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Abstract

Generic three-dimensional (3D) exact relations were found recently (Phys. Rev. B (2002)
184416) between macroscopic or bulk e�ective moduli of composite systems with related mi-
crostructures which are, in general, di�erent. As an example of possible application of these
relations, a new numerical approach is proposed for simulations of composite systems with
oblate inclusions: The initially anisotropic shape of the inclusions can be transformed to spheri-
cal, but the local conductivity tensor �̂2 of the host in the initial system should be replaced by
the corresponding transformed value �̂2. We simulate large 3D networks of circuit elements in
this new �-system using relaxation, network-reduction, and other methods. The e�ective value
of the conductivity, �̂e, of the initial �-system, can be found from the e�ective value �̂e of
the transformed �-system, using our exact relations. We propose to apply this approach for
simulations of the phase transition in the high-Tc superconducting granular ceramics.
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Despite the considerable progress made in the theory of disordered and percolating
media, the main tool for studying such systems remains numerical simulations. The
only analytical results for such media are the expressions obtained in the e�ective
medium approximation (EMA) [1–3] and Keller’s exact relations [4,5]. Both are widely
used in current researches but both have strong restrictions on their applicability. The
Erst (EMA) does not work in the vicinity of the percolation threshold, while the
second (Keller’s theorem) is valid only in 2D systems. Recently we found a generic
three-dimensional (3D) exact relations between macroscopic or bulk e�ective moduli
of composite systems with di�erent microstructures [6]. These relations are valid for
both ordered and disordered composite media. As an example of possible application
of these relations, a set of Keller-like quasi-3D relations were derived recently for the
case of columnar-shaped parallel inclusions [6–8].
Here we present another possible application of these relations: A new numerical

approach is developed in order to perform simulations of composite systems with oblate
inclusions. The initially anisotropic shape of inclusions can be transformed to spherical,
but the local conductivity tensor �̂2 of the host in the initial system must be replaced
by another value �̂2. We simulate large 3D networks of circuit elements in this new
�-system using relaxation, network-reduction, and other methods. The e�ective value
of the conductivity, �̂e, of the initial �-system, can be found from the e�ective value
�̂e of the transformed �-system, using our exact relations.

Let us consider a pair of two-constituent composite media which di�er in their
microstructure as well as in their constituent physical properties. Let the Erst system is
characterized by the local conductivity tensors �̂1 (inclusions), �̂2 (host), and by the
volume averaged e�ective conductivity tensor �̂e (for details see e.g. Ref. [9]), while
the second system is characterized by the other set of conductivity tensors �̂1, �̂2, and
�̂e, respectively. As proven in Ref. [6], if
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then the macroscopic analogue of this relation is also valid:
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Here we assumed that the o�-diagonal parts of �̂ and �̂ are related as: �(2)�	 = −�(2)	� ,
�(2)�	 = −�(2)	� , for � �= 	. Relation (2) can be simpliEed when � = 	, or if we assume

�(2)�	
/√

�(2)�� �
(2)
		 = �(2)�	

/√
�(2)�� �

(2)
		 . In those cases

if
�(1)�	√
�(2)�� �

(2)
		

=
�(1)�	√
�(2)�� �

(2)
		

; then
�(e)�	√
�(2)�� �

(2)
		

=
�(e)�	√
�(2)�� �

(2)
		

: (3)

The pair of microstructures under consideration are related to each other by the co-
ordinate rescaling transformation: Thus, if L� is a characteristic size in the direction
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� in the Erst system and L� is the analogous value in the second system, then these
lengths will be related to each other by

L� = L�

√
�(2)�� =�

(2)
�� : (4)

If the tensors �̂2 and �̂2 have diagonal elements that are not proportional to each other,
then an initial spherical shape of inclusions will be transformed to an ellipsoidal shape.
Relations (1)–(3) can be used for numerical simulations of composites with oblate

inclusions. It is clear from the above consideration that the initially anisotropic shape of
inclusions can be transformed to a spherical shape. The condition, that in the re-scaled
coordinates the shape of the inclusions will be spherical, is L�=L	, where �; 	=x; y; z.

After taking into account Eq. (4), this gives L�
√
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		 . Thus, instead

of the composite with conductivity tensor �̂(2) and oblate shape of the inclusions, we
can consider a composite with spherical inclusions but a di�erent conductivity tensor
�̂(2), satisfying
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We then construct a random 3D resistor network in order to perform Monte Carlo
simulations of the conductor/superconductor composite with host conductivity tensor
�̂2 and calculate the e�ective conductivity �̂e of the considered system. The e�ective
conductivity tensor �̂e can then be found from Eq. (3):
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�� : (6)

In Fig. 1 we plot �̂e = 1=�̂e vs. the volume fraction p1 of the superconducting in-
clusions. We believe that the method described here is a powerful tool for numerical

Fig. 1. E�ective resistivity (�̂e =1=�̂e) tensor components �(e)zz and �(e)xx vs. p1 (volume fraction of perfectly
conducting inclusions), obtained by numerical simulations. In the calculations were used the following values
of the host conductivity tensor in the re-scaled system: �(2)zz =1, �(2)xx =1=5 (in dimensionless units), �(2)yy =�

(2)
xx ,

�(2)�	 = 0 for � �= 	. If in the initial system �(2)zz = 1, �(2)xx = 7, and Lx=Lz =
√
35, then [according to Eqs. (5),

(6)] �(e)zz = �(e)zz and �(e)xx = 35�(e)xx , from what we obtain �̂e = 1=�̂e. The discrete network is constructed as
described in Ref. [10]. The x- and z-axis lie along the principal axes of spheroidal inclusion.
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simulation of the resistive phase transition in high-Tc superconducting ceramics with
highly anisotropic grains (in addition to our recent EMA studies of such superconduc-
tors [11]).
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