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Time persistence of climate and carbon
flux networks
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The persistence of the global climate system is critical for assuring the sustainability of the natural
ecosystem. However, persistence at a network level has been rarely discussed. Here we develop a
framework to analyze the time persistence of the yearly networks of climate and carbon flux, based on
cross-correlations between sites, using daily data from China, the contiguous United States, and the
Europe land region. Our framework for determining the persistence is based on analyzing the similarity
between the network structures in different years. Our results reveal that the similarity of climate and
carbon flux networks in different years arewithin the range of 0.57 ± 0.07, implying that the climate and
carbon flux in the Earth’s climate system are generally persistent and in a steady state. We find a very
small decay in similaritywhen thegapbetween years increases.Moreover,we find that thepersistence
of climate variables and carbon flux in the three regions decreases when considering only long range
links. Analyzing the persistence and evolution of the climate and carbon flux networks, enhance our
understanding of the spatial and temporal evolution of the global climate system.

The Earth’s climate system is a persistent and stable complex system in
which all climate variables interact, and this persistence has a crucial impact
on the health and sustainability of the ecological environment and species
diversity1–3.With the increasing human activities andmodern technology, a
significant amountof greenhouse gases, including carbondioxide, is emitted
into the Earth’s atmosphere through massive burning of fossil fuels,
industrial processes, and changes in land use, which is one of the important
factors leading to global climate change4. The sustainable development of
ecosystems and socioeconomic advancement depend largely on the per-
sistence of the Earth’s climate system. Therefore, a deeper understanding of
the persistence of climate variables, which evolve over time, is crucial for
understanding, predicting, and responding to climate warming. Further-
more, the persistence of the Earth’s climate system during climate change
has not been studied systematically.

There exist many studies on the time persistence of dynamics repre-
sented by single nodes, e.g., climate variables at a given location5,6, or brain
signals7, that characterize the persistence of a variable at a certain location.
However, persistence at a network level, i.e., the persistence of the topology
of the network links, has been rarely discussed. In recent years, the study of

time persistence of local temporal events has attracted researchers from
different fields1, such as the field of geophysics8 and the field of atmospheric
oceans9, since many related temporal phenomena (rainfall, wind, tem-
perature, etc.) are at a given location inherently persistent andnor randomly
independent. Here, we develop a framework to study the time persistence of
a climate network, and we apply it to climate and carbon flux systems. Our
framework for determining the persistence is based on analyzing the
similarity between the climate networks, i.e., the network links, in different
years based on the Jaccard index. The question of the persistence of the
climate network as a whole can lead to in-depth insight into the climate
mechanisms, help to improve climate models, and test if and how global
warming affects this global persistence synchronization.

The primary climatic variables, including temperature, wind speed,
precipitation, and geopotential height, have a significant impact on climate
change in the Earth system. Wunderling et al.10 used a network model of
four interacting climate tipping elements to investigate in different tem-
perature scenarios, the effect of climate change. Meanwhile, based on the
potential teleconnections among the tipping elements, researchers sys-
tematically studied the impact of the Amazon Rainforest Area on global
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climate change using the global near-surface air temperature field11. With
the increase in human activities, there has been a significant change not only
in the global surface temperature but also in the sea surface temperature,
which has a wide-range impact on the global climate system. Systematic
studies of trends, variability, and persistence of sea surface temperature
enable the analysis of the mechanisms and patterns of climate change, and
thus contributing to obtain a better understanding of climate change
processes12. Persistent extreme heat events under the influence of global
climate change have severe impacts on ecosystems and societies. Rousi
et al.13 identified Europe as a heatwave hotspot and found that its upward
trend in heatwave occurrence over the last 42 years was related to atmo-
spheric dynamics inducedby an increase in the frequency andpersistence of
double jets over the Eurasian continent. Wind speed, as a crucial climatic
variable, directly influences atmospheric and oceanic circulation, thereby
affecting the global climate system. Koçak et al.14 based on autocorrelation
function, conditional probabilities, and wind speed duration curves meth-
ods, analyzed wind speed data in northwestern Turkey. Their results indi-
cate that the proposed methods clearly reflect the persistence properties of
the wind speed in the studied area. In addition, the climate system is a
complex and giant system15, and its properties and phenomena can be
analyzed and better understood from a network perspective using sophis-
ticatedmethods of network science16. In this approach, regions are viewedas
nodes and correlations between climate variables of pairs of nodes are
considered as links17, providing a new perspective for understanding the
Earth’s climate system. Numerous studies have explored climate networks.
For instance, constructing climate networks based on extreme winter pre-
cipitation in the United States enabled the identification of regions of
extreme precipitation and the climatic conditions that lead to extreme
precipitation18. We note that climate variables have been used to study the
critical thresholds of climate change and provide early warning signals19–22.
Moreover, integrating climate network methods have been applied to
identify and measure the optimal paths that yield the interaction between
pairs of remotenodes, i.e., teleconnections23. Furthermore, climate networks
are known to generally present significant correlations when they are geo-
graphically close; while the correlations between sites at far distances are
largely influenced by external and global atmospheric processes. For
example, it is found the origin of a significant correlation between remote
nodes is due to their correlations with atmospheric Rossby waves24,25. These
studies provide a crucial scientific basis and methods to deepen our
understanding of the mechanisms and patterns behind climate change.

