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Mitigation of cascading failures 
in complex networks
Alex Smolyak1*, Orr Levy1, Irena Vodenska2, Sergey Buldyrev3 & Shlomo Havlin1

Cascading failures in many systems such as infrastructures or financial networks can lead to 
catastrophic system collapse. We develop here an intuitive, powerful and simple-to-implement 
approach for mitigation of cascading failures on complex networks based on local network structure. 
We offer an algorithm to select critical nodes, the protection of which ensures better survival 
of the network. We demonstrate the strength of our approach compared to various standard 
mitigation techniques. We show the efficacy of our method on various network structures and failure 
mechanisms, and finally demonstrate its merit on an example of a real network of financial holdings.

Since complex systems emerged as a prolific area of applied studies around the turn of the century1–3, network sci-
ence methodologies have been successfully developed and used to better understand many domains. A recurring 
theme, going back almost as far as the field itself, is the propagation of information of different types over complex 
networks. Examples include epidemic spreading, opinion formation, and failure propagation. Biological, social, 
computer and other networks all exhibit spreading dynamics through different mechanisms resulting in rich 
behavior. In the context of computer and other physical networks, such as power grids, financial systems, social 
networks and communication systems, cascading failures have been extensively studied4–10. What makes the study 
of cascading failures so important is the fact that an actual catastrophe, such as infrastructure collapse, global 
epidemic or a financial meltdown may happen seemingly without warning, starting from a very small failure.

Determining whether the system is in a state where small, local failures could spread globally, and lead to a 
system-wide collapse may be impossible without precise knowledge of system variables and parameters. This pre-
cise knowledge is rarely attainable in real life dynamics. That knowledge may include, depending on the setting, 
failure mechanisms, the global connectivity patterns, network-wide degree distributions and more. Interdepend-
ent networks4 increase the complexity of the analysis by conditioning survival on dependence between different 
networks. As a concrete example, network science proved to be a highly appropriate approach to study financial 
systems after the 2008 housing bubble collapse. Decline in housing prices in the United Stated led to a global 
credit crunch, transmitted via complex financial instruments and tight coupling between institutions, increasing 
financial system vulnerability for a prolonged period of time. Soon after bursting of the real estate bubble, which 
brought down many financial institutions, research highlighted the importance of network relations between 
these institutions that led to the propagation of failure (see e.g.,11–15). Research conducted in complexity science 
analyzing contagion, centrality and impact of failure of financial institutions aims to aid financial regulation and 
monitoring by identifying the network aspects of financial system uncertainty5.

When considering network failure models, we need to take into account several important parameters. These 
parameters include reversibility of failure (whether or not a node recovers after failure); the way a node’s immedi-
ate neighborhood affects its own failure likelihood; and whether or not global connectivity, such as belonging to 
the giant component of a network plays a role, to name a few. Other properties characterize the network structure 
as a whole. It may be simple, weighted, bipartite, multilayer, interdependent, with various degree distributions, 
correlations, communities, clustering properties and more16,17. An exhaustive analysis of all variants is impossible, 
so we choose relatively simple but broadly applicable models with several variants and offer non-trivial insights 
on mitigating cascading failures based on local neighborhoods information.

Cascading processes on networks may either be the goal, such as in the context of marketing and advertising, 
where the target may be to optimally disseminate information across networks6–9, or an adverse result (Fig. 1), e.g. 
in finance, health care or infrastructures, where cascading process of failure or disease spreading is detrimental, 
and should ideally be avoided, mitigated or stopped.

The literature on the subject is diverse, taking multiple different approaches18–24. Those range a broad-spec-
trum, descriptive to fine-grained calculations and algorithms. The domain of applicability of both cascades and 
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mitigation is very broad. Protection methodologies may be specific (i.e. targeting concrete nodes or edges18,23) or 
statistical (that is, selecting a fraction of nodes conforming to some condition20,24), broad19,24 or case-specific21,23, 
probabilistic or deterministic. Some aim at identification of important nodes, others wish to maximize system 
survival. A complimentary approach is that of healing or recovery25,26.

