix equations

⎧
⎨
⎩

ḠA
t ⋅ VA

t+1 = IAinj

ḠB
t ⋅ VB

t+1 = IBinj
(M3)

where ( ⋅ ) is the matrix product and Iμinj is the vector of total currents 
injected to each node at every stage, whose elements are always zeroes 
except for the first entry (the supernode) which equals the driving 
current Iμb with μ = A, B;
 (5) the global sheet resistances of each array are then calculated as 

Rμ
t+1 = Wμ

t+1/I
μ
b with μ = A, B.

The steps (1)–(5) are recursively repeated yielding a sequence of 
pairs of vector potentials: {(Wμ

0,W
B
0),… , (WA

t ,WB
t ),… } , whose conver-

gence is verified as soon as the mutual error

δW = ∑
μ=A,B

||||
1 −

Wμ
t

Wμ
t+1

||||

becomes smaller than a numerical precision εmin. In the simulations 
carried on in the present work, we used εmin = 10−5 although we verified 
that higher precision thresholds do not alter the phase diagram of 
decoupled and thermally interdependent networks.

Let us notice that, in the above, each pair of superposed junc-
tions in the two RSJJ networks is assumed to be one-to-one thermally 
coupled. This is because, in our model, the strength of dependency 
couplings can be controlled via the amount of power dissipated by 
Joule heating, that is by the amount of bias current, Ib, pumped in the 
system. From the viewpoint of interdependent network theory, this 
realizes the model of partial interdependent networks and an increase 
in the levels of Ib would correspond to an increase of the fraction17 of 
interdependent pairs between the layers. In this respect, an increase 
of the thickness of the Al2O3 medium of our experiment would have the 
equivalent effect of reducing the strength of the dependency couplings 
between the layers.

Thermal dependency between layers
Equation (2) approximates the local overheating of the junction (i, j) 
in a given layer due to the thermal heat transferred from its superposed 
junction in the other layer. To obtain equation (2), let us study the more 
general case where the junction (i, j) in layer μ = A, B is also overheated 
by its ∂(i, j) neighbouring junctions. In such a case, we can compute Tμ

ij 
by resorting to the thermal analogue of circuit theory. With reference 
to the illustration in Supplementary Fig. 8, let us consider the overheat-
ing of the junction (i, j) in layer B. The total heat flowing towards (i, j) in 
layer B, �̇�𝒬B

ij, can be approximated as the sum of two parallel paths: the 
heat dissipated by the overlapping junction (i, j) in layer A and trans-
ferred through the coupling medium, and the heat reaching (i, j) of B 
from its six nearest neighbours, namely

�̇�𝒬B
ij = �̇�𝒬B←A

ij + �̇�𝒬B←B
∂(i,j).

Each contribution to the heat flow can be written in terms of the (total) 
thermal conductance, γ, of the corresponding medium. In particular, 
one finds that �̇�𝒬B←A

ij = γAB(TB
ij − T) and

�̇�𝒬B←B
∂(i,j) = (TB

ij − T) ∑
k∈∂(i,j)

γBk = 6γB(TB
ij − T),

where, for the last identity, we noticed that the neighbours of (i, j) in 
layer B are, themselves, in a thermal parallel and that, by geometry, 

they all have the same thermal conductance, γB. Combining the above, 
we get �̇�𝒬B

ij = γBeq(TB
ij − T) , where γBeq ≡ γAB + 6γB . Equivalent arguments 

yield the analogous expression for layer A, that is �̇�𝒬A
ij = γAeq(TA

ij − T), where 
now γAeq = γAB + 6γA.

The values of γμeq characterizing our experimental setup can be 
calculated via γ = κ𝒜𝒜/𝒜 , where κ is the thermal conductivity of the 
medium, 𝒜𝒜 the cross-sectional area where heat flows and ℓ its  
thickness. For our samples (see equation (1) for details), we have 
κSiO2 = 0.2Wm−1 K−1 and κAl2O3

= 10Wm−1 K−1, so that

γAB = 8 × 10−3 W K−1,

γSiO2 = 5 × 10−9 W K−1,

γAl2O3
= 2.5 × 10−7 W K−1.

