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Connectivity of EEG synchronization networks
increases for Parkinson's disease patients with
freezing of gait

Eitan E. Asher® '™ Meir Plotnik® 234, Moritz Giinther', Shay Moshel®, Orr Levy1, Shlomo Havlin',
Jan W. Kantelhardt® © & Ronny P. Bartsch@® '™

Freezing of gait (FoG), a paroxysmal gait disturbance commonly experienced by patients with
Parkinson's disease (PD), is characterized by sudden episodes of inability to generate
effective forward stepping. Recent studies have shown an increase in beta frequency of local-
field potentials in the basal-ganglia during FoG, however, comprehensive research on the
synchronization between different brain locations and frequency bands in PD patients is
scarce. Here, by developing tools based on network science and non-linear dynamics, we
analyze synchronization networks of electroencephalography (EEG) brain waves of three PD
patient groups with different FoG severity. We find higher EEG amplitude synchronization
(stronger network links) between different brain locations as PD and FoG severity increase.
These results are consistent across frequency bands (theta, alpha, beta, gamma) and inde-
pendent of the specific motor task (walking, still standing, hand tapping) suggesting that an
increase in severity of PD and FoG is associated with stronger EEG networks over a broad
range of brain frequencies. This observation of a direct relationship of PD/FoG severity with
overall EEG synchronization together with our proposed EEG synchronization network
approach may be used for evaluating FoG propensity and help to gain further insight into PD
and the pathophysiology leading to FoG.
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disorder with numerous non-motor and motor-related

symptoms including tremor at rest, rigidity, akinesia (or
bradykinesia), and postural instability!. In addition, freezing of
gait (FoG)—a form of akinesia that manifests itself by the
inability to generate effective forward stepping—is common
among patients in the advanced stages of the disease?. FoG is a
significant risk factor for falls and injuries® and, therefore, is
considered one of the most disabling symptoms of PD having
severe consequences to the patients’ quality of life. It is important
to note that freezing is not a universal PD phenomenon as it
occurs in just about half of PD patients®> and is less frequent in
women and patients with pronounced tremor®.

Previous research on PD-related movement disorders has
focused on the analysis of data characterizing gait and limb
dynamics or locomotion’~11, as well as electromyography (EMG)
activation of lower limb muscles®. Additionally, in the context of
freezing, FoG-related changes in physiological signals such as
electrocardiography'2, galvanic skin responsel3, and electro-
encephalography (EEG)'4-17) have been reported. These signals,
which measure certain cortical, mental, spinal, motor, and auto-
nomic nervous system functions presumably interact with each
other as a network to generate physiologic function!8-20. A few
particular network interactions have recently been studied in PD
patients. For example, it has been shown that EMG-EEG coupling
increases at the beginning of intentional stops and FoG
episodes?!, and that during locomotion, EEG synchronization
between brain hemispheres is significantly higher in PD patients
compared to elderly controls?2.

Functional interactions in the brain became a main field of
interdisciplinary research in recent years?3, and brain networks
have been identified based on various signals obtained from, for
example, magnetic resonance imaging (MRI), positron emission
tomography (PET), magnetoencephalography (MEG) and EEG?%.
By applying methods of modern network science, the normal
brain has been characterized as a hierarchical, modular network
with high clustering, short path length, and a ‘backbone’ of highly
connected network nodes (“hubs”)2425. Consequently, deviations
from the “normal brain network” have been associated with
disease and neurological disorders9, yet, findings regarding basic
network properties remain controversial?4. This may be in part
due to the different signals and methods of analysis used in the
studies and whether weighted or unweighted networks were
considered. Another limiting factor is the lack of a generally
accepted approach for defining thresholds and applying surrogate
and normalization techniques to control for spurious network
links that do not reflect real interactions.

In this paper, we develop a new network approach based on
synchronization and cross-modulation analysis that can system-
atically distinguish between significant and non-significant
interactions in brain activity. While there are a few studies on
brain networks in PD based on fMRI and MEG data, which have
been performed during a specific motor task (e.g., finger tapping)
or resting state?’-2%, our work is first in studying EEG synchro-
nization networks during locomotion. Up until recently, such
research was hampered by intrinsic movement artifacts in the
EEG data but we and others have developed methods to remove
any such non-physiological information (see, e.g., 30-31),

Among the first studies of EEG brain dynamics during FoG has
been the work by Shine et al.!4, who reported higher theta band
power and theta frequency coupling within frontal and central
electrodes while transitioning from normal walking to FoG dur-
ing up-and-go tasks. In follow-up studies by the same group,
Handojoseno et al.!> have shown that also beta and gamma
coupling increases during FoG, and that for turn-triggered FoG,
beta and theta power is enlarged predominantly in the occipital

P arkinson’s disease (PD) is a progressive neurodegenerative

and parietal areas!®!”. Based on these findings, in our present
study, we hypothesize that PD+FoG patients have higher EEG
coupling also during normal walking as compared to elderly
controls and PD-FoG patients, and that increased EEG con-
nectivity is observed across all physiologically-relevant frequency
bands. In order to measure EEG connectivity among different
channels, we apply phase synchronization analysis, which is a
well-established method to quantify interactions between com-
plex dynamical systems with oscillating behavior32-34, and it has
been applied to identify coupling between various physiological
systems”3°>~42, However, various factors related to the properties
of the analyzed signals, external and intrinsic noise, and data pre-
processing procedures can lead to spurious detection of phase
synchronization®3. In order to discriminate between such spur-
ious network links and real network interactions, we introduce a
novel significance measure that weights maximum synchroniza-
tion against background noise.

Applying our method on multi-channel EEG data recorded
from different groups of PD patients and healthy elderly controls
during overground walking experiments, we construct brain net-
works using the property of network synchronizability, where link
strengths directly correspond to the degree of phase synchroni-
zation between brain-wave amplitudes from different network
nodes (i.e, EEG channels or brain lobes)*!. Investigating sys-
tematically all links in the brain, we show that brain networks are
most pronounced, on the level of the whole cortex, in PD patients
with the highest disease severity. This increased synchronization
is independent of EEG frequency as we find it to be consistent
across all physiologically relevant brain waves. Of particular
interest is our result that PD+FoG patients, who did not show
freezing of gait during our experiments (therefore labeled
‘PD+FoG™’), have significantly lower brain network synchroni-
zation than PD+FoG patients who did show FoG episodes during
the experiments (‘PD+FoG™ patients). Moreover, since EEG
synchronization networks of PD+FoG™~ patients are more similar
to non-freezers (‘PD-FoG’), our results suggest that FoG pro-
pensity may change on a daily/hourly basis. Our approach may
thus be applicable to PD monitoring and treatment selection, as
well as can help in evaluating the severeness of the disease.