In this paper we analyze several variants of network structures and failure methods mentioned above. We 
aim to propose a simple, bottom-up, easily implemented model for efficient mitigation of cascades on a given 
network. We show that the knowledge required for such model is limited to node’s nearest neighbors, ignoring 
higher-order connectivity even in a non-treelike structure (Fig. 1). The resulting mitigation strategy is globally 
very effective. We show that our approach is appropriate for a wide variety of network topologies and various 
failure mechanisms. Using financial cascading failure as an example, we aim to identify nodes, representing 
financial institutions, that we need to protect in order to keep the network in a connected, functional state. To 
accomplish this task, we inspect the behavior of simple network models having different degree distributions, 
bipartite networks as well as interdependent networks. Finally, we test our process and show its effectiveness on 
an actual bank-asset data-set, exploring failure mitigation of a real world network by applying our methodol-
ogy. This is important not only as a demonstration of the model’s strength in real-life applicability, but also as an 
example of a simple model that can be extended to more complex settings and still perform very well.

Our approach may be applied to a broad range of systems for prevention and mitigation of cascading failures. 
Specifically, in relation to financial stability, it may help regulators to better protect the system and mitigate 
future collapse.

Models of cascading failures
Various approaches have been developed to simulate propagating failures in a network. One such approach sets 
a threshold for a node failure if its number of functional (non-failed) neighbors is below this threshold27,28. Since 
this resembles to the process of decomposing a network into its k-cores, this is also known as a k-core percola-
tion. This model may be important in epidemiological applications, where the actual number of infected people 
with whom a person interacts is important. Another approach, called fractional threshold, is more relevant to 
settings such as opinion formation, infrastructures and financial and economic settings, measures the fraction 
of non-failed (or activated in the context of opinion spreading) neighbors of a node’s initial degree. The decision 
regarding whether or not the node will fail depends on the fractional threshold11,29–31. This process is illustrated 
in Fig. 1. The model stems, among others, from research in (1) opinion formation and (2) embracing of novelties. 

Figure 1.   Description of the fractional cascade process, colors illustrate the immunization algorithm described 
in “Mitigation strategy”. (a) The gray node is impacted and will be removed; (b) when removed, all its edges 
disappear as well; (c) here the important difference between the blue (low degree), green (high degree) and red 
(medium degree) nodes is highlighted. The blue node has only one additional neighbor, so its failure does not 
exacerbate the cascade. The green node is of a high degree, so it is not affected by the single neighbor’s failure. 
The red nodes, however, are vulnerable with respect to a threshold failure perspective, but also have a large 
number of neighbors that will be affected by their failure. They are the ones enhancing the cascading process; 
(d,e) show the termination of the failure on the toy model example with only the high-degree node (green) 
surviving the process.
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The assumption is that if m out of k friends adopt a certain behavior, the person connected with these friends 
will adopt it as well. The threshold for such process is not m but rather m/k. Hernce, a person with many friends 
will need, in absolute terms, more adopters in his or her vicinity in order to change the behavior. One of the 
fundamental studies of such fractional-threshold opinion propagation model is described by Watts in29. The 
condition that determines whether the network will collapse or survive given a minimal impact is central to 
this study. The cascade condition is derived using percolation arguments and is a first-order approximation for 
infinitesimal initial impact,

where k is the degree, ρk is the degree-dependent probability distribution of the threshold, pk is the degree dis-
tribution of the network and z is the average degree.

Equation (1) is a good approximation that holds for an infinitesimal impact. A correction for finite impact has 
been developed in32, where a calculation to determine the eventual fraction of surviving nodes based on the con-
nectivity and threshold distribution has been carried out. Gleeson and Cahalane32 show that the first order term 
in the expansion in a power series yields Watts’29 condition. Expanding to second order, a higher-importance term 
appears, governing the finite size cascading process. A detailed analysis of the onset and propagation of fractional 
cascading failure is developed by Di Muro et al.33 and is analyzed numerically in Supplementary Information  S1.

