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Sustaining a network by controlling a fraction of
nodes
Hillel Sanhedrai 1✉ & Shlomo Havlin 1

Multi-stability is a widely observed phenomenon in real complex networked systems, such as

technological infrastructures, ecological systems, gene regulation, transportation and more.

Thus, even if the system is at equilibrium in a normal functional state, there might exist also a

potential stable state having abnormal activity, into which the system might transition due to

an external perturbation. Such a system can be regarded as unsustainable, due to the danger

of falling into the potential undesired abnormal state. Here we explore, analytically and via

simulations, how supporting the activity of a small fraction of nodes can turn an unsus-

tainable system to become sustainable by eliminating the undesired potential stable state.

We unveil a sustaining phase diagram in the presence of a fraction of controlled nodes. This

phase diagram could provide how many controlled nodes are required for sustaining a given

network as well as how strong the connectivity of the network should be for a given fraction

of controllable nodes.
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B iological, social, or technological complex systems experi-
ence, in certain cases, catastrophic failure causing the col-
lapse of the whole system functionality. For instance,

overload failures in power systems1,2, species extinction in eco-
logical networks3–5, traffic jams in a city6, and cell death in cel-
lular dynamics7,8. Such collapses can be caused by structural
damages, causing the networks to lose their connectivity9–15.
However, some systems may lose their functionality despite they
are still connected due to sparse connectivity and/or functional
disturbances16–27. Once a system collapses, the question is how it
responds to this situation. Two types of systems can be dis-
tinguished. Some systems recover on their own and go back to a
normal functional state, while others remain in their abnormal
nonactive state, and can be recovered only by external recovery.
The former kind is considered “sustainable” systems since they
are permanently active even after disturbances. The latter type, on
the contrary, is considered “unsustainable” systems, since even
though they are stable, yet in the presence of external perturba-
tions, they collapse and do not return spontaneously to their
original state. In fact, what makes the difference between these
two types, is the bi-stability character of the dynamics21. If there
is another stable state, nonfunctional, then once the system
reaches this state it stays in this state. However, when the active
state is the only stable state, there is no danger to fall into another
stable state since there is no such one.

The effects of controlling nodes’ activity have been explored
from several points of view, including controllability theory28–30,
propagation patterns of small perturbations across the
network31–33, and global effects on the system state34–38. A recent
study39 has shown that for certain systems and under certain
conditions controlling even a ‘single’ node can move the whole
system to a desired natural active state of the system. This hap-
pens when the signal of control manages to propagate from shell
to shell around the source single node as in a domino effect to
create a “macroscopic” impact. However, for other systems or
under different conditions, a microscopic intervention can make
only a local “microscopic” effect as one would expect. When this
is the situation, a macroscopic intervention is required for
creating a global change. However, a basic question is whether the
global change in the system state, resulted by a macroscopic
control, is just quantitative or could be even qualitative, i.e.
eliminating the lower state, and if so, what is the required fraction
of controlled nodes to make it.

In this study, we aim to explore the question of transforming
an unsustainable system into a sustainable system, by supporting
the activity of a fraction of nodes. The intervention that we dis-
cuss is done by forcing a fraction ρ of controlled nodes to have a
high value of activity Δ. We develop a framework to predict for a
given network structure and for a given intervention (ruled by ρ
and Δ) if the system becomes sustainable. By defining a parameter
β25, that captures the connectivity of the network, we construct
and present a phase diagram in the (β, ρ) space. From this phase
diagram, for a given network with a certain β, we can determine
what is the minimal (critical) fraction of nodes ρc that is needed
for sustaining the network. From a different point of view, we can
determine as well, for a given fraction accessible to control (ρ),
how strongly connected the network should be for becoming
sustainable. We find that by controlling a small fraction of nodes,
we enlarge considerably the “sustainable phase” compared to
controlling a single node39. We further present a theory that
bridges the two limits of macroscopic and microscopic sets of
forced nodes, covering both extremes as well as the range in
between. We demonstrate and apply our framework to three
dynamic processes, cellular, neuronal, and spin dynamics,
showing its generality. However, different systems show
remarkably varying sustaining phase diagrams.

Results
Unsustainable networks. To find the conditions for which a
network is unsustainable, we first analyze the dynamics of a free
system without external intervention. We rely upon a general
framework31–33 to model nonlinear dynamics on networks.
Consider a system consisting of N components (nodes) whose
activities xi (i= 1, 2, . . . , N) follow the Barzel–Barabási31 equa-
tion,

dxi
dt

¼ M0ðxiÞ þ λ ∑
N

j¼1
AijM1ðxiÞM2ðxjÞ: ð1Þ

The first function, M0(xi), captures node i’s self-dynamics,
describing mechanisms such as protein degradation40 (cellular),
individual recovery41,42 (epidemic), or birth/death processes43

(population dynamics). The product M1(xi)M2(xj) describes
the i, j interaction mechanism, representing e.g., genetic
activation7,44,45, infection41,42, or symbiosis46. The binary
adjacency matrix A captures the network, i.e., the interactions
(links) between the nodes. An element Aij equals 1 if there is an
interaction (link) between nodes i and j and 0 otherwise. The
matrix A is symmetric and obeys the configuration model
characteristics. The strength of the interactions is governed by the
positive parameter λ.

In Fig. 1, we demonstrate our problem on the example of gene
regulation dynamics, which is explored and presented in detail
below. For weak connectivity, expressed by low interaction
strength or small density of links, there exists only the low-active
state where all genes are suppressed, Fig. 1a, b, while for strong
connectivity, there emerges an additional high-active state.
However, the low-active state still exists, Fig. 1d, e, which allows
the risk of collapsing from functionality into non-functionality as
a result of some disturbances, see Fig. 1f. Therefore, such an
active state is called unsustainable due to the potential failure into
the inactive state. In this study, we show how supporting a small
fraction of the system nodes (Fig. 1g, h, dark blue) eliminates the
nonfunctional state and, as such, makes the system sustainable to
perturbations, Fig. 1i.

Sustaining a network. To drive an unsustainable network to be
sustainable, we consider a simple intervention. We force a set of
nodes F (fraction ρ) to have a constant high activity value Δ
(Fig. 1h), while all the rest in the complementary set D are
governed by the original dynamics. Thus, such a forced system
obeys the set of equations,

xi ¼ Δ i 2 F
dxi
dt ¼ M0ðxiÞ þ λ ∑

N

j¼1
AijM1ðxiÞM2ðxjÞ i 2 D

8<
: : ð2Þ

While in some systems, such a simple intervention is being a
technical challenge, yet we consider this as a prototype case from
which we can deduce others. For instance, if a constant control
height of Δ works, then we can just keep the activity of the
controlled nodes higher than Δ or equal, to sustain the system.
Other interventions, such as adding flux, could be equivalently
translated to holding the node’s activity with the new stable value
caused by the flux. If we return to the above example of gene
regulation, manipulation of gene expression is a common
practice, e.g., using light47.