Results

We calculate two kinds of interaction matrices based on (i) the
synchronization index R between all combinations of instanta-
neous amplitude signals j; and j, (see Figs. 1 and 2a for a—«a
interaction), and (ii) the fraction of significant vs. non- significant
interactions (“links”) based on the detected * and W values
(Fig. 2(b)). More specifically, for the “fraction” matrix y we set the
matrix element y; . =1, if the corresponding j; — j, 1nteract10n
in a given segment of length L is s1gn1ﬁcant (ie, 7" €[-0.05,
0.05] seconds and W > 2.5), otherwise X, =0 The averaging
across all normal walking segments v and across the brain lobes is
performed in the same way as for the synchronization matrix R
(cp. Fig. 1). The resulting R and y matrices for each subject are
then multiplied element-wise to obtain the total brain lobe
interaction matrix R x y (Fig. 2c).

The brain lobe interaction matrix represents an adjacency matrix
of the underlying physiological network with brain lobes as network
nodes and the matrix elements as weighted network links. We
obtain these interaction matrices and networks separately for each of
the five defined frequency bands (excluding the § band), adjusting
the segment length L accordingly (see Table 1). The resulting brain
lobe interaction matrices are averaged over all the participants in
each of the four study groups EC, PD-FoG, PD+FoG~, PD+FoG*
to construct their group-averaged networks for all frequency bands
(Fig. 3).
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Fig. 1 Construction of brain wave synchronization matrices based on EEG electrode position. a Data were recorded by a 32-channel EEG montage
according to the international 10—20 standard system (the four midline electrodes Fz, Cz, Pz, Oz, and the two reference electrodes M1 and M2 were
excluded from the analysis). Electrodes were grouped according to different brain lobes (as indicated by the dashed lines): frontal motor left—FML
(including electrodes FP1, F7, F3, FC5, and C3); frontal motor right—FMR (FP2, F8, F4, FC6, and C4); temporal left—TL (FT9, T3, TP9, and T5); temporal
right—TR (FT10, T4, TP10, and T6); parietal occipital left—POL (CP5, P3, O1, and PO9); and parietal occipital right—POR (CP6, P4, O2, and PO10).

b Matrix of the averaged synchronization indexes (Rf“jz)y for all combinations of a-amplitude signals j; and j, from all 26 electrodes of a single PD+FoG+
subject. Averaging was done over all normal walking segments v. Note that we exclude electrodes with high impedance or high standard deviations from
our analysis (e.g., the two dark blue lines in panel (b) corresponding to electrode CP6). ¢ The matrix elements of panel (b) are averaged according to the
definition of brain lobes shown in (a) to obtain a brain wave synchronization matrix. Matrix elements that correspond to the same electrode interaction

(i.e., the diagonal elements in (b)) have been excluded from the average.

Our results for the & band shown in Fig. 2 demonstrate that PD
patients show stronger brain lobe interactions than elderly con-
trols (EC). In addition, the interactions increase with disease
severity from PD-FoG to PD+FoG~ and to PD+FoGt for all
intra-lobe and inter-lobe links (Fig. 2c). This overall increase is
because of two factors: (i) higher levels of phase synchronization
(PS) of EEG amplitude—amplitude modulations for PD patients
(Fig. 2a), and (ii) brain lobe interactions are more pronounced in
PD patients than in EC (Fig. 2b). The increase is consistent across
all intra-lobe and inter-lobe interactions, since the PD+FoG™
group always yields the largest R x x in the rank distribution in
Fig. 4, while the EC group always yields the smallest R x y. Note
that for the PD+FoG™ and the EC group, the error bars calcu-
lated by a bootstrap approach never overlap. The values for the
PD-FoG and PD+FoG~ groups always fall in between the
PD+FoGt and the EC group, with the PD+FoG~ group gen-
erally scoring above the PD-FoG group.

Furthermore, for all groups of subjects, the interactions within
the same lobe are strongest and more significant, as can be seen in
Fig. 2, where the diagonal elements of all matrices show the
highest values. Correspondingly, in the rank distributions in
Fig. 4, the first six ranks belong to intra-lobe interactions. Inter-
lobe interaction (ie., the coupling between different lobes) is
consistently weaker than intra-lobe interaction, and depends on
whether lobes belong to the same brain hemisphere (higher
coupling strength) or different hemispheres. For example, cou-
pling between FML—POL (same hemisphere) is stronger than
POL—POR coupling (different hemispheres) across all groups
(Fig. 4).

Several EEG frequency bands have been shown to be affected
by Parkinson’s disease (PD) and in particular by freezing of gait
(FoG)!4-17. Therefore, we repeated our analyses and obtained
results also for other physiologically-relevant frequency bands
ranging from low-frequency 6 to high-frequency I' waves. Com-
paring the brain lobe interaction networks for all five considered
EEG bands in Fig. 3, we observe a very consistent pattern across
all bands. In all cases, intra-lobe amplitude synchronizations (blue
nodes) are weakest for the EC group and strongest for the
PD+FoG™ group and inter-lobe amplitude synchronization (gray
links) follow the same pattern. The differences between the

PD+FoG~ and PD+FoG* groups, ie., PD patients with FoG
symptoms who did not show and patients who did show FoG
during our experiments, are most pronounced for the higher
frequency bands (i.e., 3, y and I Fig. 3). Particular noteworthy is
the observation that for the PD+FoG™ group, synchronization
between the frontal motor lobes (FML-FMR link) in the y and T
frequency bands becomes stronger than most other intra-
hemisphere interactions (Fig. 3 and cp. Supplementary
Figs. S1—S54). Overall, these results indicate that the PD-related
increase in EEG amplitude synchronization occurs across all
frequency bands and is directly correlated to disease severity.

