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W e  review recent evidence supporting the discovery of long-range power-law correlations 
in D N A  sequences that  contain non-coding regions. T h e  possible interpretation of this 
finding is  also discussed. 

Nous  pre'sentons les re'centes e'vidences supportant la de'couverte de la corre'lation de la 
loi puissance sur  des se'quences ri longue distance d ' A D N  qui cont iennent  des re'gions 
non-codantes. L'interpre'tation de cette de'couverte est e'galement discute'e. 

Scaling concepts have played a key role in our understanding of phenomena occurring near 
critical points. A scale invariant function f(x) has the remarkable property that each time x is 
doubled, the function f(x) changes by the same factor. There is thus no way to set a characteristic - . ,  
scale for such a function. 

Stated mathematically, if the variable x is increased by an arbitrary factor A, then the function 
is changed by a factor XP which is independent of the value of x, 

for all A. An algebraic equation for x, such as x2 = 4, constrains the values of x to be f 2. Similarly, 
a functional equation, such as (la), constrains the set of possible functional forms of f(x): any 
function f(x) satisfying ( la)  must be a power law, as may be seen by substituting the choice 
X = 1/x in (la), 

f (x) = AxP (la> 

We say that scale invariance [Eq. (la)] implies power-law behavior [Eq. (lb)]. Conversely, power- 
law behavior implies scale invariance, since any function f(x) obeying ( lb)  also obeys (la)--one 
can verify this by substitution. Thus scale invariance is mathematically equivalent to power law 
behavior. 

Power laws are found to describe various functions in the vicinity of critical points. Such 
systems include not only materials with Hamiltonians (such as the Ising and Heisenberg models) 
but also purely geometric systems, such as percolation. Scaling is also found to hold for polymeric 
systems, including both linear and branched polymers. Here power law correlations develop in 
the asymptotic limit in which the number of monomers approaches infinity. The list of systems 
in which power law correlations appear has grown rapidly in recent years, including models of 
rough surfaces, turbulence, and earthquakes. In this talk, I will present recent work suggesting 
that-under suitable conditions-the sequence of base pairs or "nucleotides" in DNA also displays 
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power law correlations. The underlying basis of such power law correlations is not understood at 
present, but it is at least possible that this reason is of as fundamental importance as it is in other 
systems in nature that have been found to display power-law correlations. 

1. Information coding in DNA 

Genomic sequences contain numerous "layers" of information. These include specifications for 
mRNA sequences responsible for protein structure, identification of coding and non-coding parts 
of the sequence, information necessary for specification of regulatory (promoter, enhancer) se- 
quences, information directing protein-DNA interactions, directions for DNA packaging and un- 
winding. The genomic sequence is likely the most sophisticated and efficient information database 
created by nature through the dynamic process of evolution. Equally remarkable is the precise 
transformation of different layers of information (replication, decoding, etc) that occurs in a short 
time interval. While means of encoding some of this information is understood (for example, the 
genetic code directing amino acid assembly, sequences directing intronlexon splicing, etc.), rel- 
atively little is known about other layers of information encrypted in a DNA molecule. In the 
genomes of high eukaryotic organisms, only a small portion of the total genome length is used for 
protein coding. The role of introns and intergenomic sequences constituting a large portion of the 
genome remains unknown. Furthermore, only a few quantitative methods are currently available 
for analyzing such information. 

2. Conventional statistical analysis of DNA sequences 

DNA sequences have been analyzed using a variety of models that can basically be considered 
in two categories. The first types are "local" analyses; they take into account the fact that DNA 
sequences are produced in sequential order, so the neighboring base pairs will affect the next 
attaching base pair. This type of analysis, such as n-step Markov models, can indeed describe 
some observed short-range correlations in DNA sequences. The second category of analyses is 
more "global" in nature; they concentrate on the presence of repeated patterns (such as periodic 
repeats and interspersed base sequence repeats-) that can be found mostly in eukaryotic genomic 
sequences. A typical example of analysis in this category is the Fourier transform analysis which 
can identify repeats of certain segments of the same length in base pair sequences [I]. 

However, DNA sequences are more complicated than these two standard types of analysis can 
describe. Therefore it is crucial to develop new tools for analysis with a view toward uncovering 
the mechanisms used to code other types of information in DNA sequences. 

