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Concurrence percolation threshold of large-scale
quantum networks
Omar Malik1,2, Xiangyi Meng 3,4, Shlomo Havlin3,5, Gyorgy Korniss1,2, Boleslaw Karol Szymanski 2,6 &

Jianxi Gao 2,6✉

Quantum networks describe communication networks that are based on quantum entan-

glement. A concurrence percolation theory has been recently developed to determine the

required entanglement to enable communication between two distant stations in an arbitrary

quantum network. Unfortunately, concurrence percolation has been calculated only for very

small networks or large networks without loops. Here, we develop a set of mathematical tools

for approximating the concurrence percolation threshold for unprecedented large-scale

quantum networks by estimating the path-length distribution, under the assumption that all

paths between a given pair of nodes have no overlap. We show that our approximate method

agrees closely with analytical results from concurrence percolation theory. The numerical

results we present include 2D square lattices of 2002 nodes and complex networks of up to

104 nodes. The entanglement percolation threshold of a quantum network is a crucial

parameter for constructing a real-world communication network based on entanglement, and

our method offers a significant speed-up for the intensive computations involved.
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The application of network science to problems in quantum
physics is a relatively new and rapidly developing field1.
Quantum networks, where the links between nodes

represent entangled qubits2–6, are expected to form the basis of
the quantum internet. Recent advances in quantum repeater
technology have made long-distance, noise-resilient quantum
communication possible7–11. These networks have quantum
correlations that can be exploited by performing specific local
measurements on any node.

Protocols for quantum communication rely on the conserva-
tion of correlations in entangled states, and the generation and
distribution of entanglement are necessary for quantum
networks12. For a given network topology, we want to determine
the minimum amount of entanglement necessary between qubits
to maintain a giant component in the network, which is a pro-
blem analogous to percolation on classical networks13–16. How-
ever, there are crucial differences between classical and quantum
networks, limiting the extent to which we can map a classical
percolation theory to quantum networks. For example, in a
classical random network with N nodes, if an edge between nodes
exists with probability p, a subgraph with n nodes and l edges
exists above a critical threshold of p given by pc∝N−n/l17. For a
quantum network, however, pc ~N−2 for all subgraphs for large
N18. We can also use measurement strategies to alter the topology
of a quantum network, meaning that the optimal entanglement
percolation threshold needs to be minimized over all possible
measurement strategies3.

Quantum networks6 are used to model a scalable commu-
nication network based on quantum teleportation. It consists of
nodes that denote a local set of qubits and edges, which represent
a bipartite and entangled state of qubits shared between the two
connected nodes (Fig. 1). The simplest practical quantum net-
work can be built from quantum repeaters19,20 which share only
one entangled pair between nodes5. Quantum communication
networks are expected to have several advantages over classical

communication networks, including the ability to use quantum
cryptography and send “quantum software”2,6.

The bipartite state of any entangled qubits in the network can
be defined as

Ψj i ¼ cos θ 00j i þ sin θ 11j i ð1Þ
up to a unitary transformation, where θ can change from 0 to π/4.
Each entangled pair can be converted to a maximally entangled
pair with a certain probability p, known as the singlet-conversion
probability (SCP), given by p ¼ 2sin2θ21. This represents the
probability of establishing a perfect communications channel18.
Converting every entangled pair in the network to a singlet is
equivalent to a bond-percolation process and this measurement
strategy is called classical entanglement percolation (CEP)3,13.

Having established the mapping to percolation, it is natural to
ask what is the minimum level of entanglement necessary for the
formation of a perfect communication channel between any two
stations. Using classical-percolation arguments, we can establish
the minimum level of entanglement necessary for establishing an
infinite cluster under CEP for some simple cases. For example, it
is θth= π/4 for 1D chains and θth= π/6 for 2D square lattices3.

Unfortunately, CEP does not give us the lowest possible perco-
lation threshold value for a quantum network because it is possible
to lower the entanglement threshold necessary for creating an
infinite cluster by changing the network’s topology. This is done
through a process known as entanglement swapping, shown in
Fig. 1, where two previously unentangled qubits are entangled
using local operations and classical communication (LOCC)22.

The network topology may be altered to lower the percolation
threshold before converting every link to a singlet by performing a
series of entanglement swapping operations. This strategy is known
as quantum entanglement percolation (QEP)3,23. The limitation of
QEP is that it is not generally adaptable to arbitrary network
topology as CEP is. For most network topologies, QEP cannot
improve the percolation threshold in general. Note also that neither
CEP nor QEP are optimal, meaning that it is impossible to deter-
mine if any given measurement strategy results in the lowest
potential value of the percolation threshold1. A new local statistical
theory, concurrence percolation theory (ConPT), has recently been
proposed to explain the observed quantum advantage in quantum
networks over the prediction of classical percolation theory24. This
theory is analogous to classical percolation theory but fundamen-
tally different, as it is not built on probability measure p but a new
variable c for each link, which stands for concurrence—a key
measure of bipartite entanglement25. However, ConPT can be
computationally very expensive24.

