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We model magnetotransport features of the quenched condensed granular Ni thin films by a random two-
dimensional resistor network in order to test the condition where a single bond dominates the system. The
hopping conductivity is assumed to depend on the distance between neighboring ferromagnetic grains and the
mutual orientation of the magnetic moments of these grains. We find that the quantity characterizing the
transition fromweak disorder(not sensitive to a change of a single bond resistivity) to strong disorder(very
sensitive to such changes) scales ask /L1/1.3, whereL is the size of the system andk is a measure of disorder.
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Transport in granular metals, i.e., systems of metallic is-
lands embedded in an insulating matrix, has been an active
area of research for a number of decades but many experi-
mental findings are still not fully understood[1–4]. Recent
magnetoresistance measurements performed on quench con-
densed granular Ni thin films which are on the verge of elec-
tric continuity seem to indicate that in these systems the
electric conductivity is governed by the resistance of a local
configuration of few grains although there are 109 grains in
the system[5]. Sharp resistance jumps as a function of the
applied magnetic field observed in this experiment were in-
terpreted as the result of magnetomechanical distortions at a
bottleneck grain. In order to verify this hypothesis, we model
the granular system by network of random resistors and
study transport properties using numerical simulations. Our
main goal is to try and develop a comprehensive picture of
this phenomena. The main points which we wish to clarify
are how and under which conditions an order of a single
grain can determine the transport properties of the granular
mesoscopic system. In the picture of critical percolation,
each red bond should affect the conductivity, but their num-
ber (for a system of 109 grain) is about 102 and not a few
grains as observed.

An established method to fabricate systems of granular
metals in general[6–10] and particularly in granular ferro-
magnets,[11] in a very controlled way is quench condensa-
tion. In this method, thin films are grown by sequential
evaporation on a cryogenically cold substrate under UHV
conditions while monitoring the film thickness and resis-
tance. If the samples are quench condensed on a nonpassi-
vated substrate, such as SiO2, they grow in a granular man-
ner so that the film is composed of separated islands. As
more material is quench condensed, the average distance be-
tween the islands decreases and the resistance drops.

The hopping conductivity between two neighboring ferro-
magnetic grains depends on many factors but, for simplicity,
we consider here the main two: Dependence on the grain-to-
grain distance and dependence on the mutual orientation of
the magnetic moments,M , of these grains. The effect of
magnetic disorder is based on the assumption that the elec-
tron scattering, which takes place at the interfaces between
the magnetic grains, depends on the electron spin direction.
The electron spin direction may be parallel or antiparallel to

the direction of the magnetic moment of the initial grain and
the moment of the final grain. If parallel, the electron expe-
riences weak scattering and hence a low resistanceR��; if
antiparallel, the electron experiences strong scattering and
hence a high resistanceR��. The resistance of the spin-up and
spin-down electrons can be expressed as a function of the
relative orientation angleQi j between the magnetic moments
M i andM j of the neighboring ferromagnetic grains denoted
by i =hix, iyj and j =h jx, j yj, respectively. The spin-up and the
spin-down electrons constitute two separate currents(“two-
current” model[12,13]), and the total resistanceRij can be
found from expression

Rij = R0f1 − sdR/2R0d2s1 + cosQi jd2g, s1d

where R0=sR��+R��d /2, dR=sR��−R��d /2, cosQi j

=cosui cosu j +sinui sinu j cossfi −f jd, andu,f are the ori-
entation angles of the magnetic moment of two neighboring
ferromagnetic grains(labeled by “i” and “j” ).

The magnetic momentM i of the ferromagnetic grain is
assumed to be always parallel or antiparallel to its randomly
distributed easy axisêi, i.e., M i =±Miêi. At zero-magnetic
field, the direction of the magnetic moment of each grain is
set to be parallel to its easy axis. Once a magnetic fieldH is
turned on, it can switch the direction of the magnetic mo-
ment if M i ·H ,0. This switching from the parallel to anti-
parallel direction will occur once the strength of the mag-
netic field is such that the average magnetization of the
sample(according to the Langevin relation) is larger than the
grains magnetic momentM i. Thus, the grain magnetic mo-
ment will flip once,

M i ·H , Lshd ; cothshd − 1/h, s2d

whereLshd is Langevin function,h;MiH /kBT, andT is the
temperature.