Results
Mitigation of cascading failure.  Our main premise is that some nodes are more instrumental than oth-
ers in propagating and exacerbating the failure process. Moreover, these nodes maybe identified based solely 
on their local environment. The algorithm is detailed in “Mitigation strategy” but its main idea is that we can 
determine such nodes and designate them for protection with ease. We find that our protection, even with par-
tial information, is highly efficient in mitigating the cascading failure process. In order to be selected, the nodes 
must be fragile under a relevant failure mechanism, as per the definition in “Mitigation strategy”, and they need 
to have a sufficient amount of similarly fragile neighbors. Further specifications on connectivity of such nodes, 
once identified, help refine and reduce their amount. In essence, they correspond to the red nodes shown in 
Fig. 1. As a standard benchmark, we demonstrate our main results on an Erdos–Renyi (ER) network. Addition-
ally, to be consistent with our later example of a real network, and inspired by11, a bipartite structure with one 
part’s degree distribution following a power law, and the second part’s—a random, Poisson distribution, is also 
analyzed. In the Supplementary we show additionally a scale-free (SF) network, as well as the more elaborate, 
but perhaps more common in life, interdependent pair of networks. The left panels of Fig. 2 demonstrate the 
behavior of the network survival vs. the system’s fragility, as expressed by the fractional threshold in the x-axis. 
The values on the x-axis specify the fraction of a node’s neighbors required to be active to survive (the failure 
mechanism is detailed in “Failure mechanisms”). The y-axis shows the probability of a system to survive. The 
different colors correspond to different protection probabilities (protection probability is detailed in “Random-
ness and lack of information”). The top (1.0) and bottom (0.0) curves in the left panel figures, corresponding to 
fully protected (1.0) and unprotected (0.0) networks, respectively. By fully protected we mean a node meeting 
the requirements specified in “Mitigation strategy” is indeed guaranteed survival. Reducing the probability of 
survival for protected nodes, will allow us to analyze the properties of the system under uncertainty (right panels 
of Fig. 2, “Randomness and lack of information”).

Figure 2a shows the properties and behavior of the ER network. The yellow line (0.0) shows the evolution of 
a system with no external intervention. Below the critical threshold, just below 0.86 for the ER case, the system 
almost always survives. That is, repeating the experiment multiple times for randomly generated networks with 
the same macroscopic conditions almost always leads to the system remaining largely intact following the removal 
of a single node. As we increase the threshold, there is an abrupt transition to the system failing with high prob-
ability. The blue line, corresponding to keeping all nodes selected by our algorithm safe, shows the behavior of 
the system with external intervention. We now see that keeping all of our selected nodes safe from failure leads 
to significantly more resilient systems. It now remains almost always intact above the non-protected critical 
threshold, and even when it begins to fail—it does so much more rarely than in the unprotected case. In fact, as 
we show in Fig. 3, one can achieve a very high degree of stability by increasing the sensitivity of our selection 
algorithm (more on that in “Additional model parameters”). The intermediate lines, purple and orange, 0.7 and 
0.4 resp., are obtained by holding our selected nodes safe with a given probability (70% and 40% here). This 
shows that even partially randomized protection allows us to noticeably increase the survival probability of our 
system. Finally, the dashed red line at the bottom of Fig. 2 shows the size of our selected set as a fraction of the 
system size (right axis). Reducing the protection probability would lead to a reduction of the protected set. We 
note here that both the basic cascading process (yellow lines) and effect of the mitigation strategy (blue lines) 
differ between the top and bottom of the left panel. While the bipartite network falls apart at lower thresholds (is 
more fragile), it is also more easily protected. The SF network in Supplementary Fig. S1a, for example, is much 
more highly protected using the same conditions as the ER one, leading to very resilient networks over a wide 
range of thresholds, even for 30% chance of failure for the selected set.

Importantly, near the critical threshold the protected nodes form a relatively small group, of the order of 
several percent of the entire network. A striking feature of the cascading process coupled with our immunization 
strategy is the lack of intermittent states of network health. That is, as shown in Supplementary Fig. S1, when 
a network collapses—it collapses completely (with the exception of the protected nodes which, by definition, 
survive). However, when the network survives—it survives almost entirely, with the possible exception of a small 
(compared to system size) set of nodes. We demonstrate that we can always select a set of nodes that is much 

(1)
∑

k

k(k − 1)ρkpk > z,
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smaller than the system size on one hand and ensures the system’s complete survival on the other. In this lies the 
novelty of our proposition. Such a result may be useful for systems where even partial failure is very costly, such 
as infrastructure networks. Complimentary, we provide an approach that allows decision makers to protect a 
network with a given probability, where potential loss is acceptable.

Alternative mitigation benchmarks.  Figure 3 and “Earlier simple strategies”, Centrality-based strategies 
show the advantages of the proposed mitigation approach compared to other existing strategies. Briefly, instead 
of finding nodes of importance and relying on them to save the network, we select the nodes that are most 
instrumental for avoiding spreading of the failure process and protect the system.