Here, we present a fast and tangible solution for calculating the
ConPT threshold. Our method relies on two approximations. The
first is the parallel approximation, which treats all paths in the
network as non-overlapping. The second is what we call the Sm
approximation, where we calculate the total concurrence between
nodes using a subset of paths consisting of the m-th shortest
paths on the network, with m= 1 referring to the shortest paths.
We find that our approximate method agrees closely with the
analytical results provided by Meng et al.24. Depending on the
choice of Sm, the computation based on this method can be
several orders of magnitude faster than the analytical approach.
By combining our method with combinatorial expressions for
shortest and second-shortest paths we can calculate, for the first
time, an approximation for the concurrence for much larger
networks than would be analytically possible. Here, we calculate
the sponge-crossing concurrence for 2D lattices with up to 2002

nodes. We also extend the notion of concurrence to networks
without boundaries and present results for Erdős–Rényi and
Barabási–Albert networks of up to 104 nodes. Our results are
summarized in Table 1.

Fig. 1 Schematic representation of a quantum network. The larger circles
represent nodes. The smaller, enclosed circles represent entangled qubits.
Each link in the network represents a pair of entangled qubits shared
between the two connected nodes. The original network is represented by
the black solid and dashed lines. Node D performs a local measurement
(represented by the red rectangle) on the qubits it shares with nodes B and
C, causing the qubits in B and C to become entangled, represented by the
dotted red line. The previous entanglement, represented by the dashed
black line, is lost. Entanglement swapping can modify the topology of a
quantum network, changing its percolation threshold. In this example, a
fully connected network is split into two disjoint components, consisting of
nodes A–C (in turqoise) and nodes D–F (in gray).
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Results and discussion
Concurrence percolation theory. For pure bipartite states, the
concurrence is defined as26

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� Trρ2r Þ

q
;

where ρr is the reduced density matrix of one party (subsystem) of
the bipartite state. For qubits, Eq. (1), the concurrence is simply

c ¼ 2 cos θ sin θ:

Meng et al. then use this quantity in place of probability to
construct a concurrence percolation theory (ConPT) on arbitrary
network topologies24.

To be more specific, recall that for classical bond percolation on
a lattice, any link in the lattice is active with probability p—a
variable that should be considered as the link weight. We may then
define a “sponge-crossing” quantity, PSC, as the probability that at
least one path connecting the two distant boundaries is fully active.
As a function of p, PSC can be calculated by summing up all paths
that connect the two boundaries of the lattice, following basic
addition and multiplication rules of probability measures13.
Essentially, we treat PSC as a “weighted sum of all paths”.

Now, given an n-node quantum network, GθðnÞ, where all the
link weights are θ, by the CEP/QEP schemes we have the
mapping p � 2sin2θ (i.e., the SCP). From classical percolation
theory, it is known that a minimum value of p exists, below which
the sponge-crossing probability, PSC, becomes zero in the
thermodynamic limit n→∞:

pth ¼ inf p � ½0; 1�jlimn!1PSC½GθðnÞ�> 0
� �

: ð2Þ
This minimum value, pth, is known as the percolation threshold.

The ConPT is constructed differently, using the mapping c �
sin 2θ instead24. Still, an analogous quantity, CSC, referred to as
the sponge-crossing concurrence can be defined as the weighted
sum of all paths in terms of this new weight c24. It is believed that
a nontrivial threshold on c also exists:

cth ¼ inf c � ½0; 1�jlimn!1CSC½GθðnÞ�> 0
� �

; ð3Þ
such that cth is the minimum value of the concurrence c per link,
below which CSC becomes zero when n→∞.

It remains to show how the “weighted sum of paths” is
calculated for ConPT. As a problem of path connectivity, the

calculation turns out to closely resemble the analysis of an
electrical resistor network, where a set of series and parallel rules
are needed as the basic connectivity rules24,27. Fundamental
quantum communication theorems demand that, for k links
connected in series, the total concurrence must be given by

cseri � seriðc1; c2; ¼ ckÞ ¼
Yk
i¼ 1

ci: ð4Þ

The rule for k links connected parallel to each other is more
involved, given by

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2para

q
2

¼ max
Yk
i¼1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c2i

p
2

;
1
2

( )
;

which yields

cpara � paraðc1; c2; ¼ ckÞ

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðc1; ¼ ckÞ � f ðc1 ¼ ckÞ2

q
f ðc1 ¼ ckÞ> 1=2;

1 f ðc1 ¼ ckÞ ≤ 1=2;

(

ð5Þ

where f ðc1 ¼ ckÞ ¼ Qk
i¼ 1

1þ
ffiffiffiffiffiffiffi
1�c2i

p
2 . A caveat lies in the fact that if

the network topology is not series-parallel28 but has nontrivial
loops (e.g., a bridge-circuit topology), then CSC cannot be
calculated using only series and parallel rules. Higher-order
connectivity rules are needed, of which general forms are
unknown. There is, however, a heuristic way to approximate
these higher-order rules: by employing the so-called star-mesh
transform, all possible higher-order rules can be approximated
using only the series and parallel rules24.

Equations (4), (5), together with the star-mesh transform, allow
us to calculate the “weighted sum of paths” between arbitrary two
nodes in a quantum network of arbitrary topology. Formally, we
denote the two nodes as the source node (s) and the target node
(t), respectively, and we define the final concurrence between
them as the s-t concurrence, Cst. Note that although s and t are
named differently, they are symmetric and exchangeable. Hence,
between any two nodes, a Cst can be calculated by the connectivity
rules mentioned above (see Fig. 2 for example).