In 2014, the Intergovernmental Panel on Climate Change (IPCC)’s
Fifth Scientific Assessment Report concluded that the global average tem-
perature of land and ocean surfaces increased by 0.85 [0.65-1.06]∘C from
1880 to 2012, mainly due to the significant increase in the concentration of
carbon dioxide in the atmosphere26.While the terrestrial ecosystem and the
oceanic systemcan effectively removeCO2 from the atmosphere, the carbon
flux can reflect whether, at a given moment in time, a region is a carbon
source area (emitting more CO2 than it absorbs) or a carbon sink area
(removing more CO2 than it emits). If man-made emission sources (i.e.,
carbon sources) exceed the natural removal processes, it will inevitably lead
to a rise in atmospheric CO2 concentrations. Therefore, in addition to
studying climate variables such as temperature andprecipitation, it is crucial
to also study carbon flux to understand changes in the Earth’s climate
system and the effects of global warming.

Overall, investigating the persistence of carbon flux and climate vari-
ables networks is essential for maintaining the stability of the Earth’s climate
system which requires significant attention. The present persistence study
uses climate variables (temperature, wind speed, precipitation, and potential
height) and carbon flux data in the Earth’s climate system for the past 20
years. By combining network analysis of climate variables and carbon flux,
we construct the corresponding complex network systems of climate and
carbon flux, and other variables to investigate the persistence of the network
structure of the climate system from spatial and temporal perspectives
during the past 20 years. With our developed model, one can observe the
persistence of climate and carbon flux network structure during the past 20

years, by using the Jaccard index. In addition, we explored the persistence of
climate and carbon flux networks at different spatial distances. The results
show a decreasing trend of persistence with increasing spatial distance.

Methods
Network inference
Here, we select three important geographical regions that have had a sig-
nificant impact on global development in the past 20 years: EastAsia (China
(CHN)), the Americas (the Contiguous United States (USA)), and Europe
(EU). The study is based on the daily average datasets of climate variables
(temperature, wind speed, precipitation, and geopotential height)27 and
carbon flux28 in the three aforementioned regions. The datasets are evenly
distributed and interpolated into 2∘ × 2∘ grids, generating total of NA = 238
(CHN), 200 (USA), and 385 (EU) grid points. For more details, see Sup-
plementary Notes 1 (SN1).

The datasets of both carbon flux and climate variables contain strong
nonlinear trends and seasonal signals. Hence, to mitigate the effects of
trends, the data has been preprocessed following Ref. 22. To this end, we set
bCiðt0Þði ¼ 1; 2; . . . ;NA; t

0 ¼ 1; 2; . . . ;bLÞ, eGiðt0Þ ði ¼ 1; 2; . . . ;NA; t
0 ¼ 1; 2; . . . ;bLÞ,

eTiðt0Þði ¼ 1; 2; . . . ;NA; t
0 ¼ 1; 2; . . . ;bLÞ, eWiðt0Þ ði ¼ 1; 2; . . . ;NA; t