Earlier simple strategies.  Following our analysis of different topologies and protection probabilities we wish 
to compare the effectiveness of our approach to other strategies. We begin with several trivial node selection 
algorithms. For each strategy we select the same amount of nodes as in our proposed strategy. The most basic 
“control group” is a random set. For that we choose from the nodes of the network a subset to be protected. 
Additionally, we choose the highest-degree nodes as the most reasonable candidates for protection. A plausible 
intuition behind this method is that selecting the most highly-connected nodes may help keep alive more of 
their neighbors. Then, following the understanding that the highest-degree nodes are not necessarily the ones 
propagating the cascade, we go to the other extreme and choose instead a set of nodes with the lowest degrees. 
Here the intuition may be that protecting the most vulnerable members of the network may ensure better sur-
vival. Figure 3a,c, and Supplemenatry Fig. S1a,c report the results on the topologies defined above. As mentioned 
in “Mitigation of cascading failure”, we increase the protected set here. That is done for two reasons: one is to 
demonstrate the possibility of definitive immunization for ER networks. The other is to demonstarte the advan-
tages of out method to the ones shown in the figure. These are emphasized as we allow to increase the protected 
set in order to ensure survival under our strategy while still falling short for other mitigation method. Several 
interesting features surface in the analysis. For ER networks Fig. 3a, surprisingly, low degrees indeed provide 
better immunization than high ones (that under-perform even the random selection). The bipartite network 
Fig. 3c shows significant deviation from both ER and SF constituent types with an interesting crossover from a 

Figure 2.   Comparison of the effect of probabilistic protection between several network structures. (a) ER 
network with 10,000 nodes and �k� = 8 . The blue, purple, orange and yellow dotted-dashed lines represent a 
probability of 1, 0.7, 0.4 and 0 resp. for a chosen node to be protected. Blue and yellow lines represent full and 
no protection, respectively. The dashed red line shows the fraction of fully protected nodes with respect to the 
whole network. (b) Assuming four specific thresholds (vertical lines of matching colors to (a)) shown are the 
probability of system survival for all protection probabilities from 0 to 1; (c,d) same as (a,b) for the bipartite 
configuration described in “Network structure”.
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system apparently dominated by ER fragility for low thresholds to one dominated by SF fragility at the higher 
thresholds.

Centrality‑based strategies.  Here we evaluate other previous strategies of network immunization. We continue 
the line of reasoning that selecting nodes that are in some sense more important than others, may lead to a better 
outcome. To that end we employ several proposed methods of node selection. They are the Closeness central-
ity, Katz centrality and Betweenness centrality of nodes. Briefly, Closeness centrality is defined as the reciprocal 
of the distance between node n and all other reachable nodes; Katz centrality is a representative member of 
the eigenvalue centrality family of metrics where importance of a node is determined by the importance of its 
neighbors (i.e. the more significant the neighbors—the more significant the node); Betweenness of a node n is 
the ratio between the number of shortest paths between any two nodes that pass through n to all shortest paths 
between them. As with the simpler strategies, our approach is to rank all nodes in accordance with the selected 
centrality metric and select the same amount as proposed by our algorithm. The results are presented in the right 
panels of Fig. 3 for (b) ER network, (d) the bipartite construct, and Fig. S1b,d for a scale-free network and the 
interdependent cases respectively. As before, it can be seen that our proposed method outperforms the standard 
centrality metrics, highlighting the fact the nodes selected are not in particularly important on their own, as 
centrality would imply, but more important is their ability to facilitate failure spreading on the network. From 
this perspective, a reciprocal question may be posed, whether or not removing the selected nodes lead to an 
efficient network fragmentation, as discussed in, e.g.34, but as it is a broad topic on its own, we leave this question 
for further research.