Next, we aim to track the states of the unforced nodes, i.e.,
the set D. For finding the steady states of the forced system, we
demand a relaxation, thus the derivative vanishes. In addition,
we use a degree-based mean-field approximation42,48–51

assuming nodes having the same degree behave similarly.
Thus, we replace the binary term Aij with the probability of link
existence between i and j in the configuration model, kikj/
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(N〈k〉) where ki and kj are the degrees of i and j, respectively.
Considering this, we define (see elaboration in the Section
Methods) the order parameter Θ as

Θ ¼ 1
jDjhkD!Di

∑
j2D

kD!D
j M2ðx�j Þ; ð3Þ

which represents the mean impact that an arbitrary free node
gets from its arbitrary free neighbor. The variable x�j stands for

the activity of node j in relaxation, and D ! D means to count
only links within D, i.e., the unforced nodes. Using the defined
Θ, and applying the mean-field approximation in Eq. (2) in
relaxation, we obtain,

Rðx�i Þ ¼ λkD!D
i Θþ λkD!F

i M2ðΔÞ; ð4Þ

where R(x)=−M0(x)/M1(x), and kD!F
i is the number of forced

neighbors (in F ) of node i which is a free dynamic node (in D).

Fig. 1 The challenge of an unsustainable network and how to make it sustainable. a Diagram of regulatory dynamics showing two states, inactive x0 and
active x1. For weak connectivity, only x0 exists, thus the system resides in the inactive phase. b For weak connectivity, there is no active stable state (cyan,
very light), but just the inactive state (red). The vertical (z) coordinate represents the activity of each node. c Adding random perturbations (noise) to the
activities does not help to activate the network since a functional stable state does not exist, thus the average activity stays low all the time. d For dense
connectivity, both states are stable, such that there exists a bi-stable region (gray shade). e A system located in the bi-stable regime, demonstrates two
stable states, active (cyan) and suppressed (red). Thus, x1 is unsustainable in this region since the inactive state x0 also exists. f An implication of the bi-
stability is that adding random perturbations (noise) to the activities, results in spontaneous system transitions between the active (cyan) and inactive
states (pink) since both are stable in the unsustainable phase. Here, as in (c) and (i), the noise was taken, for simplicity, to be discrete, since it is efficient
enough for exposing if the system is sustainable. Stochasticity is a fundamental feature of gene expression appearing by randomness in transcription and
translation56,57, thus adding a noise here reflects a realistic phenomenon. g, h Here, we consider the same system as in (d), but we control a fraction of the
system (dark blue circles), ρ, and hold it with a constant high value, Δ. Due to this intervention, the low-functional state vanishes which makes the system
sustainable. i When we control a fraction of nodes with high activity, perturbations such as those in (f) are not capable to deflect the system from the
active state, since the inactive state disappears. Namely, the control makes the system sustainable.
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Substituting this in the definition of Θ, we obtain a self-
consistent equation for the order parameter,

Θ ¼ 1
jDjhkD!Di

∑
j2D

kD!D
j M2ðR�1ðλkD!D

j Θþ λkD!F
j M2ðΔÞÞÞ;

ð5Þ
where R−1 is the inverse function of R. This step assumes that R
is an invertible function. Solving the self-consistent Eq. (5), we
get all the states (both stable and unstable) of the system. This
equation can be solved using any degree distribution and the
specific selection of the nodes in F (see Section Methods).

To obtain, besides Eq. (5), more intuitive, simple, and useful
expressions, we assume the following additional approximation
based on a common mean-field (MF) approach. When the degree
distribution is not very broad and/or the functions M2 and R are
close to linear or constant, we insert the average into the
functions25, i.e., M2ðxÞ ¼ M2ð�xÞ and RðxÞ ¼ Rð�xÞ, to get an
approximation for the leading order, see also the Section
Methods. This allows us, using Eqs. (3) and (4), to obtain a
very simple relation between the average steady state �x of the free
nodes and the connectivity β of the network for a given control
characterized by ρ and Δ. We define the average activity �x over all
the neighbors within D by

�x ¼ 1
jDjhkD!Di

∑
j2D

kD!D
j x�j ; ð6Þ

and the connectivity β is defined as

β ¼ λκ; ð7Þ
combining both the interactions strength λ and the average
neighbor degree over the whole network, κ= 〈k2〉/〈k〉. Using
these terms, we finally obtain a simple equation for the states of a
forced system, for κ≫ 1 and random selection of the forced
nodes,

β ¼ Rð�xÞ
ð1� ρÞM2ð�xÞ þ ρM2ðΔÞ

; ð8Þ

where ρ ¼ jF j=N is the fraction of the controlled nodes. To get
the free system states, we can just substitute ρ= 0, yielding
β ¼ Rð�xÞ=M2ð�xÞ. (For non-random selection of the forced nodes,
but rather a degree-dependent selection, see Supplementary
Note 2.)

Eq. (8) implies that forcing a fraction ρ of nodes to have an xi-
value Δ changes the phase diagram of the system and creates a
new phase diagram for a forced system. To demonstrate this
change in the phase diagram, we go back to our main example of
gene regulation. Applying the general equation in Fig. 2a to gene
regulation yields that the free system, Fig. 2b, exhibits two
regimes: an inactive state for weak connectivity, and a bi-stable
regime (gray shade) above a certain β. In marked contrast, a
forced system shows a remarkably different phase diagram,
Fig. 2c, exhibiting three regimes: inactive for small β, bi-stability
for intermediate β, and above a certain value of β only an active
state. Neuronal and spin dynamics, Fig. 2d–g, have distinct phase
diagrams which change as well by controlling a fraction of the
system.

In all these three examples, a free system located at the high-
active state within the bi-stable area (gray shade), is regarded as
unsustainable. This is because there exists a potential inactive
state. However, controlling a fraction ρ of nodes with high activity
Δ, reshapes the phase diagram and creates an area (blue shade), in
which the system becomes safer, that is, with no risk of failure
into the low state. Hence the system becomes sustainable.