0 ¼ 1; 2; . . . ;bLÞ,
ePiðt0Þði ¼ 1; 2; . . . ;NA; t

0 ¼ 1; 2; . . . ;bLÞ as the original time series of car-
bon flux, geopotential height, temperature, wind speed and precipitation at

grid point i, respectively. HereNA is the number of nodes and bL ¼ 365× 20
(days) (February 29 has been removed). We removed the strong seasonal
trends by de-trending the original data.We achieved this by subtracting the
corresponding centered 30-day “moving” averages from the time series of
each variable, and normalizing it by the standard deviation of these
30 days29,30. This process helps to reduce the trends andnoise impacts which
is useful for evaluating the underlying cross-correlations representing the
strength of the links. According to the above steps, the carbon flux, geo-
potential height, temperature, wind speed, and precipitation time series for
each grid point are obtained and expressed respectively as Ciðt0Þ, Giðt0Þ,
Tiðt0Þ,Wiðt0Þ, and Piðt0Þ.

Next, we consider the grid sites as the nodes of the network, and the
cross-correlations between the time series of different pairs of the grid sites
are regarded as the links of the network. Using network science methods17,
we study the cross-correlations within the same climatic variables, thereby
measuring the interactions and relations between different locations.

The correlation pattern, i.e., the network structure of the system, evolves
with time, and to avoid losing important information, we apply the sliding
windowmethod by dividing the entire time series into smaller fragments. By
doing so, we can obtain at each sliding window the climate network that
captures the system’s evolving correlation pattern. One advantage of using
the sliding window method is that the sliding window has the properties of
memory and transitivity, which are important in studying the correlation
patterns of a system over time31. With the above method, the time series of
climate variables for each pair of grid points can be potentially linked to
construct the interaction network. Only significant links where their signal-
to-noise ratio is high (p < 0.1) are considered significant links when con-
structing the climate network. The evolution of this network could reveal
systematically the complexity and the spatio-temporal characteristics of the
climate system. Specifically, for the data of carbon flux and climate variables,
we construct a time-series network with a sliding window of L
(L= 365 × 2+ 90 days), where the moving step is set to 365 days. Thus the
time series of climate and carbon flux are divided into 18 segments of length
L (due to the 365 days overlap). Within the t-th window, we compute the
correlation matrix X(t), in which the element Xi,j is the cross-correlation
representing the links that connect node i and node j. First, the time-delayed
cross-correlation function between the two-time series Yi(t) and Yj(t) is
calculated, see refs. 23,25,32–34,

Xi;jðτÞ ¼
hYiðtÞYjðt þ τÞi � hYiðtÞihYjðt þ τÞi

σYiðtÞσYjðtþτÞ
; ð1Þ
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where 〈Yi(t)〉 and σYiðtÞ represent the average and standard deviation of
Yi(t), respectively. τ ∈ [− τmax, τmax] is the time lag, with τmax = 90 days.
The choice of τmax helps to ensure a reliable estimation of the seasonal
noise level in the cross-correlation. According to the time inversion
symmetry, we can obtain Xt

i;jð�τÞ ¼ Xt
j;iðτÞ35. We identify the value of

the highest peak of the absolute value of the cross-correlation function
and denote the corresponding time lag of this peak to be τ*. The
correlation between node i and node j is thus Xi,j = Xi,j(τ

*). The direction
of the link Xi,j(τ

*) is from i to j when τ* > 0 and from j to i when τ* < 0.
The direction is undefined when τ* = 0.Within each window, we quantify
the strength or weight of the links (correlations) using17,36:

wi;j ¼
Xi;jðτ�Þ � Xi;jðτÞ

σXi;jðτÞ
; ð2Þ

where Xi;jðτÞ, σXi;jðτÞ represent the mean and standard deviation over all τ
values of the cross-correlation function, respectively. Based on the above
steps, we construct a series of time-dependent climate and carbon flux
networks. A demonstration of 2017–2018 carbonflux data in theUSA as an
example to establish the links, is shown in Fig. 1. In Fig. 1b and c, one can see
that the peak point of the correlation coefficient of its links corresponds to
τ* = 1, which implies that the time delay between these locations of carbon
flux is 1 day from west to east.