3. Scale-invariant (fractal) analysis of DNA sequences 

In the last decade, scaling analysis (fractal) techniques have been developed for detecting scale- 
invariant statistical patterns and study physical properties in complex fluids and other random 
systems. These methods have been successfully applied in a number of disciplines and to a number 
of problems including stochastic growth processes in physics and chemistry, polymer physics, as 
well as other problems [2-41. Since DNA sequences are long polymer chains, some general scale- 
invariant properties found in polymer physics [6,7] may appear in DNA, and alterations of those 
general properties may serve for characterization of DNA sequences. 

A new approach to studying stochastic properties of DNA involves the construction of a 1:l 
map of the base pair sequence projected onto a walk-which we term a "DNA walk" [5] .  The 
mapping is then used to obtain a quantitative measure of the correlation between base pairs 
over long distances along the DNA chain. In addition, the technique provides a novel graphical 
"fingerprint" representation of DNA structures. Since DNA sequences are long polymer chains, 
some general scale-invariant properties found in polymer physics [6,7] may appear in DNA, and 
variations of those general properties may serve for characterization of DNA sequences. 



In this fashion we uncovered in the base pair sequence a remarkably long-range power law 
correlation that is significant because it implies a new scale invariant (fractal) property of DNA. 
Such long-range correlations are limited to non-coding sequences (introns, regulatory untran- 
scribed gene elements and intergenomic sequenees) and occur in organisms as diverse as hepatitis 
delta agent, cytomegalovirus, yeast chromosome and a large number of eukaryotic genes encoding 
a variety of proteins (see [5]). 

The power-law decay correlations are of interest because they cannot be accounted for by the 
standard Markov chain model or other short-range correlations models (which will only give rise 
to an exponential decay in correlation). On the other hand, unlike the standard Fourier transform 
analysis [l] that detects the periodical repeats described by a few characteristic length scales, our 
analysis shows that there exist statistically self-similar patterns on all length scales. 

4. The "DNA walk" or  "fractal landscape" representation 

In order to study the scale-invariant long-range correlations of the DNA sequences, we first in- 
troduced a graphical representation of DNA sequences, which we term a "fractal landscape" or 
"DNA walk". For the conventional one-dimensional random walk model, a walker moves either 
up [u(i) = +1] or down [u(i) = -11 one unit length for each step i of the walk [2]. For the case 
of an uncorrelated walk, the direction of each step is independent of the previous steps. For the 
case of a correlated random walk, the direction of each step depends on the history ("memory") 
of the walker. The DNA walk is defined by the rule that the walker steps up [u(i) = +1] if a 
pyrimidine occurs at position a linear distance i along the DNA chain, while the walker steps 
down [u(i) = -I] if a purine occurs at position i (Fig. 1). The question we asked was whether 
such a walk displays only short-range correlations (as in an n-step Markov chain) or long-range 
correlations (as in critical phenomena and other scale-free "fractal" phenomena). 

Mapping o f  DNA sequence onto self-affine walk.  

C,T - pyrimidine up t u = + l  
A,G - purine d o w n +  " = - I  

Fig. 1: Schematic illustration showing the definition of the "DNA walk". 

The DNA walk provides a graphical representation for each gene and permits the degree of 
correlation in the base pair sequence to be directly visualized, as in Fig. 2. Figure 2 naturally 
motivates a quantification of this correlation by calculating the "net displacement" of the walker 

1 after 1 steps, which is the sum of the unit steps u(i) for each step i. Thus y(1) xi=l u(i). 
An important statistical quantity characterizing any walk [2] is the root mean square fluctua- 

tion F(1) about the average of the displacement; F(1) is defined in terms of the difference between 
the average of the square and the square of the average, 
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of a quantity Ay(1) defined by Ay(l) y(lo + 1) - ~(10). Here the bars indicate an average over 
all positions lo in the gene. Operationally, this is equivalent to (a) taking a set of calipers set for 
a fixed distance 1, (b) moving the beginning point sequentially from 1, = 1 to 1, = 2, .  - .  and (c) 
calculating the quantity Ay(1) (and its square) for each value of I,, and (d) averaging all of the 
calculated quantities to obtain F2(C). 