Application: cellular dynamics. As our main example in this
paper, we apply our framework on the regulatory dynamics,
captured according to Michaelis–Menten model44, by

dxi
dt

¼ �Bxai þ λ ∑
N

j¼1
Aij

xhj
1þ xhj

: ð9Þ

Under this framework, M0ðxiÞ ¼ �Bxai , describing degradation
(a= 1), dimerization (a= 2) or a more complex bio-chemical
depletion process (fractional a), occurring at a rate B; without loss
of generality, we set here B= 1. The activation interaction is
captured by the Hill function of the form M1(xi)= 1,
M2ðxjÞ ¼ xhj =ð1þ xhj Þ, a switch-like function that saturates to
M2(xj)→ 1 for large xj, representing j’s positive, albeit bounded,
contribution to node i activity, xi(t).

When analyzing this system while it is forced by a fraction ρ of
random nodes with activity Δ, we obtain, using Eq. (8),

β ¼ �xa

ð1� ρÞ=ð1þ �x�hÞ þ ρ=ð1þ Δ�hÞ : ð10Þ

In Fig. 3, we present in detail the results for cellular dynamics
using simulations and theory when setting a= 1, h= 2. The
phase diagram of a free system, derived from Eq. (10) by
substituting ρ= 0, is shown in Fig. 3b. Note that �x ¼ 0 is a stable
state of the free system, which is not obtained by substituting
ρ= 0 in Eq. (10) but from the MF equation, see Supplementary
Note 1. However, it can be obtained also from Eq. (10) by taking
the limit ρ→ 0. As explained above, the high-active state x1 is
unsustainable for the full range, as demonstrated in Fig. 3c. Eq.
(10) generates also the phase diagram for a forced system shown
in Fig. 3d (thick curve) for ρ= 0.03 and Δ= 5, exhibiting an
s-shape diagram which has now also a new only-active regime
(blue shade). This regime is in the sustainable phase. In Fig. 3f, we
demonstrate the forced system states in the three distinct regimes,
and show that for β= 3.1, the external intervention makes the
system sustainable rather than unsustainable in Fig. 3c. The
implication of the low state disappearance is demonstrated in
Fig. 1f, i, where the supported system is sustainable for large
random perturbations in contrast to the uncontrolled unsustain-
able system. Note that the control also increases the level of the
high state, x1, but this effect is minor. The s-shape, Fig. 3d, unveils
a critical value of β= βc above which the system is sustainable.
This βc depends on ρ, and this relation holds in the inverse
direction as well, namely, for given β there is a required critical
fraction ρc of controlled nodes to make a system sustainable.
Therefore, we move to find the relation between the critical values
of ρ and β at the transitions from the bi-stable region to both the
sustainable phase, as well as the inactive region. As can be seen in
Fig. 3d, both transitions are local extremum of βð�xÞ, and hence
they are found using Eq. (8) by

∂β

∂�x

����
βc

¼ 0: ð11Þ

Eq. (11) provides βc as a function of both the fraction ρ and the
force of control Δ. Using Eq. (10) we get βc or ρc for cellular
dynamics. For gene regulation, the solution is not trivial (see
Methods), however, in the limit of small ρ, when we get a small
value of �x at the transition, as in Fig. 3d, we obtain the scaling
relation,

ρc � βh=ða�hÞ: ð12Þ
Indeed, in our simulations, for the values, a= 1, h= 2, we

obtain, in Fig. 3k, ρc ~ β−2, where β= λκ. We discuss this result
further below.
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Figure 3e shows similar results as 3d for a larger fraction of
controlled nodes, ρ= 0.11. One can see that for this value of ρ,
the bi-stable area almost completely disappears. This suggests
another critical fraction ρ0, above which the active state of the
system becomes sustainable for any β. To find this ρ0, we notice
that it captures a merge of local maximum and minimum, thus
besides Eq. (11), also the second derivative should vanish,

∂2β

∂�x2

����
βc

¼ 0: ð13Þ

These two conditions, Eqs. (11) and (13), together determine a
tricritical point (β0, ρ0) in the (β, ρ)-space at which the three
phases: inactive, unsustainable, and sustainable meet, and beyond
which the system will not experience an abrupt transition at all,
see Fig. 3g.

For the cellular dynamics, we find that (see Methods),

ρ0 ¼ 1þ 4ah

ð1þ Δ�hÞðh� aÞ2
� ��1

; ð14Þ

which for our values a= 1, h= 2, and for a large Δ, is equal
approximately to 1/9, while using Δ= 1, it gets a higher value of
1/5, see Fig. 3g, h.

In Fig. 3g, h, we present the new sustaining phase diagram in
(β, ρ)-space for networks with κ= 20, 60, 100 showing a good
agreement between simulations and theory, Eqs. (10) and (11).
Note that, as expected, for larger κ, the theory agrees better with
the simulations. Furthermore, one can see that the tricritical point
is in agreement with Eq. (14), and gets higher for smaller Δ,
Fig. 3h. The symbols in Fig. 3g refer to the demonstrations in
Fig. 3f exhibiting the system state in each region.

Fig. 2 Theory. The forced system has a new phase diagram. a The relation, Eq. (8), between the system state (〈x〉) and its connectivity (β) provides the
phase diagrams of both free (ρ= 0) and controlled (ρ > 0) systems for any dynamics. Here we demonstrate this for three distinct systems. b, c Cellular
dynamics. b A free system diagram shows a suppressed function at x0 for small β, and a bi-stable regime for large β, where x0 and x1 both exist and are
stable. Thus the system is unsustainable and has a risk to fail into a nonfunctional state. c In contrast, a forced system, controlled by holding a fraction ρ of
nodes with high-value Δ, shows a new phase diagram, having an s-shape curve, with a new region for large β in which only x1 appears (blue). Thus, a
system in the blue region is now safe and not only active, but also sustainable. d, e Brain dynamics. d A free system exhibits three regimes: inactive for
sparse topology, active for dense topology, and bi-stable in between. e Forcing the system with certain Δ and ρ pushes the twist of the s-shape to a lower
β-value, and as such, makes the blue regime becoming sustainable rather than bi-stable. f, g Spin dynamics. f A free system has a zero inactive stable state
for sparse connectivity, while for dense connectivity, there are two symmetric active states. g Controlled system shows a new phase diagram including a
sustainable regime where only the positive stable state appears (blue shade). This dynamics does not fall into the formula in (a), however, a similar
analysis can be done, see Supplementary Note 4 Section 4.3.
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Next, we split the merged connectivity β and move to look at
the 3D space (κ, λ, ρ), particularly on the (κ, λ)-space. This is
since we want to test the system behavior also for low degrees,
and thus we decouple β into two parameters κ and λ, Eq. (7).
Moreover, we want to generalize the phase diagram to include the
single-node reviving model39, where under certain conditions

controlling one node revives the whole system into its high-active
state. When it works, it also makes the system sustainable since it
cancels the low-active state. Figure 3i shows the phase diagram of
a free system with two areas as above in Fig. 3b. In Fig. 3j, we
show the combined single-node reviving (dark blue), and
fraction-reviving with ρ= 0.01 (light blue). The control of a