On regular lattices, the sponge-crossing concurrence CSC can
be calculated by contracting two separate boundaries into two
“mega” nodes24 and calculate the s-t concurrence between them.
As we increase the network size n, a threshold cth will emerge,
accompanied with a sudden jump of CSC as soon as the
concurrence c per link becomes larger than cth. This observation
supports the existence of ConPT. Also, the observed cth is
significantly smaller than all previously known classical-
percolation-theory-based schemes24, exhibiting in large-scale
quantum networks a quantum advantage that is purely structural.

Despite the fresh insights the ConPT has offered, it has two
main limitations:

1. The heuristic approximation (star-mesh transform) used
for higher-order connectivity rules is a double-recursive
process that is computationally intensive, thus only feasible
for networks of very small size.

2. Although an s-t concurrence can be calculated between any
two nodes in any network topology, the sponge-crossing
concurrence CSC is only defined for regular lattices that
have apparent boundaries, and thus so is cth. It is unknown
how to define cth on complex network topology where we
cannot define a boundary, and, provided a proper
definition, how (non)trivial the numerical result of cth
would be.

Table 1 Concurrence percolation thresholds of different
network topologies.

Network topology (π/4)−1θth
(Fast ConPT)

(π/4)−1θth24

Bethe Lattice (Cayley Tree)
(L= 100, k= 3)

0.5 0.5

Bethe Lattice (Cayley Tree)
(L= 100, k= 4)

0.39 0.3918

2D square (n= 82, S9) 0.40 0.416
2D square (n= 202, S3) 0.44 N/a
2D square (n= 2002, S2) 0.5 N/a
ER (n ¼ 103; kh i ¼ 3; S5) 0.6 ± 0.002 N/a
ER (n ¼ 103; kh i ¼ 4; S5) 0.53 ± 0.0019 N/a
ER (n ¼ 104; kh i ¼ 2; S1) 0.85 ± 0.0021 N/a
BA (n= 103, z= 5, S1) 0.3 ± 0.0018 N/a
BA (n= 104, z= 1, S5) 0.86 ± 0.0057 N/a

The concurrence percolation threshold θth determines the fundamental long-distance
entanglement transmission capability in large-scale quantum networks, where each link is a
bipartite state of qubits, Ψj i ¼ cos θ 00j i þ sin θ 11j i, θ ∈ [0, π/4]. We compare our results to
those provided in Meng et al.24 for the Bethe lattice and 2D square lattice. We also report
results on Erdős–Rényi (ER) and Barabási–Albert (BA) networks.
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Unlike cluster-based percolation theories, ConPT is based on
path connectivity, which is arguably more general24. This is why
cth simply cannot be defined by clusters like in classical
percolation theory for complex network topology. A proper
definition and feasible calculation of cth will be of great interest
for the theory itself as well as for its applications. Below, we will
show our suggested solution that can satisfactorily handle these
two limitations of ConPT.

A fast and tangible solution for concurrence percolation. We
start by generalizing CSC from being defined between two
apparent boundaries to two arbitrary sets of nodes, denoted S and
T. It is reasonable that Eq. (3) will yield a nontrivial ConPT
threshold cth for this generalized CSC, as long as the lengths of all
paths connecting S and T increase with the network size n. We
contract the two sets S and T into two “mega” nodes, which
amounts to erasing the internal network topologies of S and T,
and then calculate the s-t concurrence between them. This pro-
vides us a definitive way of calculating CSC for arbitrary network
topology and inferring cth from Eq. (3).

Our numerical computation of cth (“Fast ConPT computa-
tion”) on large-scale quantum networks is further made possible
by introducing two key simplifying approximations: the parallel
approximation and the Sm approximation

Parallel approximation. In this Section, we introduce the parallel
approximation, where we treat all paths connecting nodes of interest
to be parallel, i.e., we treat them as if they have no shared edges. For
an arbitrary network with n nodes and uniform edge-weights c, the
parallel approximation C0

SC of the true sponge-crossing concurrence
between two sets of nodes, S and T, is given by

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C

02
SC

q
2

¼ max
Yn
l¼ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2l

p

2

 !Nl

;
1
2

( )
; ð6Þ

where Nl is the total number of self-avoiding paths of length l that
connect s and t for all s∈ S and t∈ T, respectively. Equation (6) is
the mathematical statement of the parallel approximation, indicat-
ing that we are taking each of the Nl paths to be parallel (Fig. 3). We
illustrate the approximation with a simple example, and then show
that on series-parallel networks28 the concurrence calculated under
the parallel approximation forms an upper bound to the true con-
currence. First, we consider the case where our network is essentially

parallel, i.e., it can be expressed as the parallel combination of k
subnetworks each with concurrence ci. In this case, the parallel
approximation is exact:

C0
SC ¼ CSC ¼ paraðc1; c2; ¼ ckÞ:

The more interesting case is that of an essentially series
network, i.e., a network that can be decomposed as a combination
of subnetworks in series. We consider an exemplary network that
splits into k branches, each with concurrence cpi (Fig. 3). The
concurrence of the segment before branching is cs. Following the
series and parallel rules (Eqs. 4, 5), the sponge-crossing
concurrence from the left of this network segment to the right is

CSC ¼ cs 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðcp0 ; ¼ cpk Þ � f ðcp0 ; ¼ cpk Þ

2
q� �

f ðcp0 ; ¼ cpk Þ> 1=2;

cs f ðcp0 ; ¼ cpk Þ ≤ 1=2;