Methods
Mitigation strategy.  A reasonable approach to network immunization may begin by asking which node, 
if removed, causes the greatest damage to the system23. While this is insightful, it may not be sufficient. Indeed, 
Supplementary Sect. S1 and, specifically, Supplementary Fig. S1 shows the results of removing a single random 
node from a network. At the critical threshold even a very small random impact (e.g. removal of a single random 
node) is likely to cause a cascading failure. That means defining a node’s importance in terms of the damage it 
causes does not help from the mitigation perspective. We propose a complimentary approach, where we do not 
focus on how any single node removal affects the network, but rather, we ask which nodes are instrumental in 

(a) (b)

(c) (d)

Figure 3.   Different immunization approaches. (a) ER network with 10,000 nodes and �k� = 8 . The blue, purple, 
orange and yellow dotted-dashed lines represent respectively, our strategy, a random selection of nodes, highest 
degree and lowest degree, (c) A bipartite network as described above under the same conditions as in (a); (b,d) 
follow the network structure of (a,c) resp. while comparing to centrality-based node selection, with purple, 
orange and yellow dashed-dotted lines corresponding to Closeness, Katz and Betweenness centrality, 
respectively.
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propagating the cascade. Instrumental to our discussion is the notion of node fragility. There are many ways to 
understand this notion, so to avoid ambiguity we define the following:

Definition 1  Fragility—we define a fragile node under a failure mechanism, M, when the removal of a minimal 
relevant quantity, K of its links causes the node to fail.

As an example, for the fractional failure mechanism with threshold θ , a node of degree k is fragile when a 
removal of a single edge will cause failure, i.e. (k − 1)/k < θ

Based on a very simple percolation argument we can conclude that in order for an impacted node to facilitate 
a cascade, it must meet two conditions: 

1.	 It must be fragile as per the definition above.
2.	 It must have at least some neighbors which will also fail when impacted.

These conditions are intuitive, i.e. if a node does not fail upon a removal of a single neighbor, it is not very 
fragile and it will not be affected in the initial iteration of the cascade. If a node has less than two neighbors fail-
ing, it will not exacerbate the failure process (that is, at least locally, its failure will not increase the rate of failing 
nodes, since its branching factor is too low). These conditions become the two primary steps in our mitigation 
algorithm, as illustrated in Fig. 1: 

Algorithm 1: Selecting nodes
Result: Set of nodes to be protected

i Choose a random node;

ii Determine whether or not, for a given
threshold, the node will fail under the removal
of a single edge adjacent to it (i.e. determine
whether the node is fragile);

iii If the chosen node fails, determine whether or
not it has at least two fragile neighbors;

iv Construct connected subgraphs of nodes that
fulfill the above two conditions;

v For those subgraphs, calculate the average
degree and protect only nodes with degree
above this average degree;

The last step is a heuristic which could be adjusted, as we describe below in “Additional model parameters”. 
At a first glance, there is nothing special about the selected nodes. However, note that high-degree nodes would 
not be selected for low thresholds as the high-degree nodes are not fragile until a very high threshold is reached. 
Low-degree nodes do not propagate enough damage and thus would not be selected for protection either. The 
seemingly common nodes, just weak enough to be fragile, yet connected enough to significantly propagate failure, 
would be the ones more likely to be protected. Importantly, although many nodes may appear to belong to this 
intermediate group of fragile and connected nodes, those complying with all our requirements are relatively few, 
thus creating a very cost-effective mitigation and protection strategy.

Having defined our strategy, we examine the consequence of securing the protected nodes. As discussed 
in “Results”, the different network structures lead to very different behaviors in terms of performance of the 
proposed mitigation strategy.

Simulation setup.  All our simulations are conducted on undirected, unweighted networks for tractability. 
Note, however, that the real network we test in “Application to European Banks’ sovereign debt exposures” is a 
weighted one. Our method is applicable without any modification. Network sizes were chosen typically of the 
order of 10 k nodes such that repeated realizations are feasible but finite size effects are negligible. For statistical 
validity, random setups are repeated at least 150 times (and up to 1,000 in some cases). For each iteration a new 
random graph is constructed via the appropriate methodology. A fractional threshold is then set for the nodes 
of the network. Nodes of degree 0 are removed to avoid degenerate cases. We initiate a cascade by removing a 
single node, holding the selected (protected) nodes “safe from failure”. The other nodes evolve as usual: at every 
iteration, nodes that are not within the protected set of nodes and have lost more neighbors than the fractional 
threshold permits, fail, potentially endangering all their neighbors. We proceed to iteratively remove all failed 
nodes until no updates are required to the remaining nodes and a steady state is reached.
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Network structure.  Our main results are presented on an ER and bipartite networks as described above. 
Unlike many studied bipartite networks (citations, movies etc.), a network constructed of financial institutions 
on one hand and assets on another, is a realistic structure capable of transmitting a propagation of shock. Hence, 
removal of nodes and edges in such networks can cause significant, noticeable damage, mainly due to the net-
work interconnectedness. As has been noted since Zipf35–37, firm sizes and incomes tend to follow a power-law 
distribution. The financial institutions have degrees distributed according to such a power law. The assets on the 
balance sheets, however, can be assumed to be randomly selected and thus distributed according to Poisson. In 
the Supplementary we show some corroborating evidence for this non-trivial structure. While we do not claim 
that it is an accurate representation of reality, it is both reasonable and instructive, as the behavior of such a net-
work is qualitatively different from the standard networks.