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01138-8

6 COMMUNICATIONS PHYSICS |            (2023) 6:22 | https://doi.org/10.1038/s42005-023-01138-8 | www.nature.com/commsphys

www.nature.com/commsphys


small fraction of the system considerably extends the sustainable
phase. The white lines represent the results of our theory,
calculated via βc using Eqs. (10) and (11). Note that the theory
works well for high κ while deviates for small values. The reason
is the nature of the mean-field approximation, which works
usually quantitatively only for a large degree. The reason is that if
nodes have more neighbors, then different neighborhoods are
more similar, as assumed by the mean-field theory.

In Fig. 3k, we cross the (κ, λ)-space horizontally for fixed
λ= 0.1 while changing κ. Symbols represent simulations and the
line represents the theory, obtained by Eqs. (10) and (11). This
supports the scaling obtained in Eq. (12)ρc ~ β−2. See Fig. S3 for
other values of a and h. It can be seen that for very small ρ there is
an increasing deviation even though κ is large. This slight
discrepancy becomes larger in Fig. 3l, where we move vertically
with λ for fixed κ= 20 and κ= 100. Here the deviation of the
theory (continuous line) for small ρ is significant. However, it gets
better for larger degrees, as expected. This gap exposes the
contradiction between our MF and simulations regarding the
limit of ρ→ 0, as discussed below.

The limit ρ → 0. Our MF theory, by definition, yields that ρ→ 0
derives βc→∞ as in a free system without intervention at all.
However, it has been shown39 that for large enough λ even a
single node impacts the network globally. The reason that our MF
fails for very small ρ and not very large degree (see the continuous
lines in Fig. 3l) is that when there are only one or few controlled
nodes, the uniformity or homogeneity assumption of different
nodes in the network, upon which the MF relies, is broken. The
network gets a structure of shells around the few controlled
nodes, as analyzed in ref. 39. Therefore, we developed here a
modified shells MF which includes also the case of many con-
trolled nodes rather than only one. This method bridges the
microscopic and macroscopic intervention limits. It involves a
combination of analytical and computational parts to cover both
edges as well as the between range. A full analytical solution is still
to be obtained. See Supplementary Note 3 for details. The dashed
lines in Fig. 3l are obtained from this improved method, showing
excellent agreement with simulations, thus, covering both
extremes.

Large fluctuations. Another challenge for our MF theory is large
fluctuations. This is when the network has a small average degree,

but particularly for scale-free (SF) networks which exhibit a broad
degree distribution, which represents large variations in node
degrees. For these cases, though our MF approach predicts the
transitions qualitatively, it has some deviation regarding the
location of the critical points. To overcome the challenge of such
networks, we step back in our theory derivations to Eq. (5), and
use the order parameter Θ, Eq. (3), to determine the system states.
This method does not assume the general parameter β= λκ, and
even not the global parameter κ. But the analysis and solution
depend on λ and on the full degree-distribution pk, Eq. (5). In
Fig. 4, we present the advantage of this method compared to the
above method, represented by Eq. (8). Figure 4a shows the very
good agreement between simulations and theory, Eq. (5) for a
scale-free network with γ= 3.5 and k0= 15. In Fig. 4b, we present
the (β, ρ) phase diagram for the same scale-free network as in
Fig. 4a. The continuous lines represent the theory of Eq. (5),
showing excellent agreement with the simulations results, while
the dashed lines representing Eq. (8) fail. The SF’s phase diagram
implies the higher susceptibility of SF to become sustainable
compared to Erdős–Rényi (ER). For example, as seen in Fig. 4c
and b, ρ0 that ensures the absence of the unsustainable phase is
about 0.1 in ER while it is only about 0.03 in the presented SF. SF
networks with smaller γ, or smaller k0, show some deviations
from theory also for Eq. (5), see Fig. S4. Finally, we show in
Fig. 4c that also in ER with a not very large degree, κ= 10, Eq. (5)
supplies a significantly better accuracy (full line) compared to Eq.
(8) (dashed line).

Additional examples. Next, we consider other two types of
dynamics to exhibit aspects that do not appear in the cellular
dynamics as well as to demonstrate the generality of our
framework.

Neuronal dynamics. As our second example, we consider neu-
ronal dynamics governed by the set of equations given in Fig. 5a,
based on a modification of the Wilson–Cowan model52,53, see
Supplementary Note 4 Section 4.2. As can be seen in Fig. 5b (thin
light lines), the system naturally exhibits an s-shape curve,
including three dynamic phases. The inactive phase for small β,
where there exists only the state x0, in which all activities are
suppressed. The region of high β, where there exists only x1, in
which the activities xi are relatively high. Thus, for high β, the
system is “naturally sustainable”. In between these two extremes,