The observed increase in EEG amplitude synchronization with
PD is not only present during locomotion but also shows for
other motor tasks. Figure 5 depicts results of intra-lobe interac-
tion of the frontal motor lobe (FMR-FMR and FML-FML) for
each individual performing the normal walking part of the
experiments as well as standing still and hand tapping. There is a
general trend to higher EEG synchronization values for sicker
individuals and the strength of brain interactions are highly
correlated between the different motor tasks.

Discussion and conclusion
We analyzed EEG data from three PD groups with increasing
levels of disease severity and one group of age-matched elderly
controls. We focused on the “normal walking” state and other
non-locomotor tasks and identified EEG amplitude synchroni-
zation networks of same-band frequency interactions after dis-
tinguishing between physiological and spurious synchronization.
The degree of synchronization (strength of network links) in EEG
amplitudes shows a dramatic increase for PD patients in more
advanced stages of the disease. We also found that EEG ampli-
tude synchronization is similar in PD-FoG and PD+FoG~
although both groups are generally quite different in clinical
terms. This finding indicates that FoG risk can change on a daily
basis where cortical areas switch between ‘prone-to-FoG’ vs. non-
FoG states, and that this process could be monitored by EEG
synchronization networks.

Our results are independent of EEG frequency and consistent
across all studied bands from low-frequency 6 to high-frequency
I' waves. While previous studies have reported alterations in
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Fig. 2 Brain lobe interaction matrix calculated from synchronization and fraction matrix. Element-wise multiplication of a synchronization matrix R and b
fraction matrix y yields ¢ the total brain lobe interaction matrix R x y that is used as the adjacency matrix of the underlying physiological network of brain
lobe interactions (Fig. 3). In this figure, all matrices are derived for a—a interactions during normal walking epochs. Group average matrices for EC, PD-FoG,
PD+FoG~ and PD+FoG* (from top to bottom) are shown. Note, there is a dramatic increase in brain lobe interaction with the severity of Parkinson's
disease which is represented by (i) higher levels of a—a synchronization, as well as (ii) higher fractions of significant interactions.

Table 1 EEG frequency bands and number of analyzed
segments for each group and frequency band.

EEG band frequency [Hz] L [sec] EC PD- PD PD
FoG  +FoG~ +FoG™

) 0.5-3.99 15 63 36 n 16

0 4-7.79 5 445 291 19 193

a 7.8—15.59 3 819 538 235 399

p 15.6—31.19 15 1764 1182 510 903

4 40—-62.39 1 2726 1805 783 1397

r 62.4—90 0.5 5567 3710 1611 2897

The segment length L in which the synchronization index R is calculated depends on the
analyzed EEG frequency band. L is chosen so that about 10—15 amplitude oscillations are
present in each window. Naturally, the number of available windows increases with higher
frequencies. For our analyses, we select only windows recorded during normal walking that do
not contain stops, FoG episodes, or FoG triggers. We excluded the §-band interactions from the
following analyses because of insufficient statistics (<100 available segments).

particular brain waves in PD patients during FoG!744-46, our

observations of normal walking in PD+FoG patients show that
EEG amplitude synchronization increases similarly for all fre-
quency bands. This overall increase in EEG synchronization for
advanced PD is analogous to findings in patients with

Alzheimer’s disease, where increased brain activity was related to
a compensation mechanism due to the process of
neurodegeneration?’. In this context, higher brain wave syn-
chronization and increased connectivity of EEG amplitude syn-
chronization networks may be a precursor of FoG, and our
analysis method could help to monitor treatment to alleviate or
eliminate FoG events thereby reducing possible injuries due to
falls and improve the overall life quality of PD+FoG patients.
Parkinson’s disease is characterized by a reduction of dopa-
minergic neuronal input to the basal ganglia-cortical
networks#849, It has been shown that cortical activity as expres-
sed in EEG signals is associated with the activity of the sub-
thalamic nucleus (STN)®0-%2, for example, as reflected in the
presence of simultaneous hyper EEG activity, specifically in the
motor areas®>>*. We hypothesize that increased inter-regional
cortical phase-synchronization (PS) leading to stronger EEG
coupling networks is an outcome of the variability in the sub-
cortical input to different areas in the cortex which arises from
the non-uniform impact of the dopaminergic depletion. Perhaps,
as a ‘compensation’ to the non-coordinated input to the cortex,
the cortical regions increase their synchronization. This hypoth-
esis is supported by previous evidence that asymmetrical deple-
tion of dopamine resulted in a longitudinal development of bi-
cortical synchronization particularly in the motor areas>—>7,
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Fig. 3 Physiological networks of brain lobe interactions for different EEG frequency bands. The brain lobe interaction matrices R x y are used to
construct physiological networks for each frequency band and for each group during normal walking (cp. Fig. 2c for a—a interactions for all four groups).
Network nodes correspond to the six brain lobes and the color-coding of the nodes is according to the intra-lobe interaction values obtained from the
diagonal matrix elements of the lobe-averaged R x y matrices. Weighted network links reflect inter-lobe interaction as given by the value of the non-
diagonal matrix elements, and darker gray color and thicker lines represent stronger interactions. Subjects with Parkinson’s disease (PD) generally exhibit
higher levels of brain lobe interactions, and the highest values are observed for PD-+FoG™ consistently across all EEG frequency bands.

which in the present study is expressed by FMR—FML hyper
synchronization. Moreover, our hypothesis could be tested in
future studies, for example, by investigating the effect of the
dopaminergic medications on inter-regional network PS and by
comparing EEG networks during OFF and ON conditions. If
indeed confirmed, EEG network synchronization might become a
clinically relevant tool to monitor and evaluate medication intake
effects for PD patients. The present findings point to the possi-
bility that persons with PD who suffer from the FoG symptom
exhibit increased inter-regional network PS. However, as the
pathophysiology of FoG is largely unknown? it is not clear
whether the potentially FoG-associated hyper synchronization is
consequential or causal to the symptom. Nonetheless, the
increased PS among this subgroup of persons with PD implies
that a more severe disease symptomatology leads to higher values
for the EEG network synchronization.