8<
:

where f ðcp0 ; ¼ cpk Þ ¼ Qk
i¼ 1 gðcpi Þ ¼ Qk

i¼ 1
1þ

ffiffiffiffiffiffiffiffi
1�c2pi

p
2

� �
. Under

the parallel approximation, the network is transformed so that the
concurrence of the segment is given by

C0
SC ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðcscp0 ; ¼ cscpk Þ � f ðcscp0 ; ¼ cscpk Þ

2
q

f ðcscp0 ; ¼ cscpk Þ> 1=2;

1 f ðcscp0 ; ¼ cscpk Þ ≤ 1=2:

8<
:

Since cscpi ≤ cpi , it follows that gðcscpi Þ ≥ gðcpi Þ and
f ðcscp0 ; ¼ cscpk Þ ≥ f ðcp0 ; ¼ cpk Þ. There are three cases:

1. 1=2 ≥ f ðcscp0 ; ¼ cscpk Þ ≥ f ðcp0 ; ¼ cpk Þ. In this case, it is
obvious that C0

SC ¼ 1 ≥ CSC.
2. f ðcscp0 ; ¼ cscpk Þ ≥ f ðcp0 ; ¼ cpk Þ> 1=2. Now we consider

C0
SC

CSC

� �2

¼
f ðcscp0 ; ¼ cscpk Þð1� f ðcscp0 ; ¼ cscpk ÞÞ
c2s f ðcp0 ; ¼ cpk Þð1� f ðcp0 ; ¼ cpk ÞÞ

:

We would like to show that the above expression is no less than
unity by considering some limiting cases. When cpi ¼ 0 for all i it
results in CSC ¼ C0

SC ¼ 0. If we increase the concurrence of a
single branch i to be greater than zero while holding the other
branches to be zero, then the expression becomes

1
2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2s c

2
pi

q� �
1� 1

2 þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2s c

2
pi

q� �	 


c2s
1
2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2pi

q� �
1� 1

2 þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2pi

q� �	 
 ¼ 1;

Fig. 2 Demonstration of calculating the s-t concurrence Cst. The s-t concurrence between nodes 1 and 6 on a 2D rectangular lattice can be calculated
using ConPT, in the order from (a) to (e). The edge weight θ characterizes the entanglement strength between a pair of entangled particles shared between
nodes (Eq. 1) and c � sin 2θ refers to the corresponding concurrence. a Original lattice. b, c Series rules. d Star-mesh transform on the star-graph (edges
4↔ 1, 4↔ 3, 4↔ 6), then parallel rule for edges 1↔ 3 and 3↔ 6. e Series rule for edges 1↔ 3 and 3↔ 6, then parallel rule for edge 1↔ 6.
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or gðcscpi Þð1� gðcscpi ÞÞ ¼ c2s gðcpi Þð1� gðcpi ÞÞ. This is simply to
state that, given only one branch, the parallel approximation is
exact (since there is one and only one path). We now add a
second branch, j, while leaving the remaining k− 2 branches with
zero concurrence. Now we have

C0
SC

CSC

� �2

¼
g
�
cscpi

�
g
�
cscpj

�
1� g

�
cscpi

�
g
�
cscpj

�� �
c2s g
�
cpi
�
g
�
cpj
�

1� g
�
cpi
�
g
�
cpj
�� � :

For cs→ 0, the expression above reduces to

lim
cs!0

C0
SC

CSC

� �2

¼
2c2pi þ 2c2pj

c2pi þ c2pj �
1
2 c

2
pi
c2pj þ c2pj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2pi

q
þ c2pi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2pj

q

≥
2c2pi þ 2c2pj

2c2pi þ 2c2pj �
1
2 c

2
pi
c2pj

≥ 1;

and for cs= 1, the expression is equal to unity. Hence, since the
derivative of the expression w.r.t. cs,

∂

∂cs

C0
SC

CSC

� �2

¼ �
csc

2
pi
c2pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2s c

2
pi

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2s c

2
pj

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2s c

2
pi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2s c

2
pj

q� �

23gðcpi Þgðcpj Þ 1� gðcpi Þgðcpj Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2s c
2
pi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2s c

2
pj

q ;

is nonpositive between 0 ≤ cs ≤ 1, we derive that C0
SC is no less

than CSC. This tells us that the addition of another branch results
in the approximated concurrence being an upper bound for the
true concurrence calculated through series-parallel rules. As more
branches are added to the expression, the result can be easily
generalized, so that C0

SC=CSC ≥ 1 remains true.

3. f ðcscp0 ; ¼ cscpk Þ> 1=2 ≥ f ðcp0 ; ¼ cpk Þ. As before, we con-
sider

C0
SC

CSC

� �2

¼
f ðcscp0 ; ¼ cscpk Þð1� f ðcscp0 ; ¼ cscpk ÞÞ

c2s =4
:

For cs→ 0, the expression reduces to

lim
cs ! 0

C0
SC

CSC

� �2

¼ ∑
k

i¼ 1
c2pi ≥ 1:

In particular, the inequality holds because f ðcp1 ; ¼ cpk Þ is a
concave function defined on the simplex

c2p1 ; ¼ ; c2pk

� �
j ∑

k

i¼ 1
c2pi ¼ 1


 �
;

where it satisfies f ðcp1 ; ¼ cpk Þ> 1=2 except at the vertices where
all but one c2pi are equal to zero. Thus, due to the monotonicity of
f, one requires ∑k

i¼ 1 c
2
pi
≥ 1 to guarantee that f ðcp1 ; ¼ cpk Þ ≤ 1=2.