Fig. 3 Sustaining a cellular network. a We apply our framework to the regulatory dynamics captured by Michaelis–Menten model44. b Simulations
(symbols) and theory (lines, Eq. (10) with ρ= 0) results for a free system of Erdős-Rényi (ER) structure with N= 104 and κ= 40 and for the parameters’
values a= 1 and h= 2. There is a bi-stable region (gray shade). In case that a≥ h, there is no bi-stability38, thus here, we consider h > a to analyze system
sustaining. c Demonstration of the activities of the system with β= 3.1 for ρ= 0. Both states are stable, therefore the system is unsustainable. d For a
forced system by a fraction ρ= 0.03 of random nodes with activity Δ= 5, Eq. (8) provides a phase diagram (thick curve), exhibiting an s-shape curve
which has now also a regime with only a single active state (blue shade). This regime is a sustainable phase. Note that simulations (symbols) are in
agreement with the theory (lines). The network is the same as in (b). e The same as (d) with a larger fraction of controlled nodes, ρ= 0.11. Here we see
that the unsustainable region almost vanishes, and the transition becomes almost continuous. This agrees with Eq. (14). f Activities for β= 1.5, 2.5, 3.1 in
three regions, inactive (red diamond), unsustainable (cyan circle), and sustainable (blue triangle) correspondingly. The dark blue nodes are the forced
nodes. The red nodes represent x0, the cyan nodes represent unsustainable x1, and the light blue nodes represent sustainable x1. g The new phase diagram
in (β, ρ)-space for Δ= 5. The simulations were done on ER networks with N= 104 for 50 values of ρ, 50 values of β, for κ= 20, 60, 100, and averaged over
ten realizations. In the color bar, the value 0 represents an unsustainable system, and 1 represents the other cases. The black lines are obtained from Eqs.
(10) and (11). h The same as (g) with lower intervention force Δ= 1. As expected, in this case, a larger fraction of controlled nodes is needed to make the
network sustainable. i (κ, λ)-space for a free system. j The sustaining phase diagram for ρ= 0.01 and Δ= 5. The light blue is the sustainable phase when
forcing a fraction ρ= 0.01 of nodes, and the dark blue is the sustainable regime for holding a single node. The white lines represent the theory, Eqs. (10)
and (11). k Horizontal trajectory in (κ, λ)-space for fixed λ= 0.1 and varying κ. Symbols are simulations and the line is theory obtained from Eqs. (10) and
(11). The slope is according to Eq. (12). l Vertical trajectory in (κ, λ)-space for fixed κ= 20, 100 and varying λ. Note that the critical fraction for sustaining,
ρc, for a given λ approaches 0, where it reaches the single-node sustainable phase in simulations (symbols). The theory, Eqs. (10) and (11) (continuous
lines), deviate from the simulation results for small ρ. The dashed lines are from a different theory, see Supplementary Note 3, which captures also the limit
of small ρ.
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the system features a bi-stable phase, in which both x0 and x1 are
potentially stable, therefore the active state in this region is
unsustainable. However, controlling a fraction of ρ= 0.02 with
the activity of Δ= 15, creates a new s-shape curve with a more
narrow bi-stable region (thick lines and symbols). Thus, a win-
dow of sustaining (blue shade) is created, in which the control
drives the system to be sustainable. In Fig. 5c, we observe, in (κ,
λ)-space, for ρ= 0.02, additionally to the three phases found for
gene regulation (Fig. 3j), the naturally sustainable phase where the
system is sustainable on its own without any intervention. Note
also that our theory, Eqs. (8) and (11), predict the required λc to
sustain the system given ρ= 0.02 for high degrees (white line).
Figure 5d shows the (β, ρ) phase diagram for κ= 20, 60, 100.

Spin dynamics. As our final example, we explore the dynamics of
spins connected by ferromagnetic interactions, captured by the
equations of Fig. 5e, which are based on Ising-Glauber model54.
This example is different from the two above examples since the
interactions in this dynamics are “attractive” rather than “cor-
roborative”. Moreover, the interactions act completely symme-
trically towards both stable states in contrast to the above
examples, where they only push toward the high-active state. In
addition, the form of equations is not included in our framework,
Eq. (1), however, a similar analysis holds for this dynamics, see
Supplementary Note 4 Section 4.3.

Figure 5f shows the significant change in the phase diagram of
the free system (thin lines) due to the controlled nodes (thick lines)
with a fraction ρ= 0.1 having activity Δ= 1. In contrary to the
symmetric states of a free system (thin and light lines), the forced
system shows a region (blue shade) where x1 is sustainable. Note
that this area is obtained for weak connectivity (small β) differently
from the above examples. This is an outcome of the attractive
nature of the interactions, since it causes competition between the
controlled nodes, which pull up, and the free nodes, which pull
down. The free nodes have a numerical advantage, however for
small β, the natural negative solution is small (in absolute value),
and for large enough Δ, the forced nodes win. In Fig. 5g, we show
the phase diagram in (κ, λ) space as above. For spin dynamics,
the phase of sustainability by a single node does not exist, due to the
symmetric attractive interactions. The reason is that when the
external signal propagates from the source node through neighbors,
they have, on average, only one neighbor behind that pulls them up
and more than one neighbor that pulls them down. Because of the
symmetry between states, the numerical advantage wins. Thus,
even if the intervention force Δ is high, its impact decays with
distance and makes only a local impact in an infinite system.
Figure 5h shows the (β, ρ) phase diagram, which has a different

shape compared to the above examples as explained above. Note
also that in this case, there is no tricritical point.

Discussion
In this paper, we study how dynamics that take place on a
complex network is affected by dynamic interventions. Although
a very broad knowledge has been accumulated on the structure of
complex networks, the knowledge on dynamics evolving on
complex networks is still being discovered. Our study deals with
the goal of understanding the ways of influencing network
dynamics via controlling a fraction of nodes.

We investigate the effect of a simple control of the system, i.e.,
forcing a fraction of nodes, ρ, to have a desired activity, xi= Δ.
We show that such a simple intervention, even for small ρ and
not large Δ, could have a crucial impact on the system’s dynamic
behavior. We find that the control of a fraction of nodes, does not
just pull up or down somewhat the natural states of the system,
but under certain conditions, eliminates some of the potential
system states. We show that this elimination of states can
transform a functional but unsustainable system to become sus-
tainable. This is because eliminating a potentially dysfunctional
state by control removes the danger of a transition into a
potentially undesired inactive state. We developed a general fra-
mework, applied to three kinds of dynamics, (i) cellular, (ii)
neuronal, and (iii) spins dynamics, revealing the phase diagram of
a controlled system, by which we can predict, for instance, the
minimal fraction of nodes required to make the system
sustainable.

Differently from “control theory” of complex networks29,
which explores the ability to move a system into any desired state
within a certain continuous volume, here we do not aim to move
the system at all, but to eliminate a potential undesired inactive
state of the system, and by this, the system stays in its natural
stable active state, an easier mission allowing our analytical
analysis. However, our framework is able to capture a global
change in the system’s phase diagram, while the control theory of
nonlinear dynamics on complex networks usually provides only
local information29 rather than global.

Our fundamental and primary analysis of the impact of a
simple intervention on network dynamics opens the door to
future studies. For instance, one could explore other and more
complex and/or realistic interventions, such as the non-random
spread of controlled nodes, e.g. localized selection, or such as a
different control, e.g., supplying some flux, constant or dynamic,
into the controlled nodes instead of just forcing their activities to
be constant as we considered here.