A limitation of the present study is the relatively small number
of participants in each of the study groups, which limits the

external validity of the present findings and warrants future
confirmation with larger groups of participants. It is also
important to note that in the present sample, scores on the
UPDRS-Part III scale are relatively low (see Table 2), particularly
for persons with PD who suffer from FoG in their OFF state (see,
e.g.,”%%9). Future research should address whether the severity of
motor impairments in PD as expressed by the UPDRS-III scores
are reflected by the level of inter-regional cortical PS. Distin-
guishing PD patients particularly through the occurrence or
absence of FoG, the present results indicate that inter-regional
cortical PS is higher in those who suffer from FoG as compared to
those who do not. Interestingly, it appears that cortical PS can be
considered as a marker of FoG intermittent risk, as those who
exhibited FoG episodes during the experimental session showed
higher PS as compared to freezers who were spared from the
symptom in that particular time.

As more EEG data recorded during gait in PD patients and in
particular during FoG epochs become available, future work could
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Fig. 4 Rank distributions for the strength of brain lobe interactions. Group-averaged values of individual brain lobe a—a interactions (i.e., 21 matrix
elements of the upper triangular part of the matrices in Fig. 2¢) for the different groups of subjects. The ranking follows the values of the PD+FoG™ group.
Ranks 1 and 2 correspond to interactions within the frontal motor areas (FMR—FMR and FML—FML) that are strongest for all groups. Note that values of
each R x y matrix element are consistently highest for PD+FoG™ and lowest for EC, with PD-FoG and PD+FoG~ falling in-between. Symbols and error bars
represent the group means and standard error, respectively. Error bars have been calculated using a bootstrap method?©.

combine machine learning together with network analysis tools to
automatically detect and perhaps even predict FoG. On the other
hand, combining EEG interaction networks (high temporal reso-
lution) with fMRI studies (high spatial resolution) can reveal
important network features mapped onto brain areas that play role
in freezing events. Our method of defining and analyzing EEG
synchronization networks can be used as a new metric for such
combined EEG-fMRI studies.

Methods

Data recording and preprocessing. Data from participants with Parkinson’s
disease (PD) and from healthy elderly controls (EC) were recorded at the Center of
Advanced Technologies in Rehabilitation (CATR) at the Chaim Sheba Medical
Center at Tel HaShomer, Israel. Inclusion criteria for PD participants were: age >50
yrs, diagnosis of idiopathic PD®, current levodopa treatment, ability to walk
unassisted and without pain for at least 100 m, being able to understand and
perform verbal instructions. Exclusion criteria were: the presence of significant co-
morbidities and major orthopedic problems. PD participants were examined in the
OFF state, i.e., at least 12 h after the last intake of anti-Parkinsonian medication.
The study protocol was approved by the Institutional Review Board (IRB) of Sheba
Medical Center, and participants gave written informed consent prior to the study.

All participants performed gait trials during which they were exposed to “FoG
triggers”, i.e., walking circumstances that are likely to invoke FoG among patients
with PD who suffer from the FoG symptom8. Specifically, those conditions
included (i) walking back and forth in a 12 m long and 2.5 m wide corridor
performing 180° turns at the ends of the corridor, (ii) figure-eight task—
continuously walking for 5 min in a figure-of-eight trajectory between two cones
that were 2.5 m apart from each other, and (iii) narrow passage task—walking
through a 0.5 m wide passage between cone and wall. Occasionally, the participants
were instructed to stop walking (“commanded stops”) to provide a controlled
condition in contrast to the unintended FoG episodes. Overall, the participants
walked for 15—20 min with short breaks for rest.

Surface electroencephalogram (EEG) has been recorded by a portable system
(Micromed, Mogliano Veneto, Italy) consisting of a 32-channel montage using the
international 10—20 electrode placement scheme. The data were annotated by post hoc
analysis of video files recorded during the gait trials. Data slices were sorted according to
motion type (walking, FoG, commanded stops). To separate regular walking from FoG
episodes, a set of predetermined standardized and performance-based criteria was used,
as previously described”. For more details on FoG annotation of this database, see
ref. 22, Additionally, after completing the walking trials, participants performed
reference tasks of standing still and hand tapping with their palms by standing in front

of an elevated table. For at least one minute duration each, participants engaged in
alternating hand tapping and simultaneous hand tapping.

We analyzed the EEG data of four groups of subjects: (i) patients with Parkinson’s
disease (PD) that never had FoG episodes (PD-FoG; n = 6); (ii) PD patients that
usually show FoG but did not have an episode of FoG during this study (PD+FoG™;
n=4); (iii) PD patients with FoG episodes during this study (PD+FoG™; n = 4); and
(iv) healthy elderly controls (EC; n =8). Among the PD+FoG™ group, 81 FoG
episodes were observed (mean + stdev = 17.8 + 8.1 per patient—for details on FoG
episodes and triggers for each PD+FoG* patient, see Table S1 in Supplementary
Information). All groups are age-matched; however, subjects were not age-matched on
an individual level; for demographic and clinical parameters of the study groups, see
Table 2. We note that gait speed was not significantly different between the groups;
however, the PD-+FoG™ group had a significantly shorter total walking time as
compared to the other groups (for more details, see Table S2 in Supplementary
Information).

EEG data were preprocessed using EEGLABC!. For each gait task and each
participant, data preprocessing steps included: (i) omitting data from electrodes
with high impedance (>10kQ) and high standard deviation®?; (ii) data down-
sampling from 2048 to 256 Hz; (iii) basic finite impulse response high-pass filtering
with a threshold of 0.1 Hz; (iv) applying an independent component analysis (ICA)
(‘runica’ implementation)®? for the removal of eye movements and general
movement artifacts. The ICA algorithm exploits the fact that several EEG
electrodes are affected by the same artifacts, in particular movement artifacts. This
common source is identified by the algorithm, and its relative contribution to each
electrode is subtracted. Using component activation, power spectra, and maps, the
different components were visually inspected, and a minimal number of
components (2 or 3) has been removed. We have developed this pre-processing
pipeline prior to this study while investigating how different kinds of movements
and gait speeds affect EEG, which artifact types are encountered, and what
techniques could be used to ‘clean’ EEG data without removing relevant
physiological information (for more details, see ref. 3!). In agreement with earlier
studies30:6465, we found that the regular ICA approach (“runica” or “AMICA”) is
sufficient and appropriate for movement artifact removal in EEG data for normal
walking speeds and even light jogging (at speed 2.2 m/s). A comparison with other
methods of EEG artifact removal (e.g., Automatic subspace reconstruction (ASR)®®
yielded comparable results.