The spacial disorder can be taken into account by con-
struction of a Miller-Abrahams resistor network[14]. Each
contact between a pair of grainsi and j is represented by a
resistor with conductancesi j proportional to the tunneling
probability: si j =s0 exps−2ar ijd, where s0 is a constant of
conductivity dimensionality,r ij is the distance between the
ith and j th grains, anda is the coefficient of the exponential
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decay (we do not consider here the thermal hopping over
barriers of energyDE). In order to perform numerical simu-
lations, we express the random distance between grains as

r ij = l̄ · randsi j d, where randsi j d is a random number taken

from uniform distribution in the range(0,1), l̄ =1/Îq is the
mean distance between metallic grains, andq is the two-
dimensional (2D) density of these grains. Therefore, the
bond conductance can then be rewritten as

si j = s0sQi jdexpf− k · randsi j dg, s3d

where k;2al̄ =2a /Îq can be considered as the degree of
disorder (a small densityq of the deposited grains corre-
sponds to strong disorder of the percolating system, i.e.,
largek), s0sQi jd=1/Rij whereRij is defined by Eq.(1).

We model the film with Ni grains, reported in Ref.[5],
deposited irregularly on a SiO2 insulating plate[see Fig.
1(a)], as a square 2D bond-percolating resistor network[see
Fig. 1(b)], where the conductivity of each resistor is assumed
to have a random value. Between neighboring sites, we insert
a resistor with random tunneling conductivitysi j [see Eq.(3)
and Fig. 1(b)], whose conductivity is phenomenologically
expressed as a function of the relative orientation angleQi j
of the effective magnetic moments of neighboring sites.
Then, we solve the obtained system of linear Kirchhoff equa-
tions [16] and calculate the total effective resistance,R, of
the 2D network as well as the values of the local current on
each resistor.

In Figs. 2(a) and 2(b), we show experimental data of the
relative magnetoresistance DRsHd /Rs0d;fRsHd
−Rs0dg /Rs0d [where RsHd is the total sample resistance at
magnetic fieldH], obtained for a dilute Ni granular 2D
sample, versus the applied magnetic field(see Ref.[5]). In
Figs. 2(c) and 2(d), we plot DRshd /Rs0d;fRshd
−Rs0dg /Rs0d obtained from our numerical simulations versus
h, which is proportional to the applied magnetic field[see

Eq. (2)]. In the experimental data, pronounced noise due to
sweeping the magnetic field back and forth can be clearly
seen. Similar behavior is observed in the simulation curves
when the disorderskd is large enough. For a higher value of
k (which corresponds to more dilute samples, i.e., closer to
percolation threshold) stronger jumps in the magnetoresis-
tance curves are observed. Our results suggest that the jumps
observed in both experimental and theoretical curves are a
result of magnetic moment flip(due to applied magnetic
field) at a bottleneck grain, leading to switches between dif-
ferent current trajectories.

In order to test this hypothesis, we perform the following
numerical simulations: We remove the resistor from the net-
work on which the local current is maximal. In this way, we
hope to determine the conditions for a single bond to domi-
nate the conductivity of the system. Such a removal of a
dominating single bond could change the trajectory of the
current along the spanning cluster which should effect the
system transport properties, e.g., the ohmic effective 2D re-
sistivity. Therefore, the ratioRcut/R (where R denotes the
resistivity of the system prior to the removal of the resistor
and Rcut is the resistivity after removing it) is an efficient
characteristic of disorder. We expect that the ratio will be
stronger for larger disorder.

In Fig. 3, we illustrate this by a color density plot of the

FIG. 1. (a) A schematic drawing of the Ni grains deposited on
the insulating SiO2 plate (site view). Magnetic moments of the Ni
grains are directed randomly.(b) Square bond percolation net of
resistors with random resistivity given by Eq.(3) mimicking the
tunneling (hopping) conductance(see also Ref.[15]). The black
circles on the sites of the network represent the magnetic moment
of the grain directed downward(i.e., −M ), while the open circles
represent the magnetic moment directed upward(i.e., +M ). The
resistivity of each resistor depends on both the grain-to-grain dis-
tance[see Eq.(3)] and the mutual orientation of the magnetic mo-
mentsM i andM j of the neighboring grains.