Fig. 4 Large fluctuations. Results for scale-free (SF) networks and Erdős-Rényi (ER) with low degrees which have large fluctuations, and thus demand
analysis using Eq. (5) rather than Eq. (8). a The order parameter Θ, Eq. (3), for a forced system with ρ= 0.015 and Δ= 5. The network here is scale-free
with N= 104, minimal degree k0= 15, and exponent γ= 3.5. The symbols are from simulations and the line is from theory, Eq. (5). b For the same network
as in (a), the (λ, ρ) phase diagram shows a significantly narrower unsustainable regime compared to ER. The black continuous lines are from Eq. (5), while
the dashed lines are from Eq. (8), which captures well ER networks but fails to predict SF. c Results for ER network with κ= 10, which is a smaller degree
than in Fig. 3g. Also, here, the theory of Eq. (5) (full line) is better than Eq. (8) (dashed line).
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An additional natural generalization of this work is extending
the scope governed by Eq. (1), since there is a variety of dynamics
that show different patterns, e.g., a diffusive interaction, xj− xi,
rather than multiplication as considered in Eq. (1).

Note also that networks with very broad degree distribution,
such as scale-free networks with exponent lower than 3, or net-
works with a very low degree, challenge the quantitative accuracy

of our theory, see Fig. 3a for low κ, and Fig. S4 for SF with γ= 2.5.
These challenges demand further research.

Finally, it is worth noting that controlling a very small fraction
of nodes can sustain a very large network. This is somewhat
analogous to the static structural problem of percolation of
interdependent networks, where a small fraction of reinforced
nodes can significantly increase the robustness of the system55.

Fig. 5 Sustaining neuronal and spin dynamics. a Neuronal dynamics based on Wilson–Cowan model52,53. b Phase diagram for dynamics of the forced
system via fraction ρ= 0.02 and holding value Δ= 15 according to Eq. (8). The network is Erdős-Rényi (ER) with N= 104 and κ= 40. The forced curve is
shifted left relative to the free system curve (thin and light lines), yielding a window of sustaining (blue shade) (c) (κ, λ)-space shows a sustaining phase
diagram containing five phases. Our theory, Eqs. (8) and (11), predicts for high degrees well the transition between unsustainable and sustainable by
fraction ρ= 0.02 and Δ= 15 (the white line). The light blue area is the sustainable phase for controlling a fraction ρ= 0.02, and the dark blue phase is the
sustainable region when controlling a single node. d (β, ρ) phase diagram for κ= 20, 60, 100. e Model for spin dynamics based on Ising-Glauber model54.
f While the free system (light and thin lines) shows a diagram with a zero regime and bi-stable symmetric regime, the forced system (thick lines) exhibits
two regions: for a dense network (large β) coexistence of x0 and x1, and for a sparse network (small β) only x1 appears. Consequently, there is a range of
sustaining (blue shade). Here ρ= 0.1 and Δ= 1. The network is ER with N= 104 and κ= 40. g The (κ, λ) phase diagram for ρ= 0.1 and Δ= 1. Here there is
no sustainable phase when holding a single node since controlling a single node does not change the global system states in this dynamics. The simulations
were averaged over 10 realizations of ER networks with N= 104. The white line represents the theory of Eq. (S4.41) in Supplementary Note 4 with Eq. (11).
h The (β, ρ) phase diagram for fixed Δ= 1. Color represents simulations on ER with κ= 20, 60, 100 and N= 104. The results were averaged over ten
realizations. The black line stands for the theory of Eq. (S4.41) in Supplementary Note 4 with Eq. (11).
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Methods
Forced system analysis. In this Section, we analyze the states of a forced system.
For an analysis of a free system without control, see Supplementary Note 1.

To follow the impact of such a control as in Eq. (2), and testing if it makes the
system sustainable, we analyze Eq. (2) for finding the system’s states while it is
forced. The dynamics of the free nodes (i 2 D), according to Eq. (2), is

dxi
dt

¼ M0ðxiÞ þ λ ∑
N

j¼1
AijM1ðxiÞM2ðxjÞ; ð15Þ

which by separating the sum between neighbors in D and neighbors in F turns to

dxi
dt

¼ M0ðxiÞ þ λM1ðxiÞ ∑
j2D

AijM2ðxjÞ þ ∑
j2F

AijM2ðΔÞ
� �

: ð16Þ

To find the steady states of the system, we demand a relaxation, thus the
derivative vanishes,

0 ¼ M0ðx�i Þ þ λM1ðx�i Þ ∑
j2D

AijM2ðx�j Þ þ kD!F
i M2ðΔÞ

� �
; ð17Þ

where x�i represents the relaxation activity value of node i, and kD!F
i denotes the

number of neighbors in F of the node i which is in D. Arranging the terms, we
obtain

Rðx�i Þ ¼ λ ∑
j2D

AijM2ðx�j Þ þ kD!F
i M2ðΔÞ

� �
; ð18Þ

where

RðxÞ ¼ �M0ðxÞ
M1ðxÞ

: ð19Þ
Next, we apply the degree-based mean-field approximation42,48–51, replacing

the binary value, Aij, by the probability of i 2 D and j 2 D to be connected given
their degrees, which is kD!D

i kD!D
j =ðjDjhkD!DiÞ because of the configuration

model structure. This gives

Rðx�i Þ ¼ λ ∑
j2D

kD!D
i kD!D

j

jDjhkD!Di
M2ðx�j Þ þ kD!F

i M2ðΔÞ
 !

: ð20Þ

Note that now the sum does not depend on i, hence we can write

Rðx�i Þ ¼ λkD!D
i Θþ λkD!F

i M2ðΔÞ; ð21Þ
by defining the order parameter,

Θ ¼ 1
jDjhkD!Di

∑
j2D

kD!D
j M2ðx�j Þ; ð22Þ

which is the average impact of a node in D (free node) on a node in D. Using
Eqs. (21) and (22), we obtain a single self-consistent equation for the order
parameter Θ,

Θ ¼ 1
jDjhkD!Di

∑
j2D

kD!D
j M2ðR�1ðλkD!D

j Θþ λkD!F
j M2ðΔÞÞÞ; ð23Þ

which is Eq. (5) above. To solve this equation, we should replace the summation
on nodes in D by some theoretically calculable term without need to measure
nodes degree. Thus, we look for different expressions by writing Eq. (23) as

Θ ¼ 1
hkD!Di

kD!DM2ðR�1ðλkD!DΘþ λkD!FM2ðΔÞÞÞ
� �

: ð24Þ

Averaging over all the possibilities of the pair kD!D and kD!F , it gets the form