The preprocessed EEG data for each channel have been used to extract
characteristic “brain wave” signals via bandpass filtering in the following six
frequency bands: & [0.5—3.99 Hz], 0 [4—7.79 Hz], « [7.8—15.59 Hz], 8
[15.6—31.19 Hz], low and high gamma with y [40—62.39 Hz] and I [62.4—90 Hz],
respectively. We obtain a total of 192 signals Si(t), j =1, ..., 192, six frequency-
component signals for 32 EEG channels. Signals from the four midline electrodes
(Fz, Cz, Pz, Oz)), as well as the mastoid electrodes M1 and M2, were excluded from
the following analysis (see Fig. 1a).
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Fig. 5 Intra-lobe brain interactions in the frontal motor lobe for the individual subjects performing different motor tasks. a Symbols represent the

average values of FMR—FMR and FML—FML a-band interactions as derived from the R x y matrix during normal walking (blue squares), standing still

(green diamonds), and hand tapping (red circles). Values for each task are arranged in columns and each symbol represents an individual subject. The
different groups are marked by different background shadings. Fitting lines highlight the trend towards higher brain lobe interactions for subjects with PD
and FoG, which is seen across all three motor tasks. b Scatter plots show strong cross-correlations between the different motor tasks and confirm the
observation of an increase of brain interactions with PD severity. The colors of the symbols correspond to the background shadings in (a) for patients
belonging to different groups. Pearson’s correlation coefficients p are highly significant (p <10~3) and are shown in the upper left corner of each subplot.
The insets confirm the significance of the results by surrogate analysis (i.e., shuffling the number tuples of the subjects by n iterations, with n = 0 being the

original un-shuffled tuple series).

Table 2 Demographic and clinical data of the study groups.

Group EC PD-FoG PD-+FoG— PD-+FoG™*
f/m 5/3 3/3 0/4 0/4

Age [y] 63.0+85 69.8+8.1 66.0+83 66.6+8.8
BMI 251+£31 26.0+4.2 26.0£23 265+6.7
Disease duration N/A 10.2+£4.7 8.0+44 12.8+5.6

L-dopa equivalent

daily dose N/A 872 +253 1250 £ 230 1448 £ 24
(LEDD) [mg]

MoCA 258+23 231+58 215+31 227+22

UPDRS-Motor

score (Part Ill) N/A 15.5+6.9 20.0+£82 16.5+£4.7

Elderly controls (EC), participants with Parkinson's disease that do not show freezing of gait
(PD-FoG), participants with Parkinson’s disease that usually have FoG but did not show it during
the experiment (PD+FoG™), and participants with Parkinson’s disease and FoG during the
experiment (PD+FoG™). Gender f/m female/male, BMI body mass index (in kg/m2), MoCA
Montreal Cognitive Assessment’!, UPDRS Unified Parkinson’s Disease Rating Scale’2. Reported
are means and standard deviations; the differences between the groups are not significant,
except for gender, and LEDD between PD-FoG and PD+FoG*. We note that LEDD was not
available for all subjects.

Phase synchronization of EEG amplitudes. In the first step of our data analysis
procedure based on?!, for each signal S/(t), we construct the analytic signal &(£)°7:8 by

E(t) = Si(t) + S (t) = A/(1) explig (1)), (¢

in order to obtain the instantaneous amplitude A/(f) and instantaneous phase ¢i(t)

(i = imaginary unit; () is the Hilbert transform of Si(#)). Then, by constructing the
analytic signal of A(t) — (Al(t)) L» We obtain the instantaneous phase ¢/(f) of the
amplitude signal (cp. Fig. 6a—d). Here, (A/(t)), denotes the average over time win-
dows of L seconds. We note that the length L of each segment is chosen according to
the analyzed frequency band in order to ensure that about 10—15 amplitude oscil-
lations are present in each segment in order to obtain meaningful synchronization
results (see Table 1 and Fig. 6a—d). Based on this consideration, we removed J-band
interactions from the following analyses because of insufficient statistics (<100
available segments). We also note that for the subsequent analyses we select only
windows recorded during normal walking that do not contain stops, FoG episodes, or
FoG triggers.

We quantify phase synchronization in the amplitude-amplitude modulations
for different signals j, and j,, by calculating the phase differences ¢/ (£) — ¢ (t) and
average their complex exponentials over segments v of length L to obtain the
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Fig. 6 Phase synchronization of amplitude-amplitude modulations and surrogate analysis to identify significant interactions. Two pairs of a frequency-
band signals (blue curves in (a)—(c) and (b)—(d)) from different EEG electrodes were obtained by applying a [7.8—15.59 Hz] bandpass-filter to the
preprocessed EEG data. The black curves in each of these panels are the corresponding instantaneous amplitudes calculated by the analytic signal
approach, Eqg. (1). Red dashed lines are the corresponding averages (Aj(t))L subtracted when applying the analytic signal approach to derive phases of these
instantaneous amplitudes. e Phase differences of the instantaneous amplitudes of (a)—(c) are clustered on the unit circle leading to a high synchronization
index of R=0.85 (Eq. (2)). In contrast, the signals in (b)—(d) are less synchronized as can be seen in (f), where the corresponding phase differences are
distributed on the unit circle yielding a low index of R=0.38. g, h Phase synchronization index R as a function of the shift  between the instantaneous
amplitude signals (a) vs. (¢) and (b) vs. (d), respectively. The phase synchronized amplitude signals from (a) and (c) yield a maximum R at shift

™ = TlR(r)ERmx =0, and R(z) decays rapidly for |z] > 0. For the much lower synchronized signals from (b) and (d), however, R(z) shows fluctuating
behavior without clear decay. A significance value W characterizes R(z) by normalizing R, by the mean and standard deviation of R(z) (Eq. (3)).
Correspondingly, we obtain a higher W value for panel (g) (W =5.2) than for panel (h) (W =1.6). We utilize W to characterize the significance of the
interaction between two signals. Panel (i) indicates that the highest W values are observed for t” & 0. In this scatter plot we show 1000 a—a samples of W
vs. 7 for real data (blue circles) and surrogate data (red dots). Real signals are taken from the same patient (using different EEG electrodes), whereas
surrogate pairs were chosen randomly from different patients. Clearly, higher W values are obtained for real signals for ="~ 0. The surrogate analysis does
not lead to high W values around "=~ 0 and shows a uniform W vs. 7" distribution.