To demonstrate the wide applicability, we report in the Supplementary the behavior of our algorithm when 
applied on a SF networks, as well as on an interdependent pair of networks4,38. These structures are standard in the 
field, corresponding to different real-world networks, and displaying different response to random and targeted 
failures. While SF networks are known to be more resilient to random failures due to the well-connected hubs, 
under the fractional threshold failure mechanism scale-free networks are more vulnerable compared to their ER 
counterparts with the same average degree39. The reason for this behavior lies in the network topology where 
the degree distribution is broad due to existence of hubs, while the majority of the nodes are poorly connected. 
Interdependent networks represent classes of infrastructure systems where critical resources are supplied by one 
network to the other and vice versa.

Failure mechanisms.  Several failure mechanisms are considered, the main one being fractional failure, 
where a node fails given an insufficient number of its neighbors survive. This model is relevant to many real-
world systems such as finance, where a fraction of surviving neighbors may represent fraction of assets remain-
ing after some default, or opinion formation where the fraction is that of friends adopting some position. A simi-
lar mechanism tested (but not reported, as it yields little additional insight) is the case of k-core failure, where 
instead of a fraction of surviving neighbors—a defined number of neighbors is needed to survive. This case may 
be more relevant for epidemics where the actual number (rather than fraction) of encountered individuals plays 
an important role. The main qualitative difference between the fractional and k-core is that nodes with degree 
below the initial threshold will fail without initial impact. Because of that, any sufficiently high threshold cor-
responds to a finite initial impact, as opposed to the infinitesimal one in the fractional threshold case. Another 
important mechanism is that of failure in interdependent networks. It is detailed in Supplementary Sect. S1.

Randomness and lack of information.  One strength of our approach is that it requires only information 
about a node’s fragility with respect to its failure mechanism (that is, we only need information about neighbors 
to decide whether or not a node fails, this information will also be sufficient to decide whether or not the node 
needs to be protected). But it is easy to envision a situation where not all nodes that pass the protection criterion 
as defined in “Mitigation strategy” can be protected. Such a situation may either be a result of incomplete infor-
mation (not all local information is available for all nodes), insufficient resources (we need to protect M nodes 
but can afford to protect only N < M nodes), or as a means of maintaining ambiguity (a regulator may wish to 
signal an institution its survival is not guaranteed even if all conditions for protection are met, in order to pro-
mote prudence). In that case, we may ask how effective our mitigation approach would be if we could select only 
a subset of the nodes designated for protection. The answer to that question is seen in the right panel of Fig. 2. 
The colors match the vertical lines in the left panel and show the full details of varying the probability of protec-
tion. Thus, the solid blue line shows the network’s survival rate depending on probability of protection around 
the fragility threshold of the ER network, while the purple, orange and yellow lines go to higher and higher 
thresholds (i.e. areas of increased fragility). Here the x-axis traces the probability of immunization for a chosen 
protected node. Thus, whenever a node that belongs to a protected set is encountered, we randomly protect it 
with probability p. We observe in the right panel of Fig. 2 how different topologies respond to this probabilistic 
protection. Some differences of mitigation efficiency may be noted for the different networks. For example, for 
ER networks (Fig.  2b) above the critical threshold increasing the protection probability results in a gradual 
increase in mitigation efficacy. The initially more fragile bipartite network catches up with the ER one quickly as 
probability of immunization increases.