Significant tests
In this study, a shuffling procedure is used to test the statistical sig-
nificance of the calculated link weights. The significance test is as follows.
For each pair of climate variables denoted by nodes i and node j, for node
i, we use the sequence of the t-th time window, and for node j, we use a
sequence taken from a randomly chosen time window, which we call
shuffled, where we repeated the shuffling process 50 times. Subsequently,
the significant links are determined by comparing their actual correlation
value to the shuffled correlation coefficients. In this shuffling approach,
we preserve the distribution of values and the natural auto-correlations in
each year for each shuffled record. If the original link strength (cross-
correlation value) significantly exceeds those of the shuffled control, we
identify it as a real link; otherwise, it is regarded as a spurious link. Due to
the distinct characteristics of positive weighted (wþ

i;j) and negative
weighted (w�

i;j) (of positive correlations and negative correlations,
respectively), critical threshold θ+(θ−) is set to be such that a correlation
value is regarded to be real when it has a probability below 1% to be
random, i.e., p < 0.01. In Fig. 2, the dashed lines represent the location of
the thresholds where the real cross-correlations values appear to have a
probability of at least 100 times higher than that of random. Thus, we
obtain the weighted adjacency matrixW(t) of the climate variables links
in the t-th time window. For instance, we illustrate the probability

distribution function of link weights for the original and shuffled data for
the 2017–2018 time window in Fig. 2. It is seen from Fig. 2 that the
threshold appears to be mostly for W above a value close to 4, that is,
above this value of W, the probability of a link being false diminishes to
less than 1%. Note that the fraction of links as a function of the threshold
also supports the reliability of this threshold since only above this
threshold does the fraction of links highly increase (see SN2 Fig. S17).
Note also, that W = 4 means that the peak value of the shifted cross-
correlation function is above 4 standard deviations from all correlation
values (For W = 4 as the threshold, the variation in the fraction of sig-
nificant links with year is shown in SN2 Fig. S18). Note that similar
results are seen for other years, see SN2 Figs. S2–S16.

In addition, we analyze the probability distribution functions of time
lags of the links between different locations for the studied climate variables
and carbon flux, as shown in Fig. 3 (similar results of wind speed and
precipitation, are shown in SN2 Fig. S19). It can be seen that the maximum
value of the time lags ofmost climate variables and carbon flux is 0, 1, or−1,
i.e., τ* = 0, 1, or −1 day. This indicates that the time delay between most
locations of climate variables and carbon flux is within 1 day from west to
east (The number and fraction of significant links between west to east and
east to west at a time lag τ* = ±1 are shown in SN2 Supplementary
Tables I–IX). The size of these time lags and the direction of the network
structure may be related to atmospheric circulation patterns, ocean surface
temperature distribution, and other climatic phenomena. For increasing
geographical distance (as shown in SN2 Figs. S20 and S21), the time lag
increases, but the maximum value does not exceed 1 or −1.

Next, we investigate the relationship between correlation strength and
distance. The geographical distance is calculated based on the latitude and
longitude coordinates of the two nodes. Since the geographic distance
dataset is discrete, we divide its range into uniform intervals of 200 km,
which is approximately the distance between neighboring nodes. This
partitioning enables us to assign each pair of nodes to a specific interval
according to their geographic distance, denoted as disi,j ∈ (disn, disn+1].
Here, disi,j denotes the geographic distance between node i and node j, and
disn and disn+1 represent the n-th and (n+ 1)-th distance intervals,
respectively. Figure 4 shows the fraction of significant links of climate and
carbon flux with respect to their geographic distance in the different time
series of dis∈ (disn, disn+1] (similar results of wind speed and precipitation,
are shown in SN2 Fig. S22). These findings suggest that, in general, nodes
closer in proximity exhibit a higher number of significant links. This is
expected since winds or other transport processes move the climate and
carbon between nearby locations, and the further the places are, the simi-
larity between locations, which is represented by links, becomes weaker.
However, strongoutliers are also observed. Inmany cases, there is a bumpof
many long-range links for distances of a few thousand kilometers. This
indicates that the mechanism is dominated not by transportation, e.g., due
to winds, but by the potential influence of an external player on both
locations, such as the Rossby waves, which have similar patterns in different

Fig. 1 | Example of establishing links of network. aAn example for demonstration
of four carbon flux network links based on 2017–2018 carbon flux data from the
USA. Red arrows (direction of the link) represent negatively correlated links, and

blue arrows represent positively correlated links.b, c Shown are the cross-correlation
functions of the negative weighted links and positive weighted links (red and blue
curves) for a, respectively.
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years25,32,37. Additionally, in Fig. 4h, one can note that during the 2013–2014
time window, the fraction of significant links differs from other years when
the geographic distance exceeds 5000 km. This phenomenon can be
attributed to the relatively small number of potential links within this
geographic range (0.4% of total potential links), of which nearly half are
significant. Consequently, the fraction of significant links in this period
differs notably from that in other years.