synchronization index33 will have values closer to 1 (cp. Fig. 6e, f). We calculate the synchronization index R
. . ; between signals of the same frequency stemming from different EEG electrodes.
RVE () = [{expli(¢" (1) — ¢= (O], |- @
In general, R will be small (closer to 0) if the two amplitude signals are not
phase-synchronized, i.e., their phase differences are random and their complex Probing significant interactions in amplitude synchronization. In order to
exponentials do not show clustering on the unit circle. In case of a consistent phase  distinguish significant from non-significant interactions between signals j; and j,,
synchronization of the signals’ amplitudes (“amplitude cross-modulation™!), R we study how their amplitude-phase synchronization index R decays when shifting
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the signals against each other. Panels (g) and (h) in Fig. 6 show examples of R
versus the time shift 7 and suggest that more synchronized signals (with higher R
values) have a marked decay of R(7) (panel (g)) that may not be seen for less
synchronized signals (panel (h)). To quantify this observation, we define a sig-
nificance value W that normalizes the maximum phase synchronization index R, ,,
(detected at a particular time shift 7°) by the “background noise” characterized by
the mean and standard deviation of R(7). Colloquially, W gives an estimate of how
much R, “stands out” from the noise background. It can be defined by
W = Rmax - <R(T)>

a(R(7))
where (R(7)) (6(R(7))) is the mean (standard deviation) of R(7) in the time window
T€[—L/2, L/2]. From Eq. (3) one can see that W quantifies how many standard
deviations R, is above noise level. Thus, the larger R, is compared to the
background, the higher is W, indicating a more significant coupling between sig-
nals j; and j,. On the other hand, if R, does not stand out from the R(r)
background, W is low implying a non-significant j; — j, interaction. Fig. 6i shows
results obtained from 1000 pairs of a-amplitude signals, where each pair of signals
is either taken from the same subject (“real” data) or from different subjects
(“surrogate” data). It can be seen from the figure that high W values obtained for
the real data are usually detected for small shifts 7", which is consistent with the
fact that brain waves generally propagate rather quickly®®. However, for the sur-
rogate data, there is no particular clustering of high W values at any 7", and W vs.
7" is uniformly distributed. Thus, we consider j,—j, interactions only as significant
if 7° € [—0.05, 0.05] seconds and W > 2.5. These values were chosen so that only
about 1.5% of the surrogate data fulfill this condition.

, (€)

Bootstrapping approach. Bootstrapping is a resampling method to determine
measures of accuracy (e.g., variance, standard error, confidence intervals) by cal-
culating estimators of the underlying distribution function from the data sample”°.
In particular, random sampling with replacement is used to simulate the sampling
process. For Fig. 4, we calculate the error bars by the following procedure: out of all
values of a particular matrix element (as shown in Fig. 2c), a new set of values is
randomly drawn and for each sample the unweighted mean is calculated. This
process is repeated 100 times and the standard deviation of the obtained means is
an estimate for the standard error’?.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

We utilize de-identified multi-channel EEG recordings that were obtained from
participants with Parkinson’s disease (PD) and from healthy elderly controls (EC) at the
Center of Advanced Technologies in Rehabilitation (CATR) at the Chaim Sheba Medical
Center at Tel HaShomer, Israel. Data can be obtained upon reasonable request by
contacting the corresponding authors.

Code availability

For data analyses standard MATLAB subroutines (spectral power, window averaging,
phase synchronization analysis) are used in a particular order as explained in the
Methods section of the paper.

Received: 8 January 2021; Accepted: 9 August 2021;
Published online: 30 August 2021

References

1. Jankovic, J. Parkinson’s disease: clinical features and diagnosis. J. Neurol.,
Neurosurg. Psychiatry 79, 368-376 (2008).

2. Giladi, N. et al. Freezing of gait in PD: prospective assessment in the
DATATOP cohort. Neurology 56, 1712-1721 (2001).

3. Nieuwboer, A. et al. Electromyographic profiles of gait prior to onset of freezing
episodes in patients with Parkinson’s disease. Brain 127, 1650-1660 (2004).

4. Nutt, J. et al. Freezing of gait: moving forward on a mysterious clinical
phenomenon. Lancet Neurol. 10, 734-744 (2011).

5. Schaafsma, J. et al. Characterization of freezing of gait subtypes and the
response of each to levodopa in Parkinson’s disease. Eur. J. Neurol. 10,
391-398 (2003).

6. Macht, M. et al. Predictors of freezing in Parkinson’s disease: a survey of 6,620
patients. Mov. Disord. 22, 953-956 (2007).

7.  Abe, K. et al. Classifying lower limb dynamics in Parkinson’s disease. Brain
Res. Bull. 61, 219-226 (2003).

8. Hausdorff, J. M. et al. Impaired regulation of stride variability in Parkinson’s
disease subjects with freezing of gait. Exp. Brain Res. 149, 187-194 (2003).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

Bartsch, R. et al. Fluctuation and synchronization of gait intervals and gait
force profiles distinguish stages of Parkinson’s disease. Physica A 383, 455-465
(2007).

Dietz, V. & Michel, J. Locomotion in Parkinson’s disease: neuronal coupling of
upper and lower limbs. Brain 131, 3421-3431 (2008).

Bichlin, M. et al. Wearable assistant for Parkinson’s disease patients with the
freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 14, 436-446
(2010).

Maidan, I et al. Heart rate changes during freezing of gait in patients with
Parkinson’s disease. Mov. Disord. 25, 2346-2354 (2010).

Mazilu, S. et al. Prediction of freezing of gait in Parkinson’s from physiological
wearables: an exploratory study. IEEE J. Biomed. Health Inform. 19,
1843-1854 (2015).

Shine, J. et al. Abnormal patterns of theta frequency oscillations during the
temporal evolution of freezing of gait in Parkinson’s disease. Clin.
Neurophysiol. 125, 569-576 (2014).

Handojoseno, A. M. A. et al. Analysis and prediction of the freezing of gait
using EEG brain dynamics. IEEE Trans. Neural Syst. Rehabilitation Eng. 23,
887-896 (2015).

Handojoseno, A. M. A. et al. An EEG study of turning freeze in Parkinson’s
disease patients: the alteration of brain dynamic on the motor and visual
cortex. In 37th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), 6618-6621 (IEEE, 2015).