Next, as cs→ 1 the function f ðcscp1 ; ¼ cscpk Þ will become less than

1/2 and we will revert to case 1. Therefore, there is an upper
bound on cs. As cs approaches its upper bound,
f ðcscp1 ¼ cscpk Þ ! 1=2, and thus

lim
f ðcscp1 ¼ cscpk Þ! 1=2

C0
SC

CSC

� �2

¼ 1
c2s

≥ 1:

Since for this case, ∂
∂cs

C0
SC

CSC

� �2
is nonpositive between cs→ 0

and the presumed upper bound of cs, again we derive that
C0
SC=CSC ≥ 1.
Finally, since every series-parallel network can be decomposed

into essentially series or parallel configurations, taken together we
have shown that C0

SC is an upper bound for CSC on series-parallel
networks. Interestingly, as we will see, this upper bound
seemingly becomes tighter as the network becomes larger. We
hence expect that a new concurrence threshold on C0

SC can
emerge, which should numerically approach the true cth from
below and match cth in the thermodynamic limit n→∞.

Sm approximation. For most regular lattices and complex net-
works, however, the distribution of Nl (Eq. 6) is not trivial. When
we look at arbitrary networks, the calculation for the sponge-
crossing concurrence is essentially a path-counting problem
which may require approximation as well.

Although the literature of path counting on graphs is rich and
well studied, we are not aware of any closed-form solutions for
enumeration of self-avoiding walks of arbitrary length for even
the simplest network (like 2D lattices)29. While approximate path
enumerations exist for both 2D lattices30 and random networks31,
we find them impractical, since the concurrence calculation is
very sensitive to Nl for small l. Indeed, observation of Eq. (6)
implies that a single path’s contribution to the total concurrence
decreases with increasing l and increases with increasing Nl. Even
though longer paths (l≃ n) will outnumber shorter paths by
several orders of magnitude, shorter paths will still contribute
significantly more to the concurrence.

Based on this, if we define Sm as the set which contains up to the
m-th shortest paths (i.e., the shortest paths, the 2nd shortest paths,
and so on up to them-th shortest paths) between s and t for all s∈ S
and t∈ T, then it is possible to approximate the sponge-crossing
concurrence between S and T using only these paths. When
m ¼ mmax, Sm becomes the set of all sponge-crossing paths.

In this Section, using our Fast ConPT computation, we present
numerical results for different networks of large size n. We
numerically estimate the finite-size ConPT threshold in terms of
θth � 1

2 sin
�1cth, determining its position on the critical curve by

matching the corresponding sponge-crossing concurrence at the
half point, CSC= 1/2.

Fig. 3 A schematic representation of the parallel approximation. The parallel approximation preserves the number of paths and their lengths, but ignores
overlap between the paths. In this example, the source node (in green) is connected to target nodes (in blue) by k branches of the network (represented by
the orange boxes), each with concurrence cpi . Each branch joins to a segment with concurrence cs (represented by the blue box). Under the parallel
approximation the network is transformed so that the k branches have no overlap with each other.
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Bethe Lattice (Cayley Tree). Given a finite Bethe lattice (i.e., a
Cayley tree) with L layers and coordination number k32,33, all
paths from the root node to any one of the boundary nodes
have the same length, L. Since only one path exists from the
root node to any node on the boundary, the number of paths of
length L is

NL ¼ kðk� 1ÞL�1: ð7Þ
There is no need to employ the Sm approximation since all
paths are exactly known. Only the parallel approximation C0

SC
of the sponge-crossing concurrence CSC is to be calculated,
which is given by (following Eq. 6)

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C

02
SC

q
2

¼ max
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2L

p

2

 !NL

;
1
2

( )
: ð8Þ

To solve for cth, near C0
SC ¼ 0 we let

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2Lth

q
2

0
@

1
A

NL

¼ 1� ϵ ð9Þ

given an arbitrarily small positive ϵ. This gives rise to

c2Lth ¼ 1� 2 1� ϵð Þ1=NL � 1
h i2

’ �4N�1
L ln 1� ϵð Þ þ OðN�2

L Þ;
ð10Þ

and thus

cth ’ 4ϵ
k

� � 1
2L 1

k� 1

� �L�1
2L

’ 1ffiffiffiffiffiffiffiffiffiffiffi
k� 1

p ð11Þ

in the limit of large L. This is identical to the exact ConPT
threshold calculated by Meng et al.24 using a recursive renor-
malization trick on the series and parallel rules (Eqs. 4, 5).

Interestingly, it is known that a saturation point csat < 1 also
exists in ConPT24, namely, before c reaches unity, CSC will already
reach unity at c= csat. This is because of the maximum function
appearing in the parallel rule (Eq. 5). It is also obvious that
csat ≥ cth, given the monotonicity of the series and parallel rules.
To see if we can solve for csat using the parallel approximation
too, let

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2Lsat

p
2

 !NL

¼ 1
2
; ð12Þ

set by C0
SC ¼ 1. This yields

c2Lsat ¼ 1� 2 1=2
� �1=NL � 1

h i2
’ 4N�1

L ln 2þ OðN�2
L Þ; ð13Þ

and thus

csat ’
4 ln 2
k

� � 1
2L 1

k� 1

� �L�1
2L

’ 1ffiffiffiffiffiffiffiffiffiffiffi
k� 1

p : ð14Þ

We see that the saturation point calculated using the
parallel approximation is equal to cth, which is underestimated,
since the true saturation point is given by csat ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=2Þ1=k � ð1=4Þ1=k
q

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þðk�1Þ=k � ð1=4Þðk�1Þ=k

q
24, which can

be calculated similarly using a recursive renormalization trick on
the series and parallel rules (Eqs. 4, 5).