Additional model parameters.  Comparing the fully protected (blue) lines of the left panel of Fig. 2 to 
those of Fig.  3 one can clearly see that the survival probability is larger. That is due to the flexibility of our 
approach, where a broader subset of nodes is selected for protection yielding improved performance. One such 
flexible condition is step v in “Mitigation strategy” where different minimal degree of the induced subgraph 
may be defined. We could choose to protect more nodes by lowering the degree threshold in step v. The result 
would be that more nodes will be protected rendering a more stable network. However, since we assume that the 
protection of a node is not costless, we prefer to minimize the protected set, while still ensuring the survival of 
the network. Another alteration may be the minimal number of fragile neighbors required, where instead of two 
we may demand at least three for a smaller set, or less for better mitigation. Mapping out the full spectrum of 
parameters is left for further investigation. When the relation between failure mechanism and fragility is more 
complicated, such as the case of interdependent networks, we may define fragility in different manners. Those 
are described in Supplementary Sect. S2.
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Application to European Banks’ sovereign debt exposures
Introduction.  We now turn to an example of a real-world application of our suggested protection algorithm. 
As per the exposition, the data set we utilize for the test is the European banks and their holdings of Sovereign 
debt. The network is constructed by setting financial institutions and the debt instruments as nodes and joining 
by an edge a financial institution to a held debt. The network structure can be seen in Fig. 4.

The data.  Our data set consists of the sovereign debt exposure of close to 90 European banks recorded at 
2011. The banks are anonymized, and the countries are abbreviated to two letter codes. The average bank holds 
Kb = 12.7 different assets while each asset is held by an average of Ka = 35.8 banks. This network is, of course, 
much smaller than the networks tested in the above discussed simulations. This limits our ability to discuss 
distributions, but will allow us, on the other hand, to measure the effect of different individual failures and how 
they are mitigated by our algorithm. Figure 4 visualizes the network structure, the left hand side being the sov-
ereign debt instruments and the right—the banks holding them. Additional descriptive information can be seen 
in Supplementary Fig. S6—number of banks per country, the aggregated asset value of each country’s banks and 
holdings of individual banks with their degrees (number of assets held).

Failure and mitigation in a real financial network.  We now turn to the analysis of the failure process. 
While the model developed so far assumed integer degrees and unweighted edges, we wish to proceed here with 
more general assumptions. Now, instead of comparing the current degree to the initial one, we compare the 
value of the current holdings to the initial value.

The cascading failure process described here, follows Ref.11. We start with assuming a default of a sovereign 
debt, setting its value to zero. We then check whether the ratio of remaining banks’ holdings to initial holdings 
is above or below a specified threshold. If the ratio is below the threshold, the bank fails. Following that, the 
relative worth of the bank is removed from its holdings, thus the cascade continues.

Previously, we were agnostic regarding the origination of the shock. In this specific financial network analysis, 
we may expand our model by constructing immunization strategies depending on different types of potential 
failures. Alternatively, we can maintain the generality of the process by redefining the fragility of a node to be:

•	 Fragile under the failure of every neighbor: any failure in the portfolio may topple the bank
•	 Fragile under the failure of at least one neighbor: at least one debt failure in the portfolio may crash the bank 

(but not all—some failures may be absorbed by the bank)
•	 Fragile under some statistical measure—the mean, median or similar measure over the failure size crosses 

the threshold.

We apply the first assumption to the cascading failure process of the European Banks’ Sovereign Debt Holding 
network and find that the fraction of the network that needs to be protected is relatively small. Combined with 
the probabilistic approach from “Randomness and lack of information”, the set of protected nodes may decrease 
further.