Θ ¼ 1
hkD!Di

∑
k;k0

k PrðkD!D
j ¼ k; kD!D

j ¼ k0ÞM2ðR�1ðλkΘþ λk0M2ðΔÞÞÞ; ð25Þ

where PrðkD!D
j ¼ k; kD!F

j ¼ k0Þ is the joint probability that node j 2 D has k

neighbors in D (free nodes) and k0 neighbors in F (forced nodes). This joint
probability is determined by the degree distribution pk and the way of selection
of the forced nodes (F ). Next, instead of running over ðk; k0Þ (which are kD!D

and kD!F respectively), we run over (k0, k) where here k0 ¼ kD!V is the degree
of a free node, where V is the set of all nodes, and k ¼ kD!D is the number of
the free neighbors of a free node. Of course, for each node k0 ¼ k0 � k, that is
kD!F
i ¼ kD!V

i � kD!D
i . Performing this change of indexes, we obtain

Θ ¼ 1
hkD!Di

∑
k0

∑
k≤ k0

k Prðk; k0ÞM2ðR�1ðλkΘþ λðk0 � kÞM2ðΔÞÞÞ; ð26Þ

and substituting Pr(k, k0)= Pr(k0)Pr(k∣k0) yields

Θ ¼ 1
hkD!Di

∑
k0
Prðk0Þ ∑

k≤ k0
k Prðkjk0ÞM2ðR�1ðλkΘþ λðk0 � kÞM2ðΔÞÞÞ: ð27Þ

The terms hkD!Di, Pr(k0), and Pr(k∣k0) depend on the way of selection of the
forced nodes besides the degree distribution pk. For now, we consider a completely
random selection of controlled nodes. In this case, Prðk0Þ ¼ pk0 (the degree
distribution of the network) because D is random and therefore has the same
degree distribution pk as the whole network V. The probability that a neighbor is in

F is ρ, thus hkD!Di ¼ hkV!Di ¼ hkið1� ρÞ as an average of binomial distribution,
and Prðkjk0Þ ¼ k0

k

� �ð1� ρÞkρk0�k , binomial distributed. Substituting these, we
finally obtain for a random selection of controlled nodes,

Θ ¼ 1
hkið1� ρÞ∑k0

pk0 ∑
k≤ k0

k
k0
k

� �
ð1� ρÞkρk0�kM2ðR�1ðλkΘþ λðk0 � kÞM2ðΔÞÞÞ;

ð28Þ
where pk0 is the degree distribution and 〈k〉 is the mean degree. This self-consistent
equation is solvable theoretically based on the degree distribution. We use Eq. (28)
to plot the theoretical lines in Fig. 4.

Small fluctuations MF. To get a simpler and informative equation, we apply
another mean-field (MF) approximation25 that works well for small fluctuations, as
shown in Figs. 3, 5. According to this MF, we insert the average in Eq. (22) into the
function M2(x), to obtain

Θ ¼ M2
1

jDjhkD!Di
∑
j2D

kD!D
j x�j

� �
¼ M2ð�xÞ; ð29Þ

where the average activity of the unforced nodes, �x, is defined by

�x ¼ 1
jDjhkD!Di

∑
j2D

kD!D
j x�j : ð30Þ

Operating this average on Eq. (21) and using the MF approximation, we get

Rð�xÞ ¼ λκD!DΘþ λκD!FM2ðΔÞ; ð31Þ

where

κD!D ¼ hk2D!Di
hkD!Di ;

κD!F ¼ hkD!DkD!F i
hkD!Di ;

ð32Þ

are the average degrees into D and into F respectively of node approached by link
within D. Substituting Eq. (29) into Eq. (31) we obtain an equation for the activity
of a forced system,

Rð�xÞ ¼ λκD!DM2ð�xÞ þ λκD!FM2ðΔÞ: ð33Þ
The quantities κD!D and κD!F depend of course on the way of selecting the set

F of controlled nodes. For now, we assume for simplicity that F is selected
completely randomly, and find these quantities for this case. In Supplementary
Note 2 we analyze the general case.

Random selection. Selecting the set of controlled nodes F randomly determines
that the degree distribution of the controlled nodes, F , the free nodes D, and all of
the nodes V, are the same, pk. This allows us to analyze the quantities in Eq. (32),
appearing in Eq. (33), since we can replace the average over subset of the network
(F or D) by an average over all the network V. Considering that an arbitrary node
in V belongs to F with likelihood ρ, we obtain, using Wald’s identity,

hkD!Di ¼ hkV!Di ¼ hkið1� ρÞ: ð34Þ
For the second moment hk2D!Di, we first change the average to be on V,

hk2V!Di. Then we define a variable yj which is an indicator of whether neighbor
number j of a given node belongs to D, such that yj= 1 if neighbor j belongs to D
and yj= 0 otherwise. Thus, kV!D ¼ ∑k

j¼1 yj where the index j runs over neighbors
of an arbitrary node. The random variables yj are independent, and have the mean
1− ρ, therefore,

hk2D!Di ¼ k2V!D
� � ¼ ∑

k

j¼1
yj

� �2
* +

¼ ∑
k

j¼1
y2j þ 2 ∑

1≤ i<j≤ k
yiyj

	 


¼hkið1� ρÞ þ hk2 � kið1� ρÞ2:
ð35Þ

Substituting Eqs. (34) and (35) in Eq. (32) provides

κD!D ¼ hk2D!Di
hkD!Di

¼ 1þ ðκ� 1Þð1� ρÞ: ð36Þ

This result is very intuitive because this quantity represents the expected
number of free neighbors of a free node approached via a free node as well. Hence,
it has certainly one free neighbor, and since the average degree of an arbitrary
neighbor is κ, it has κ− 1 more neighbors but a fraction ρ of them is expected to be
controlled.

Next, we move to evaluate the second term in Eq. (32).

hkD!DkD!F i ¼ hkV!DkV!F i
¼ hkV!Dðk� kV!DÞi
¼ hkV!Dki � hk2V!Di:

ð37Þ
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We already found the second term in Eq. (35). The first term is

hkV!Dki ¼ ∑
k

j¼1
yj

� �
∑
k

i¼1
1

� �	 


¼ ∑
k

i¼1
∑
k

j¼1
yj

	 

¼ hk2ið1� ρÞ:

ð38Þ

Plugging Eqs. (35) and (38) into Eq. (37) gives

hkD!DkD!F i ¼ hkV!Dki � hk2V!Di
¼ hk2ið1� ρÞ � ðhkið1� ρÞ þ hk2 � kið1� ρÞ2Þ
¼ ðhk2i � hkiÞð1� ρÞρ:

ð39Þ

Substituting Eqs. (34) and (39) into Eq. (32) we get

κD!F ¼ hkD!DkD!F i
hkD!Di

¼ ðκ� 1Þρ: ð40Þ

This formula is intuitive as well, since it represents the number of forced
neighbors of a free node approached via another free node. κ is the expected
degree, and among the remaining κ− 1 neighbors, a fraction ρ is expected to be
forced.