For validation purposes, numerical results of the sponge-
crossing concurrence on the Bethe lattice using the parallel
approximation versus the true ConPT results are shown in
Fig. 4. We see that as L increases, both cth and csat (where
c ¼ 2 cos θ sin θ) approach 1=

ffiffiffiffiffiffiffiffiffiffiffi
k� 1

p
from below and above,

respectively, consistent with our theoretical result. Hence, it is
highly suggested that the parallel approximation can correctly
estimate the true ConPT threshold cth in the thermodynamic
limit.

2D square lattices. In a 2D square lattice of n nodes (
ffiffiffi
n

p 2 Z),
the length of the mth shortest self-avoiding path, between source
and target nodes of coordinates s= (xs, ys) and t= (xt, yt)
(1 ≤ xs; xt ≤

ffiffiffi
n

p
and 1 ≤ ys; yt ≤

ffiffiffi
n

p
), is simply

lm ¼ xs � xt
�� ��þ ys � yt

�� ��þ 2 m� 1ð Þ:
Now, let S and T denote the left (xs= 1) and right (xt ¼ ffiffiffi

n
p

)
boundaries. Let s= (1, ys)∈ S and t ¼ ð ffiffiffi

n
p

; ytÞ 2 T . Under the
Sm approximation, the total number of self-avoiding paths of
length l between S and T is given by

Nl � ∑

ffiffi
n

p

ys ¼ 1
∑

ffiffi
n

p

yt ¼ 1
δl1lNl1

ðs ! tÞ þ δl2 lNl2
ðs ! tÞ þ � � � þ δlmlNlm

ðs ! tÞ;

ð15Þ
where δij is the Kronecker delta. This approximation of Nl is then
substituted into the parallel approximation (Eq. 6) to calculate
CSC between S and T.

For m ≤ 2, it is possible to directly enumerate the 1st
and 2nd shortest self-avoiding paths between every pair of s
and t. The general expressions are given by (w.l.o.g., xs ≤ xt and
ys ≤ yt)

Nl1
s ! tð Þ ¼ xs � xt

�� ��þ ys � yt
�� ��

jxs � xtj

 !
; ð16Þ

and

where the boundary effect

Bðu; vÞ ¼
0; u ¼ 1; v ¼ ffiffiffi

n
p

1; u ¼ 1; v <
ffiffiffi
n

p
or u> 1; v ¼ ffiffiffi

n
p

2; u > 1; v <
ffiffiffi
n

p

8><
>: ð18Þ

is also taken into account. In particular, Eq. (17) is obtained due
to the fact that every 2nd shortest self-avoiding path in the square

Nl2
s ! tð Þ ¼ ∑

minfxtþ1;
ffiffi
n

p g

x0 ¼maxfxs;2g
∑
yt�2

y0 ¼ ys

jxs � x0j þ jys � y0j
jxs � x0j

� � jxt � x0 þ 1j þ jyt � y0 � 2j
jxt � x0 þ 1j

� �

þ ∑
xt�2

x0 ¼ xs
∑

minfytþ1;
ffiffi
n

p g

y0 ¼maxfys;2g

jys � y0j þ jxs � x0j
jys � y0j

� � jyt � y0 þ 1j þ jxt � x0 � 2j
jyt � y0 þ 1j

� �

þ Bðxs; xtÞ
jxt þ 1� xsj þ jyt � 1� ysj

jxt þ 1� xsj

� �
þ Bðys; ytÞ

jyt þ 1� ysj þ jxt � 1� xsj
jyt þ 1� ysj

� �
;

ð17Þ
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lattice, having length l2= ∣xs− xt∣+ ∣ys− yt∣+ 2, must contain
one and only one of the configurations as shown in Fig. 5. The
first and second terms in Eq. (17) account for the two “Z”-shape
configurations (Fig. 5a, b), respectively; the third term for the two
“L”-shape configurations (Fig. 5c, d); and the last term for the
other two “L”-shape configurations (Fig. 5e, f).

Piecewise path enumeration algorithm. For m > 2, it becomes
difficult to write down a closed-form combinatorial expression
like Eqs. (16, 17) for Nlm

ðs ! tÞ. A path enumeration algorithm
is thus needed. We treat paths of length lm with m > 2 as devia-
tions from the 1st and 2nd shortest paths. For a given m, these
deviations can only take a finite number of shapes. Once we have
identified these primitive deviations, we must next identify
positions in the lattice where these deviations can be placed.
Finally, we count the total number of paths by counting the
number of shortest paths between deviations using Eqs. (16, 17).