Results
After identifying the significant links in the correlation network of climate
and carbon flux constructed above (the number of significant links for each
of climate and carbon flux networks for different years is given in SN2
Fig. S23), we wish to measure here the persistence (similarity) of the spatial
network during the years. To this end, we analyze their temporal persistence
during the recent 20 years using Jaccard similarity coefficients38. We focus
here only on positiveweighted links, since as seen in SN2 Figs. S2–S16,most
networks have few negative weighted links. The Jaccard similarity is defined
as the ratio between the intersectionof the links inbothnetworks indifferent
years and the union number of links in both networks. The number of link
intersections/unions for each two networks is shown in SN2
Figs. S24 and S25. Based on the definition of the Jaccard similarity coeffi-
cient, one can conclude that a higher Jaccard index in the networks indicates
a greater structural similarity between the networks in these years. This, in
turn, signifies a stronger persistence in the spatial and temporal evolution of
the network system. Therefore, Jaccard similarity coefficients are chosen in

this study tomeasure the structural persistence of the climate networks and
of the carbon flux network.We present the actual Jaccard coefficient results
in SN2Figs. S26–S28, demonstrating significant persistenceduring the years
in the carbon flux and climate networks. However, when the geographic
distance is above 1000km, as shown in SN2 Fig. S28, it becomes evident that
the links between the carbon flux and climate networks in the regions of
China and Europe exhibit much less persistence. Note also that the per-
sistence of precipitation is lower compared to climate, in particular in
Europe.

In particular, to test the persistence significance, we randomly chose
the samenumberof edges for networks i and j as in the original twodifferent
years networks and placed them between pairs of nodes chosen randomly
and measure Jranij . The controlled process is iterated 500 times, and the
Jaccard coefficient in the controlled scenario (Jran) is determined as the
average value of Jranij computed across these 500 iterations (see SN2
Figs. S29–S31). Next, we examined the value of the actual Jaccard coefficient
(Jij) with respect to the values of the Jaccard coefficient in the controlled
random case (Jran) for determining the significance (t-test). Note that the
results for the cumulative distribution function of the actual Jaccard coef-
ficient and Jaccard coefficient in the controlled case are shown in SN2
Figs. S32–S34. The t-test reveals that the actual Jaccard coefficients are
significantly higher and different (p < 0.05) from the Jaccard coefficients in
the controlled random case. Thus, the average of the Jaccard similarity
coefficients in the controlled randomcase (Jran) is subtracted fromthe actual
Jaccard similarity coefficients to obtain the corrected effective Jaccard

Fig. 2 | Probability distribution function (PDF) of link weights for the real-time
window data and for the random shuffled data for the years 2017–2018. PDFs of
link weights W of carbon flux, geopotential height, and temperature for different
regions: a–c CHN, d–f USA, and g–i EU. The square points are the PDF of the link

weight of the real records, the circle is the PDF of the linkweight for the shuffled data,
and the dashed line is the threshold of link weight above which the chance that the
links obtained from the real data is less than 0.01% being random and false.
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similarity coefficient (E-Jaccard), i.e., E-Jaccardij defined—Jij � Jran (see
SN2 Supplementary Table X for the average and standard deviation of the
actual and controlled Jaccard similarity coefficients, p < 0.05). Figure 5
displays the effective Jaccard similarity coefficient matrix for all year pairs
based on the carbon flux and climate network links (similar results of wind
speed and precipitation, are shown in SN2 Fig. S35). One can observe that
the effective Jaccard coefficients are in the range of 0.57 ± 0.07 (p < 0.05) for
different carbon flux and climate variables in different regions. This implies
that the climate variables and carbon flux studied in the Earth’s climate
system are generally persistent andmaintain a steady state. It is notable that
the similarity between a given year and the years after does not decay
systematically—but only when averaged (see SN2 Fig. S41). This suggests
further that there is, on average, a small decay, but the persistent network of
links is quite stable. However, note that, for the carbon flux network in
China, unique low values of Jaccard have been observed in two years,
2004–2005 and 2015–2016. This could be related to the fact that in 2004,
China became the world’s largest emitter of CO2, although forests in the
country absorbed more than 8% of national emissions during that year39.
The following year, 2005,CO2 emissions reachedanewrecordhigh.Also, in
2015, China’s carbon emissions declined for the first time, marking a
turning point in the country’s carbon emissions40. These results indicate that
China has been actively pursuing the goals of the “Paris Agreement”. In
addition, Fig. 5b, h, the geopotential height networks in China and Europe,
under the general persistence, also show unique low Jaccards in the 2008-