To assess the fragility of the system we start with a proposed initial failure and a survival threshold repre-
senting the required capital that banks need to hold on their balance sheets. To analyze the network we follow 
the following procedure: select a single sovereign debt and set its worth to zero (initial default). For a range of 
thresholds, perform the simulation to determine the progress (or lack-there-of) of a cascading failure. This allows 
us to map the fragility of the network given various combinations of initial conditions, in order to then assess 
the performance of our mitigation approach. Cascading failure results are presented in Fig. 5a. A few interest-
ing points are worth mentioning here. One is that failure of some countries, such as Bulgaria (BG), Lichtenstein 
(LI) and Malta (MT) does not lead to a cascading failure even at high thresholds for the holdings as recorded 
(note that because in this section we are dealing with financial impact, we are more concerned with the fraction 
of value lost, shown as 1-threshold, as opposed to the fraction of surviving neighbors in previous sections). On 
the other hand, failures of countries such as Germany (DE), Italy (IT) and the United States (US), highly impact 
the network even at low thresholds. Lastly, there is a group of roughly 35 nodes (banks and assets) that form a 
group unaffected by the failure up to a certain threshold. Our next step, once we have examined the taxonomy of 
failure, is to apply our mitigation strategy. As mentioned above, the only adjustment to the original, unweighted 
strategy, is to set a node’s fragility in accordance with its sensitivity to the failure of any of its neighbors. Once 
fragility is defined, replacing step 2, we proceed with steps 3 through 5 as stated, and protect the selected nodes. 
In this case we choose to protect only banks, mirroring the Government bank bail-out process. It is also possible 
to protect debt, by guaranteeing a price floor to it. We turn to Fig 5b,c to analyze the results. To begin with, we 
note that for a relatively stable financial system, where an impact of 14% to the bank’s holdings is required to 
bring it down, protecting around fifteen financial institutions is enough to almost always spare a large fraction 
of the network, even in case of failure of financially vital sovereigns such as Germany, Japan (JP) or the United 
States. Even the cases where failure is severe, such as failures caused by the default of Italy or Spain (ES), we note 
that holding less than twenty institutions safe spares more than half the network (banks and debt instruments). 
Of course, as seen in the left panel of Fig. 2, increasing the fragility leads to a larger set of protected nodes. This 
case is no different, and having our network fail at a threshold of 6%, we now require protecting roughly a third 
of all financial institutions, but that, again, leads to an almost complete protection of the network aside for the 
aforementioned severe impacts. This is, of course, a very simplistic view of an intricate ecosystem. While our 
mitigation approach gives much promise, application to actual financial networks requires further analysis as 
discussed below.
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Figure 4.   Financial network structure. The left side are various sovereign debt instruments. The right side are 
banks with their national belonging indicated by the leading letters. Node size indicates Dollar value; color—
betweenness centrality. Edge width indicates investment size.
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Discussion and conclusion
In this article we propose an algorithm that allows efficient mitigation of cascading failure processes on complex 
networks. The mitigation becomes possible due to the protection of selected nodes most potent at propagating 
and exacerbating failure. We have shown that proper selection is possible with minimal knowledge of the nodes’ 
local neighborhood and the failure mechanism. Our approach results in a very high probability of network sur-
vival without having a specific knowledge of the source of impact. We have tested various network structures 
and failure mechanisms and have obtained effective mitigation strategies. We also applied our approach to a 
real-world network of banks and assets and have shown it to perform well and succeed to significantly mitigate 

Figure 5.   (a) Unprotected network. The horizontal axis shows the different failing debt instruments where, 
blue, orange and green bars correspond to (1-thresholds) of 14%, 10% and 6% resp. Height of the bar 
corresponds to the total number of surviving nodes (banks and assets). (b) The same network and failure 
process, but this time when applying our mitigation strategy showing a much higher survival rate for all initial 
impacts and thresholds tested. (c) Number of banks selected for protection per fragility threshold. As seen 
before, the more fragile the network—the more nodes are required for protection.
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cascading failure following a hypothetical default on a government obligation. This work, however, leaves some 
open questions. As mentioned briefly above, some points warrant further research. For example, while our 
approach is successful in a wide variety of theoretical and some practical cases, and is intuitive—it lacks theoreti-
cal foundation. Development of a top-down theory may help refine some of the heuristics used in the definition 
of our strategy and elucidate their origins. Such a theory could help elucidate the effect of model parameters 
chosen “to work”. Additionally, though several network configurations and failure mechanisms were tested, both 
theoretical and real networks tend to have more intricacies. These include correlated networks, as well as those 
with rich community structures. Particularly in the case of financial networks, relations may be multiplex and 
time- and space-dependent. Also, in our study, we assume a simplifying uniformity of failure thresholds. We 
observe that initial impact has a strong effect on cascade propagation. While we do not assume tree-like networks, 
and in the case of our banks’ network we explicitly work with a network of very high degree, the feedback effects 
stemming from short cycles may have a non-trivial effect on the mitigation approach. Spontaneous healing of 
failed nodes or failure of new ones may take place (as a precursor to more general network dynamics). We also 
briefly mention the complementary question of network fragmentation based on the targeted attack of selected 
nodes. All these constitute questions to be explored and answered in order to refine our algorithm and expand 
its applicability. These questions notwithstanding, we believe the approach developed here may provide a useful 
tool for analysis and protection of real-world networks from events of catastrophic cascades.
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