FIG. 2. (a) and(b) Experimental data of the relative magnetore-
sistanceDRsHd /Rs0d versus magnetic fieldH (in Tesla) of a dilute
granular Ni sample forT=4 K (Ref. [5]). The sample in case(b) is
more disordered than in case(a). The values ofk and system size,
L, realized in these experiments[5] can be estimated ask
,102–103, and L,105. (c) and (d) Theoretical drawings of the
similar quantityDRshd /Rs0d versush [see Eq.(2)] obtained from
numerical simulations on a random bond-percolating resistor net-
work of the sizeL=100 withk=4 [see(c)] andk=40 [see(d)]. The
ratio of the hopping resistivities when the magnetic moments of the
grains are parallel compared to the antiparallel case[see Eq.(1)] is
R�� /R��=4.
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current distribution in the random resistor network before
and after removing the bond with the maximal current. This
cutting significantly changed the current trajectory.

To quantify this phenomena, we analyze the effect ofk on
Rcut/R. In Fig. 4(a), we show a semilog plot of the statisti-
cally averaged value of the ratioRcut/R [i.e., Rcut/R
;s1/Ndon=1

N Rn,cut/R] versusk for various sizes of systems
L=10–200. The average is taken overN=104–106 realiza-
tions. In Fig. 4(b), we present the scaling behavior of this
ratio. It is found thatRcut/R scales well as a function of
k /L1/1.3, while in the limit of strong disorder this ratio scales
as lnsRcut/Rd~k /L1/1.3. This scaling is in agreement with the
scaling found in Ref.[17] for the transition from weak dis-
order to strong disorder in the case of optimization. A similar

scaling is also obtained for the ratioD / R̄ [where D

;Îon=1
N sRn−R̄d2/N is the variance ofR and R̄;on=1

N Rn/N
is the statistically averaged value ofR]. In Fig. 4(c), we show

the dependence of the ratioD / R̄ versusk for different sizes
of the system. In Fig. 4(d), we show its scaling behavior

which is the same as in Fig. 4(b), i.e., lnsD / R̄d scales as
k /L1/1.3, again in agreement with Ref.[17]. It is plausible

that the scaling parameterk /L1/1.3 should, in general, be
k /L1/n, where in d=2 percolationn=1.33. Indeed, similar
numerical studies[18] for d=3 yield good scaling with
k /L1/0.9 consistent withn=0.88 ind=3 percolation.

In summary, the recently observed features of the electri-
cal transport in dilute granular Ni films[5], which are be-
lieved to be governed by a very small number of grains, are
explained using Monte Carlo resistor network simulations.
The dependence of the simulated magnetoresistance versus
the applied magnetic field are similar to the experimental
measurements and indicate that few resistors or even a single
one can govern the total conductivity. This is not expected
from a pure percolation picture where the number of red
bonds on which the current is maximal scales asL1/n, i.e., of
order of a few hundreds in the macroscopic system consid-
ered here. On the other hand, the strong disorder limit of our
model yields a single bond that dominates the conductivity.

In addition, the unique geometry of the samples enables
one to detect the properties of a single grain even if the
sample has macroscopic dimensions. The considered granu-
lar samples also provide a unique opportunity to study mag-
netoconductive effects on nanosized structures. The results
obtained on these extreme samples shed some light on the
behavior of the ferromagnetic granular samples in general
and they may also be relevant for the development of new
types of magnetoresistive-based single-grain devices.

FIG. 3. (Color) A typical color density plot of the current distri-
bution in a square bond-percolating lattice for which the voltage is
applied in the vertical direction. This is a topological sketch in
which the grains are located at the crossings of the grid lines and
the spatial disorder is not presented. The current between the grains
is shown by the different colors in the bonds composing the square
grid. On the right-hand side, the current scales are shown: Orange
corresponds to the highest value, green to the lowest.(a) Initial
distribution of currents in the resistor network. The location of the
resistor, on which the value of the local current is maximal, is
shown by a circle.(b) The same for the modified network after
cutting the spanning cluster by removing the resistor on which the
local current is maximal. This removal results in a change of the
current trajectories. Here,L=8 andk=22.

FIG. 4. (a) A semilog plot of the mean value of the ratioRcut/R
versusk for various sizes of the system:L=10, 20, 30, 40, 50, 100,
and 200(from top to bottom). (b) A semilog scaling plot of the
same quantity versusk /L1/1.3. (c) A semilog plot of the ratio of the

variance ofR normalized by the average resistivityD / R̄ versusk
for the various sizes of the system:L=10, 14, 20, 30, 40, 50, 100,
200, and 300(from top to bottom). (d) A semilog scaling plot of the
same quantity versusk /L1/1.3.
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