2009 and 2007-2008 time windows, respectively. This finding can be
probably attributed to the largest snow extent in Eurasia in January 2008,
and the unusually warm temperatures resulted in the smallest spring snow
extent in Eurasia inMarch andApril 2008, leading to severe winter weather
anduniquebehavior of geopotential heights inEurasia41,42. Furthermore, the
Jaccard similarity coefficients of the links of each two networks in carbon
flux and climate variables are also analyzed for links having geographic
distances above 500 km and 1000 km (see SN2 Figs. S36 and S37). For links
above 500 km the Jaccard values are within the range of 0.55 ± 0.09, and for
links above 1000 km the Jaccard values are within the range of 0.47 ± 0.15
(p < 0.05). Thus, the similarity representedby the Jaccard values decreases as
the geographical distance between nodes increases. Moreover, we analyze
the average of Jaccard similarity coefficients based on the effective Jaccard
similarity coefficient matrix, considering between intervals ranging from
one to five years (i.e., averaging over each of the first five diagonal columns
below the central dark green column of Fig. 5) (see SN2 Figs. S41). One can
observe, in general, a gradually decreasing trend in the average of Jaccard as
the interval years increase.Note that the decrease is significant at the interval
of two years, followed by a slow decreasing trend subsequently. This phe-
nomenon can be attributed to the presence of a 365-day overlap in the data
for a one-year interval, resulting in an increased similarity in the network
structure, which in turn leads to a higher average of the Jaccard value. Thus,
when the interval of two years, the decrease in the average value of Jaccard
reaches the most significant extent. Nevertheless, one can see that the

Fig. 3 | Probability distribution functions (PDF) of the time lags, τ, of the real links in different time series.PDFs of τ of carbon flux, geopotential height, and temperature
for different regions: a–c CHN, d–f USA, and g–i EU. Different line patterns represent the time lag probability distribution of the network links for different years.
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similarity of the climate network slightly decreases with years, which is
reflected in the gradual decrease in persistence. This decay is consistent and
could be related to the decay found by Koscielny-Bunde et al.5 in their study
of the persistence of localized climate variables, where the autocorrelation of
temperature in a given location decays as a power-law. The decay in ref. 5
represents the decay in the similarity of the signal of each node, while the
present decay represents the decay of the global network, which is repre-
sented by links (interactions) between nodes. In addition, we notice that the
trends of climatic variables in different regions at different geographic dis-
tances remain generally consistent. Notably, within the China region, there
is a noteworthy slow increase in the persistence of temperature and wind
speed after the interval of 3 years. This change in trend may reflect climate
dynamics processes or climate variability patterns specific to China.

In addition, this paper extends the Jaccard similarity coefficient by
analyzing the variation of Jaccard similarity coefficients with years within
each of the two networks for different geographical distances. To test the
significance of our results, we analyze the network structure shuffled at least
500 times to obtain the Jaccard similarity coefficients at different geographic
distances in the controlled scenario. The findings, depicted in Fig. 6, reveal
that in the controlled scenario, the Jaccard similarity coefficient at different
geographic distances is consistently lower than the corresponding actual
Jaccard similarity coefficient (similar results of wind speed and precipita-
tion, are shown in SN2Fig. S42). Furthermore, in contrast to the carbonflux
network, the Jaccard index of the other climate networks exhibits similarity

for the two networks at different times. It is also seen that the shorter
geographical links are significantly, more similar over the years. The results
are consistent with those in Fig. 4, with increasing geographic distance, the
number of significant links decreases, i.e., there are fewer connections
between more distant geographic distances. Moreover, the Jaccard value is
also smaller, i.e., there is less climatic similarity between longer geographic
distances. Furthermore, Fig. 6a, e shows someanomalies of the largenumber
of links at geographic distances between 1500–3500 km, suggesting the
potential impact of Rossby waves of half wavelength at these scales24,32.
Finally, we statistically characterize the topological structure of the carbon
flux and climate networks (see SN2 Figs. S46–S49) and observe that they
obey a Poisson distribution, which indicates that most of the node degrees
are close to the averagedegree and consistentwith thehighpersistenceof the
network topology shown in Fig. 5. Furthermore,we identify communities of
climate and carbon flux networks using the Louvain algorithm, and SN2
Fig. S47 shows thefluctuation of giant community sizes over time. InChina,
the giant community size of geopotential height is the largest and fluctuates
around 110. For the United States, the giant community size of
the precipitation network is the smallest. For Europe, they fluctuate
around 110.