Since layer A (top layer) is deposited over the Al2O3 medium, while layer 
B (bottom layer) is roughly embedded for half of its width in the under-
lying SiO2 substrate (Fig. 1b), we have that γAeq = γAB + 6γAl2O3

 and 
γBeq = γAB + 6 (γSiO2 + γAl2O3

) . Hence, because the thickness of the Al2O3 
coupling medium is roughly two orders of magnitude (Fig. 1b, inset) 
smaller then the average lattice spacing within each array, we have that 
γμeq ≈ γAB for μ = A, B, that is, the heat is mainly dissipated between the 
layers or, equivalently, thermal interdependence is negligible within 
the layers.

To arrive at equation (2), it is sufficient to notice that the heat rate, 
�̇�𝒬, is actually proportional to the power, 𝒫𝒫ij = RA

ij I
2
ij,A, dissipated by Joule 

heating in the corresponding resistors, where Iij is the current flowing 
through the junction (i, j) whose electrical resistance is Rij. Therefore, 
to compare �̇�𝒬 with 𝒫𝒫, one has to consider the different time scales 
characterizing these energy rates: while the former is given by the 
characteristic time, τp, of thermal conduction through a given medium, 
the latter is expressed instead in units of the characteristic time, τe, 
needed by the current flowing in the circuit to reach a steady distribu-
tion. This leads to the relation �̇�𝒬 = τp/τe𝒫𝒫. Combining the above expres-
sions for �̇�𝒬B

ij, we get equation (2) in the main text. The characteristic 
time τe to reach equilibration in the current distribution can be esti-
mated via the time needed by electrons to span the linear size of the 
superconducting arrays, that is L = 620 μm, namely τe = cL ≈ 2 × 10−12 s, 
where c ≈ 2.99 × 108 m s−2 is the speed of light. The characteristic time 
of thermal conduction can be estimated instead as the time needed for 
heat to flow through a medium of density ̃η and thickness ℓ, whose 
expression63 is given by τp = C ̃η𝒜2/κ , where C is the material’s specific 
heat. Since CAl2O3

≈ 880 J kg−1 K−1  and ̃ηAl2O3
≈ 3.89g cm−3 , we find that 

τp ≈ 3.4 × 10−6 s and, therefore, τp/τe ≈ 1.7 × 106.

Validity of the mean-field hypothesis
Non-locality is essential for the large-scale propagation of cascades64. 
In our model of thermally interdependent 2D SC networks, the random 
redistribution of the currents after the state switch of single junc-
tions non-locally propagates local phase perturbations, setting an 
effective long-range feedback within each layer. Recent findings on 
percolation in interdependent spatial networks65–67 show that randomly 
interdependent lattices (that is, coupled 2D grids with long-range 
dependency links) and multiplex disordered lattices (that is, coupled 
spatially embedded networks with long-range connectivity links and 
dependency links between overlapping nodes) are physically equiva-
lent, featuring qualitatively similar equilibrium phases and dynami-
cal regimes. This equivalence finds solid grounds in the mapping33 
we have recently discovered between percolation in K > 2 randomly 
interdependent networks and the onset of hard fields in the one-step 
replica-symmetry-breaking solution of the random (K + 1)-XORSAT 
problem33,68, that is, with the ground state of ferromagnetic (K + 1)-spin 
models on random hypergraphs. Since an interdependent link between 
nodes interacting with their nearest neighbours via pairwise couplings 
maps exactly onto a hyperedge made by triads of the two dependent 
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nodes and their nearest neighbours, a source of long-rangedness either 
on the dependency links or on the connectivity links yields statistically 
equivalent structures (that is, hypergraphs with triads between two 
nodes at short-range distance and one randomly chosen node within 
the arrays). In light of this, the mean-field hypothesis advanced in the 
main text can be read as the completely random version of the above, 
which does not alter the main phenomenology of first-order transitions 
and the cascade of failures observed in fully random interdependent 
networks62.

Data availability
Source data are provided with this paper. All data supporting our 
findings are available from the corresponding author upon reason-
able request.

Code availability
Source codes and videos showing the states of resistors, their cur-
rents and the power dissipated in both layers during the transition 
can be freely accessed at the GitHub repository: https://github.com/
BnayaGross/Interdependent-SC-networks.
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