Ly, Q. T. et al. Detection of turning freeze in Parkinson’s disease based on
s-transform decomposition of EEG signals. In Engineering in Medicine and
Biology Society (EMBC), 39th Annual International Conference of the IEEE,
3044-3047 (IEEE, 2017).

Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S. & Ivanov, P. C.
Network physiology reveals relations between network topology and
physiological function. Nat. Commun. 3, 702 (2012).

Bartsch, R. P., Liu, K. K. L., Bashan, A. & Ivanov, P. C. Network physiology:
How organ systems dynamically interact. PLoS One 10, e0142143 (2015).
Ivanov, P. C, Liu, K. K. L. & Bartsch, R. P. Focus on the emerging new fields
of network physiology and network medicine. New J. Phys. 18, 100201
(2016).

Giinther, M. et al. Coupling between leg muscle activation and EEG during
normal walking, intentional stops, and freezing of gait in Parkinson’s disease.
Front. Physiol. 10, 870 (2019).

Miron-Shahar, Y. et al. Excessive phase synchronization in cortical activation
during locomotion in persons with Parkinson’s disease. Parkinsonism Relat.
Disord. 65, 210-216 (2019).

Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis
of structural and functional systems. Nat. Rev. Neurosci. 10, 186-198 (2009).
Stam, C. J. Modern network science of neurological disorders. Nat. Rev.
Neurosci. 15, 683-695 (2014).

Gallos, L. K., Makse, H. A. & Sigman, M. A small-world of weak ties provides
optimal global integration of self-similar modules in functional brain
networks. Proc. Natl Acad. Sci. USA 109, 2825 (2012).

Bassett, D. S. & Bullmore, E. T. Human brain networks in health and disease.
Curr. Opin. Neurol. 22, 340-347 (2009).

Skidmore, F. et al. Connectivity brain networks based on wavelet correlation
analysis in Parkinson fMRI data. Neurosci. Lett. 499, 47-51 (2011).

Olde Dubbelink, K. T. E. et al. Disrupted brain network topology in
Parkinson’s disease: a longitudinal magnetoencephalography study. Brain 137,
197-207 (2014).

Baggio, H.-C. et al. Functional brain networks and cognitive deficits in
Parkinson’s disease. Hum. Brain Mapp. 35, 4620-4634 (2014).

Gwin, J. T., Gramann, K., Makeig, S. & Ferris, D. P. Electrocortical activity is
coupled to gait cycle phase during treadmill walking. NeuroImage 54, 1289 —
1296 (2011).

Arad, E., Bartsch, R. P., Kantelhardt, ]. W. & Plotnik, M. Performance-based
approach for movement artifact removal from electroencephalographic data
recorded during locomotion. PLoS One 13, 0197153 (2018).

Rosenblum, M. G., Pikovsky, A. S. & Kurths, J. Phase synchronization of
chaotic oscillators. Phys. Rev. Lett. 76, 1804-1807 (1996).

Rosenblum, M., Pikovsky, A., Kurths, J., Schifer, C. & Tass, P. A. in Handbook
of Biological Physics, Vol. 4, 279-321 (Elsevier, 2001).

Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. & Zhou, C. The
synchronization of chaotic systems. Phys. Rep. 366, 1-101 (2002).

Tass, P. et al. Detection of n:m phase locking from noisy data: application to
magnetoencephalography. Phys. Rev. Lett. 81, 3291-3294 (1998).

Schifer, C., Rosenblum, M. G., Kurths, J. & Abel, H. H. Heartbeat
synchronized with ventilation. Nature 392, 239-240 (1998).

Zebrowski, J. . et al. Nonlinear oscillator model reproducing various
phenomena in the dynamics of the conduction system of the heart. Chaos 17,
015121 (2007).

Moshel, S. et al. Phase-synchronization decay of fixational eye movements.
Ann. N. Y. Acad. Sci. 1039, 484-488 (2005).

COMMUNICATIONS BIOLOGY | (2021)4:1017 | https://doi.org/10.1038/s42003-021-02544-w | www.nature.com/commsbio 9


www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02544-w

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Bartsch, R., Kantelhardt, J. W., Penzel, T. & Havlin, S. Experimental evidence
for phase synchronization transitions in the human cardiorespiratory system.
Phys. Rev. Lett. 98, 054102 (2007).

Bartsch, R. P., Schumann, A. Y., Kantelhardt, J. W., Penzel, T. & Ivanov, P. C.
H. Phase transitions in physiologic coupling. Proc. Natl Acad. Sci. USA 109,
10181-10186 (2012).

Gans, F., Schumann, A. Y., Kantelhardt, J. W., Penzel, T. & Fietze, 1. Cross-
modulated amplitudes and frequencies characterize interacting components in
complex systems. Phys. Rev. Lett. 102, 098701 (2009).

Stumpf, K. et al. Effects of Parkinson’s disease on brain-wave phase
synchronization and cross modulation. Europhys. Lett. 89, 48001 (2010).
Xu, L., Chen, Z., Hu, K,, Stanley, H. E. & Ivanov, P. C. Spurious detection of
phase synchronization in coupled nonlinear oscillators. Phys. Rev. E 73,
065201(R) (2006).

Handojoseno, A. M. A. et al. The detection of freezing of gait in Parkinson’s
disease patients using EEG signals based on wavelet decomposition. In Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society, Vol. 2012, 69-72 (IEEE, 2012).

Singh, A. et al. Freezing of gait-related oscillatory activity in the human
subthalamic nucleus. Basal Ganglia 3, 25-32 (2013).

Toledo, J. B. et al. High beta activity in the subthalamic nucleus and freezing of
gait in Parkinson’s disease. Neurobiol. Dis. 64, 60-65 (2014).

Jagust, W. J. & Mormino, E. C. Lifespan brain activity, f-amyloid, and
Alzheimer’s disease. Trends Cogn. Sci. 15, 520-526 (2011).

Deffains, M. & Bergman, H. Parkinsonism-related 8 oscillations in the primate
basal ganglia networks—recent advances and clinical implications.
Parkinsonism Relat. Disord. 59, 2-8 (2019).

Nini, A., Feingold, A., Slovin, H. & Bergman, H. Neurons in the globus
pallidus do not show correlated activity in the normal monkey, but phase-
locked oscillations appear in the MPTP model of parkinsonism. J.
Neurophysiol. 74, 1800-1805 (1995).