For example, given source and target nodes s and t, all 3rd-
shortest paths (m= 3) have either two single-step deviations or
one double-step deviation from the 1st shortest path. For the
case where we have two single-step deviations, we first identify
two sets of points, D1 and D2, where the first and second
deviations can happen respectively. Then we calculate Ns;D1

(the number of shortest paths from s to every point in D1),
ND1;D2

(the number of shortest paths from every point in D1 to
every point in D2), and ND2;t

(the number of shortest paths
from every point in D2 to t). The total number of 3rd-shortest

paths is then given by Nl2
ðs ! tÞ ¼ Ns;D1

ND1;D2
ND2;t

. This
algorithm, while significantly faster than a brute-force path
enumeration, is still too involved for large m. We use this
algorithm to calculate S3 exclusively.

Numerical calculations. The final numerical results of CSC, cal-
culated using the exact combinatorial expressions (S1, S2) and/or
the piecewise path enumeration algorithm (S3), are shown in
Fig. 6. We can see from Fig. 6a that the transition in the value of
the sponge-crossing concurrence becomes sharper as the network
size increases. From Fig. 6b–d we see that for large enough m or
n, the numerical threshold θth levels out at constant values that
are very close to those calculated using the star-mesh transform.
For example, for n2= 8 the Fast ConPT method yields θth= 0.4,
compared to the value of θth= 0.416 calculated using the star-
mesh transform24. This suggests that our Fast ConPT calculation
can yield a good approximation of the ConPT threshold. We can
also see from Fig. 7 that the Fast ConPT computation is over 100
times faster than the star-mesh transform method.

Complex network topologies. Unlike 2D square lattices, we
cannot write down any analytical expressions for the path-length
distribution of complex networks. While techniques to enumerate
paths give a good estimate of the total number of paths31, they
approximate the path-length distribution poorly. This means that
we must enumerate paths through brute-force methods and this
restricts our analysis to sparse graphs.

For complex networks, we simply define the sponge-crossing
concurrence as the Cst between two nodes s and t which means
that S= {s} and T= {t}. We pick s and t such that the shortest
path between them is equal to the diameter of the network. In
general there might be multiple choices for s and t that meet this
criterion, and we randomly choose one of these pairs.

We randomly generate 100 network realizations of a given size
and degree distribution and average the concurrence percolation
threshold of all networks. These results are reported in Table 1
along with the standard error, σ=

ffiffiffiffi
N

p
, where σ is the standard

deviation and N= 100 is the number of realizations of each
random graph.

Erdős–Rényi Network. Results for Erdős–Rényi (ER) networks34

are shown in Figs. 8, 9a, 10a, b. The concurrence is calculated
under the S6 approximation for different settings of network sizes
and average degrees. The results are averaged over 100 network
realizations for each setting. For small values ofm, the behavior of
the concurrence for ER networks can be approximated with a
power-law fit, as shown in Fig. 8. Figure 10a shows that the value
of θth converges with increasing network size for smaller values of
the average degree, e.g., kh i ¼ 4. For larger values of the average

a b

Fig. 4 The sponge-crossing concurrence for the Bethe lattice under the parallel approximation. Results are shown for coordination numbers (a) k= 3
and (b) k= 4. As the number of layers, L, in the network become larger the numerical values of θth approaches the analytical value. The solid black lines
represent the true concurrence values for the Bethe lattice24.

Fig. 5 Characterization of second-shortest paths using primitive steps.
Every 2nd shortest self-avoiding path must contain one and only one of the
configurations (solid line): either “Z”-shape (a, b) or “L”-shape (c–f), then
the rest connected by shortest paths (dashed lines).
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degree, such as kh i ¼ 8, we do not see the value of the threshold
converging for the same network size.

The calculation of the number of paths becomes increasingly
computationally intensive for larger values of the average degree
and we must restrict our analysis to small values of m. Figure 10b
shows how the concurrence percolation threshold changes as a
function of average degree under the S1 approximation.

Barabási–Albert network. Many real-world networks show
power-law degree distribution, such as the Internet, WWW, sci-
entific collaboration networks, protein-protein interaction net-
works, and actor networks14,35. Barabási–Albert (BA) model36 is
the first model to describe the structure property of such net-
works, using preferential attachment. In this model, every new
node in the graph is assigned z edges, where z is known as the
coordination number, and nodes with higher degrees are more
likely to be selected. The classical bond-percolation threshold for
a BA network with z > 1 and n→∞ is pc= 037,38.

Results for BA networks are shown in Figs. 9b, 10c, d. For z= 1
there are no loops in the network and the relatively small number
of paths connecting any two nodes allows us to calculate the
concurrence for up to 104 nodes, shown in Fig. 10c. We also look
at smaller networks with higher coordination numbers, up to
z= 25, shown in Fig. 10d. Unlike ER networks, the value of θth
decreases with the increasing network size.

Comparison with Classical Entanglement Percolation (CEP). As a
baseline comparison, we numerically calculate θCEPth , the
percolation threshold associated with classical entanglement
percolation3,13 (CEP) for ER networks. As before we define the per-
colation threshold on random networks as the minimum entangle-
ment necessary for the existence of a path between two nodes s and t,
where s and t are a randomly selected pair of nodes with the property
that their distance is the diameter of the network. We generate 100
random networks and eliminate edges with probability 1− p, where
p ¼ 2sin2θ is the singlet-conversion probability. For each network
we perform 1000 simulations and calculate θCEPth as the average
minimum value of θ such that the probability of the existence of a path

a

dc

b

Fig. 6 Fast ConPT calculation on 2D square lattices. a Sponge-crossing concurrence CSC as a function of link weight θ, calculated under the S1–S3
approximations. Only the result of S3 is plotted. The results of S1 and S2 are nearly identical to S3. b Numerical ConPT threshold θth under the Sm
approximation. As m increases, θth approaches a constant value. c θth for different size n. d Same as (c) but for larger n. S3 becomes too computationally
intensive to calculate for n > 202. As n increases, θth also approaches a constant value.