Substituting Eqs. (36) and (40) into Eq. (33), we get the mean-field equation for
a forced system for a random selection of controlled nodes,

Rð�xÞ ¼ λð1þ ðκ� 1Þð1� ρÞÞM2ð�xÞ þ λðκ� 1ÞρM2ðΔÞ: ð41Þ
Taking the limit κ≫ 1 and recalling β= λκ, this equation takes the form

Rð�xÞ ¼ βð1� ρÞM2ð�xÞ þ βρM2ðΔÞ: ð42Þ
Isolating β, we finally obtain Eq. (8) above,

β ¼ Rð�xÞ
ð1� ρÞM2ð�xÞ þ ρM2ðΔÞ

; ð43Þ

which yields a relation between �x and β, determining the average activity of the
forced system for each topology captured by β. Also, the system states depend on
the intervention characteristics, ρ and Δ. Note that substituting ρ= 0 in Eq. (43)
recovers the case of a free system, see Supplementary Note 1. Recognizing the
stable states of a forced system (ρ > 0) compared to those of a free system (ρ= 0),
we can answer our main question of sustaining a system by holding a fraction of
nodes. In the following Section, we find for cellular dynamics the sustaining
window, i.e., a region where an unsustainable network becomes sustainable due
to external control.

Sustaining cellular dynamics
Forced system. To examine the behavior of cellular dynamics (9) under sustaining,
we seek to construct the forced system states according to Eq. (43),

β ¼ �xa

ð1� ρÞ=ð1þ �x�hÞ þ ρ=ð1þ Δ�hÞ : ð44Þ

This formula generates a new phase diagram for a forced system shown in
Fig. 3d (thick curve) for ρ= 0.03 and Δ= 5, exhibiting an s-shape diagram which
has now also a new active regime (blue shade), in which only x1 exists. This regime
is regarded as the sustainable phase. Note that the simulation results (symbols)
agree well with the theory. The simulations are for ER networks with κ= 40 and
N= 104. The value of λ varies.

Sustaining window. For finding βc, above which the forced system is sustainable,
according to Eq. (11), we take the derivative of β in Eq. (44) with respect to �x to be
zero as Eq. (11) demands, yielding

a�xa�1 1� ρ

1þ �x�h þ
ρ

1þ Δ�h

� �
þ �xa

ð1� ρÞð�hÞ�x�h�1

ð1þ �x�hÞ2
¼ 0: ð45Þ

Denoting u ¼ 1þ �x�h , we obtain,

að1� ρÞ
u

þ aρ

1þ Δ�h
� hð1� ρÞðu� 1Þ

u2
¼ 0: ð46Þ

Arranging terms gives a solvable quadratic equation,

aρ

1þ Δ�h u
2 � ðh� aÞð1� ρÞuþ hð1� ρÞ ¼ 0; ð47Þ

whose solutions are given by

u ¼
ðh� aÞð1� ρÞ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh� aÞ2ð1� ρÞ2 � 4ahρð1� ρÞ=ð1þ Δ�hÞ

q
2aρ=ð1þ Δ�hÞ : ð48Þ

Taking the solution which gives the smaller �xc for the transition to the
sustainable regime (see Fig. 3d), we get

�x�h
c ¼ �1þ

ðh� aÞð1� ρÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh� aÞ2ð1� ρÞ2 � 4ahρð1� ρÞ=ð1þ Δ�hÞ

q
2aρ=ð1þ Δ�hÞ :

ð49Þ

Substituting this in Eq. (44) provides βc(ρ, Δ), yields a complicated expression.
However, let us expand this in the limit of small ρ and, as a result small �xc as can be
seen in Fig. 3d, to get the scaling of βc and ρ in the limit of small ρ. To this end, we
go back to Eq. (45) to obtain the leading order

�xhc �
ρ

1þ Δ�h

1
ðh� aÞð1� ρÞ �

ρ

1þ Δ�h

1
ðh� aÞ � ρ; ð50Þ

and substituting this in Eq. (44), we finally obtain

βc �
�xac

�xhc þ ρ=ð1þ Δ�hÞ � ρ�
h�a
h ; ð51Þ

which provides the scaling between the connectivity β and the fraction of control ρ
at the transition from the unsustainable phase to the sustainable phase for small ρ
in cellular dynamics. The inverse relation gives for a given β the critically required
fraction ρc for sustaining a network,

ρc � β�
h

h�a: ð52Þ
In Fig. 3k, we present the results for a= 1, h= 2, thus we observe the scaling

ρc ~ β−2= (λκ)−2. In Fig. S3, we show results also for different values of a, h resulting
in different exponents and a good agreement between simulations and theory.

Notice that, as we discuss in detail in Supplementary Note 3, the limits of
small ρ and small 〈k〉 challenge our mean field that provides the scaling of (52),
which is valid only for small ρ. Thus, even though the simulation results in
Fig. 3k show the predicted exponent because of the large degrees, on the
contrary, the results in Fig. 3l show a deviation from the predicted scaling
because the MF assumption is broken due to the small ρ and small average
degrees.

Tricritical point. Beyond some point (β0, ρ0), the unsustainable phase vanishes, and
the transition between the high-active state and the low-active state becomes
continuous, see Fig. 3e, g, h. This happens when the two transition points on the
edges of the unsustainable region merge. In order for this to be fulfilled, there
should be only a single solution to Eq. (46), therefore the term inside the square
root has to equal zero. Thus we demand

ðh� aÞ2ð1� ρÞ2 � 4ahρð1� ρÞ
1þ Δ�h ¼ 0; ð53Þ

yielding

ρ0 ¼
1

1þ 4ah
ðh�aÞ2

1
1þΔ�h

; ð54Þ

which is the critical value of ρ above which the system is fully sustainable because
the bi-stable regime disappears. Plugging this into Eqs. (49) and (44) provides the
value βc of the critical point.

In our simulations in Fig. 3 we set a= 1, h= 2, thus we get ρ0= 1/(1+ 8/
(1+ Δ−h)), and setting Δ= 5 gives ρ0 ≈ 1/9, while using Δ= 1 yields ρ0= 1/5. In
general, for high Δ, we get ρ0 ≈ (h− a)2/(h+ a)2.

Data availability
No datasets were generated or analyzed during the current study.

Code availability
All codes to reproduce, examine and improve our proposed analysis are available at
https://doi.org/10.24433/CO.3390264.v1.
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