Bergman, H., Wichmann, T. & DeLong, M. R. Reversal of experimental
parkinsonism by lesions of the subthalamic nucleus. Science 249, 1436-1438
(1990).

Kitai, S. & Deniau, J. Cortical inputs to the subthalamus: intracellular analysis.
Brain Res. 214, 411-415 (1981).

Deffains, M. et al. Subthalamic, not striatal, activity correlates with basal
ganglia downstream activity in normal and parkinsonian monkeys. Elife 5,
16443 (2016).

Ahn, S., Zauber, S. E., Worth, R. M., Witt, T. & Rubchinsky, L. L. Interaction
of synchronized dynamics in cortex and basal ganglia in Parkinson’s disease.
Eur. ]. Neurosci. 42, 2164-2171 (2015).

Kato, K. et al. Bilateral coherence between motor cortices and subthalamic
nuclei in patients with Parkinson’s disease. Clin. Neurophysiol. 126,
1941-1950 (2015).

Hammond, C., Bergman, H. & Brown, P. Pathological synchronization in
Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30,
357-364 (2007).

Moshel, S. et al. Subthalamic nucleus long-range synchronization—an
independent hallmark of human Parkinson’s disease. Front. Syst. Neurosci. 7,
79 (2013).

Javor-Duray, B. N. et al. Alterations in functional cortical hierarchy in
hemiparkinsonian rats. J. Neurosci. 37, 7669-7681 (2017).

Plotnik, M. et al. A motor learning-based intervention to ameliorate freezing
of gait in subjects with Parkinson’s disease. J. Neurol. 261, 1329-1339 (2014).
Plotnik, M., Giladi, N. & Hausdorff, J. M. Bilateral coordination of walking and
freezing of gait in Parkinson’s disease. Eur. J. Neurosci. 27, 1999-2006 (2008).
Hughes, A. J., Daniel, S. E,, Kilford, L. & Lees, A. J. Accuracy of clinical
diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100
cases. . Neurol., Neurosurg. Psychiatry 55, 181-184 (1992).

Delorme, A. et al. EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for
advanced EEG processing. Comput. Intell. Neurosci. 2011, 130714 (2011).
Kappenman, E. S. & Luck, S. J. The effects of electrode impedance on data
quality and statistical significance in ERP recordings. Psychophysiology 47,
888-904 (2010).

Bell, A. J. & Sejnowski, T. J. An information-maximization approach to blind
separation and blind deconvolution. Neural Comput. 7, 1129-1159 (1995).
Onikura, K., Katayama, Y. & Iramina, K. Evaluation of a method of removing
head movement artifact from EEG by independent component analysis and
filtering. Adv. Biomed. Eng. 4, 67-72 (2015).

Leutheuser, H. et al. Comparison of the AMICA and the InfoMax algorithm
for the reduction of electromyogenic artifacts in EEG data. In 35th Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), 6804-6807 (IEEE, 2013).

66. Mullen, T. R. et al. Real-time neuroimaging and cognitive monitoring using
wearable dry EEG. IEEE Trans. Biomed. Eng. 62, 2553-2567 (2015).

67. Gabor, D. Theory of communication. Part 1: The analysis of information. J.
Inst. Electr. Eng.-Part III: Radio Commun. Eng. 93, 429-441 (1946).

68. Boashash, B. Estimating and interpreting the instantaneous frequency of a
signal. II. Algorithms and applications. Proc. IEEE 80, 540-568
(1992).

69. Zhang, H., Watrous, A. J., Patel, A. & Jacobs, J. Theta and alpha oscillations
are traveling waves in the human neocortex. Neuron 98, 1269-1281.e4
(2018).

70. Bradley, E. & Tibshirani, R. J. An Introduction to the Bootstrap, Vol. 57
(Chapman & Hall/CRC, 1998).

71. Lifshitz, M., Dwolatzky, T. & Press, Y. Validation of the Hebrew version of the
MOoCA test as a screening instrument for the early detection of mild cognitive
impairment in elderly individuals. J. Geriatr. Psychiatry Neurol. 25, 155-161
(2012).

72. Fahn, S. & Elton, R. Unified Rating Scale for Parkinson’s Disease, 153-163,
293-304 (Macmillan Health Care Information, 1987).

Acknowledgements

We thank the participants for their time and effort, and Mr. Or Koren for technical
assistance and help with data analysis. This study was supported in part by the Israel
Science Foundation (ISF-grant 1657-16), the German Israel Foundation (GIF-grants I-
1298-415.13/2015 and 1-1372-303.7/2016), and the Israel Ministry of Health (grant 3000-
14527). M.G. acknowledges support from a Minerva Research Grant. S.H. acknowledges
financial support from the Israel Science Foundation, the China-Israel Science Foun-
dation, the ONR, the BIU Center for Research in Applied Cryptography and Cyber
Security, the EU project RISE, the NSF-BSF Grant No. 2019740, and the DTRA Grant
No. HDTRA-1-19-1-0016.

Author contributions

E.E.A. developed and implemented the EEG data processing methodology, performed the
data analysis, and prepared the figures. M.P. recruited the study participants, supervised
the experiments, and data recording. S.H., JW.K,, and R.P.B. supervised the research.
R.P.B. wrote the paper with contributions from M.P., SH., J.W.K,, and E.E.A. All authors
(E.E.A., M.P, M.G,, SM,, O.L, S.H., JW.K, and R.P.B.) discussed the results and
commented on the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-021-02544-w.

Correspondence and requests for materials should be addressed to E.E.A. or R.P.B.

Peer review information Communications Biology thanks the anonymous reviewers for
their contribution to the peer review of this work. Primary Handling Editor: Karli
Montague-Cardoso. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons
BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS BIOLOGY | (2021)4:1017 | https://doi.org/10.1038/s42003-021-02544-w | www.nature.com/commsbio


https://doi.org/10.1038/s42003-021-02544-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Connectivity of EEG synchronization networks increases for Parkinson’s disease patients with freezing of gait
	Results
	Discussion and conclusion
	Methods
	Data recording and preprocessing
	Phase synchronization of EEG amplitudes
	Probing significant interactions in amplitude synchronization
	Bootstrapping approach

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