Conclusions
In this manuscript we developed a framework to study the time persistence
of climate networks.While the persistence of single records such as climate,
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Fig. 4 | Fraction of significant links in the network as a function of geographic
distance between the sites for different time series. Fraction of significant links of
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d–f USA, and g–i EU. Different line patterns represent the fraction of significant
links as a function of geographic distance between sites of the network in differ-
ent years.
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heartbeat, and DNA sequences have been extensively studied43, the persis-
tence of a network as awhole has been rarely addressed. The steady state is a
crucial feature of the climate and carbon flux system, playing an essential
role in understanding climate changes in the Earth system. However, the
persistence and steady state of the climate and carbon flux systems are not
yet fully understood. In this study, we construct climate and carbon net-
works where nodes are spatial locations, and links are derived based on
evaluating the cross-correlations between climate variables and carbon flux
in different locations. This framework enables testing the similarity between
the networks in different years in order to evaluate the persistence of the
climate and carbon systems.

We investigate the similarity of climate and carbon flux net-
works in different years for three land regions, namely East Asia
(China), North America (contiguous United States), and Europe,
using daily data on climate and carbon flux during 2000–2019. We
focus on the spatio-temporal perspective to explore the evolution of
the similarity of the system network structure. The results indicate
that the similarity of the climate and carbon flux networks between
different years represented by the Jaccard measure is in the range of
0.57 ± 0.07 (p < 0.05). That is close to 50% of the links remain the
same during the years, indicating that the correlation network
structure of the system is generally persistent and in a stable state.
However, the carbon flux network in China exhibits unique behavior
in specific two years, 2004–2005 and 2015–2016, which is
probably attributed to China’s rapid development and active

participation in the “Paris Agreement”. On the other hand, the study
reveals that the persistence of the network structure of climate and
carbon flux networks tends to significantly decrease as the geo-
graphical distance increases. Finally, our developed persistence fra-
mework provides a methodology and theoretical framework for the
network persistence of carbon flux and climate system network
structure, which helps to explore the structural steady state of the
Earth’s climate system useful tool to test the quality of models, testing
and predicting in good models future persistence, better under-
standing the impact of global warming, and provide the scientific
basis and proper response to climate change. Since the current study
mainly focuses on developing a framework for network persistence,
we use the limited but accurate records of 20 years only, as well as the
interactions within each layer only. The present study is concerned
with developing the concept and the framework for persistence
concept and how to measure it. Thus, we focus on the persistence of
climate same variable networks rather than interactions
between different variables. However, in order to better understand
the effect of climate behavior, our near future study will focus on
considering longer time periods and including the interactions
between different climate variables as well as future data predicted by
models, to deeply explore the time persistence of climate networks.
We will also test the model’s ability to predict climate networks
and test persistence in high-quality models that predict future cli-
mate data.
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Fig. 5 | The effective Jaccard similarity coefficient matrix for links in two net-
works of different years for each of the climate variables. The effective Jaccard
similarity coefficient matrix of carbon flux, geopotential height, and temperature for

different regions: a–c CHN, d–f USA, and g–i EU. Each matrix element represents
the difference between the actual Jaccard similarity coefficient and the corre-
sponding average values obtained from the controlled random case.
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Data availability
The climate variables dataset used here is publicly available at https://cds.
climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels. The
carbonfluxdata usedhere is publicly available at https://gml.noaa.gov/ccgg/
carbontracker/. All other data that support the plots within this paper and
other findings of this study are available from the first author (Q.T.) upon
reasonable request. Supplementary Data 1 is the numerical source data for
graphs and charts.

Code availability
Thecustomcodesusingwell-established algorithmsused for the experiment
analysis and numerical calculation are available from the corresponding
author upon reasonable request.
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