Fig. 7 The speed-up obtained by the Fast ConPT algorithm over star-
mesh reduction. The figure shows the computing time (in seconds) to
calculate Cst, the s-t concurrence between two nodes s and t, on 2D square
lattices with n nodes using the Fast ConPT method with the S1 and S2
approximation, as well as using the star-mesh reduction method of Meng
et al.24. We can see that the Fast ConPT method speeds up the calculation
over the star-mesh transform method by two orders of magnitude.

Fig. 8 The concurrence percolation threshold as a function of m for
Erdős–Rényi (ER) networks. The relationship can be approximated with a
power law, θth(m)∝mϕ, which is represented by the dashed black lines.
The networks have size n= 100.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00958-4

8 COMMUNICATIONS PHYSICS |           (2022) 5:193 | https://doi.org/10.1038/s42005-022-00958-4 | www.nature.com/commsphys

www.nature.com/commsphys


between s and t is 0.5.We also calculate θth(m) for these networks. The
results are shown in Fig. 11. We can see that for all our samples
θthðm ¼ 1Þ< θCEPth . Since CEP represents the naive, baseline mea-
surement strategy it is encouraging that our approximate ConPT
threshold always lies below it even when we restrict ourselves to
m= 1. Therefore θth heuristically approaches a lower bound on the
true concurrence and even for low values of m it predicts a lower
concurrence percolation threshold than that predicted by CEP.

Conclusion
Table 1 summarizes the numerical results of our fast concurrence
percolation theory (Fast ConPT) computation compared with
previously known results24. The algorithm we have presented in
this report utilizes two approximations to allow for numerical
calculations of ConPT. Where available, our results are in good

agreement with the analytical values of the concurrence perco-
lation. We have also extended the analysis of the ConPT
threshold to complex networks and demonstrated that our
method could be applied to square lattices of 2002 nodes and
complex networks of 300 nodes. Combining our method with
more efficient path-counting algorithms would allow us to probe
a more significant fraction of the total paths of a network for the
ConPT calculation and provide a more robust estimate for the
ConPT threshold. We believe that this work is an important step
towards understanding the structural and communication prop-
erties of large-scale quantum networks.

We believe that ConPT is a promising tool for practically
designing and analysing quantum networks. It offers crucial
insights into how entanglement strength, viewed as a costly
resource, should be distributed throughout a network to ensure
resilient communication. In full-optical quantum communication

a b

Fig. 9 The s-t concurrence as a function of entanglement strength for complex networks. The solid lines show the curves averaged over 100 network
realizations and the bands represent one standard deviation. We calculate Cst, the s-t concurrence, between two maximally separated nodes as a function
of link weight, θ, for (a) Erdős--Rényi (ER) with kh i ¼ 4 and (b) Barabási--Albert (BA) networks with coordination number z= 2, calculated under the S1
approximation.

a

dc

b

Fig. 10 The Fast ConPT calculation on complex networks. a The behavior of θth for ER networks with kh i ¼ 4 and kh i ¼ 8 under the S1 approximation
with increasing network size. b The behavior of θth for Erdős--Rényi (ER) networks with n= 500 and n= 1000 as a function of kh i for the S1 approximation.
The circles are the simulated values of the percolation threshold and the dotted lines are a power-law fit with θth / kh i�0:5 .c The behavior of θth on
Barabási--Albert (BA) networks with z= 1 and z= 2 under the S1 approximation with increasing network size. d The behavior of θth for BA networks with
n= 500 and n= 1000 as a function z under the S1 approximation. All results are averaged over 100 network realizations and the error bars represent one
standard deviation.
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networks, for example, entanglement strength is usually expressed
as a function of the number of entangled photons shared between
nodes39. Current methods used in simulations to determine the
entanglement strength necessary for the emergence of a giant
component in quantum networks or the connectivity of two
random nodes implicitly assume the CEP measurement strategy,
i.e., they assume that the topology of the quantum network is
immutable like that of a classical network39,40. The numerical
methods we have presented in this paper allow concurrence
percolation theory to be practically useful in the analysis of large
complex networks, providing a lower bound on the entanglement
strength necessary for communication between distant nodes,
therefore allowing the cost associated with establishing commu-
nication channels of a certain strength in these networks to be
lowered. As we showed in our comparison with CEP, even for
m= 1 the Fast ConPT method already predicts a lower entan-
glement percolation than CEP, demonstrating its effectiveness for
determining how close any given measurement strategy is to
being optimal.

Still, the critical behaviors of ConPT near θth remain an inter-
esting and open question. Previous studies have indicated that
some critical phenomena, such as the emergence of subgraphs, are
drastically different in quantum random networks than in classical
networks6. While Meng et al. has provided a finite-size analysis of
the critical behaviors of Bethe lattices, their analysis of 2D lattices is
limited by the size of the lattices they could investigate24. Their
initial results indicate that the critical exponent ν associated with
ConPT on 2D lattices are the same as those of classical percolation

theory. This can now be investigated more thoroughly using the
algorithm presented in the present work.

Code availability
The code used in this study is available upon request.
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