nucleotide distance, .e 

Fig. 2: The DNA walk representations of (a) intron-rich human P-cardiac myosin heavy 
chain gene sequence, (b) its cDNA, and (c) the intron-less bacteriophage lambda DNA 
sequence. Note the more complex fluctuations for the intron-containing gene in (a) com- 
pared with the intron-less sequences (b) and (c). The heavy bars in (a) correspond to 
the coding regions of the gene. In order that the graphical representation not be affected 
by the global differences in concentration between purines and pyrimidines, we plot the 
DNA walk representations such that the end point has the same vertical displacement 
as the starting point (for the statistical analysis, we used the original definition, without 
any adjustment of vertical displacement): The minimum (min) and maximum (max) 
points on the landscape are denoted by wrows. We found that for almost all intron-less 
genes and cDNA sequences studied that there appear regions with one strand bias, fol- 
lowed by regions of a different strand bias. The fluctuation on either side of the overall 
strand bias we found to be random, a fact that is plausible by visual inspection of the 
DNA walk representations. 

The mean square fluctuation is related to the auto-correlation function C(1) u(lo)u(lo + 1)- 
2 21(Io) through the relation: F2(1) = ~ f = ~  C(j  - i). The calculation of F(1) can distinguish 

three possible types of behavior. (i) If the base pair sequence were random, then C(1) would be zero 
on average [except C(0) = I], so F(1) N l1I2 (as expected for a normal random walk). (ii) If there 
were a local correlation extending up to a characteristic range R (such as in Markov chains), then 
C(1) N exp(-l/R); nonetheless the asymptotic behavior F(1) N l1I2 would be unchanged from the 



purely random ease. (iii) If there is no characteristic length (i.e., if the correlation were "infinite- 
range"), then the scaling property of C(1) would not be exponential, but would most likely to be 
a power law function, and the fluctuations will also be described by a power law 

with a # 112. Figure 2a shows a typical example of an intron-containing gene. It is immediately 
apparent that the DNA walk has a very jagged contour which we shall see corresponds to long- 
range correlations. Calculation of F(1) for this gene is shown in Fig. 3a. The fact that the data are 
linear over three decades on this double logarithmic plot confirms that F(1) - 1". A least-squares 
fit produces a straight line with slope a = 0.67 f 0.01. 
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Fig. 3: Double logarithmic plots of (a) the mean square fluctuation function F(1) as a 
function of the linear distance 1 along the DNA chain for the human P-cardiac myosin 
heavy chain gene and its cDNA, and (b) the average of F(1) over the entries in Groups 
A and B of Table 1 of Ref. 5. The difference in the slopes is statistically significant, 
consistent with the possibility of long-range correlations in Group A and short-range 
correlations in Group B. For clarity, the data points shown are separated by intervals of 
2k. Part (c) demonstrates a correlation of Opeven longer range for the intron-containing 
human beta globin chromosomal region (73,376 base pairs). Shown for comparison is the 
"1-step" standard Markov chain analysis of the same base pair sequence, displaying the 
expected exponent a = 112. 

Figure 2b shows the DNA walk for the cDNQ sequence of this same gene, while Fig. 2c displays 
the data for a typical intron-less sequence. In contrast to Fig. Za, these intron-free sequences 
have less jagged contours, suggesting a shorter range correlation. To analyze parts (b) and (c), 
we first observe that for almost all intron-less sequences that we studied, purine-rich regions 
(compared to the average concentration over the entire strand) alternate with pyrimidine-rich 
regions, corresponding to the "up-hill" and LLdown-hill" portions of the DNA walk. To take into 
account the fact that the concentrations of purines and pyrimidines are not constant throughout 
the single strand base pair sequence, each DNA walk representation is partitioned into three 
segments demarcated by the global maximum ("max") and minimum (LLmin") displacements and 
then we analyze the fluctuation within each segment. Figure 3a also shows the data for the cDNA, 
and a least-squares fit gives a straight line with slope a = 0.49 f 0.01. 

5. Universality of Long Range Correlations in Base Pair Sequences. 

In order to see if this scaling behavior is universal, we applied our analysis to 120 representative 
genomic and cDNA sequences across the phylogenetic spectrum, some of which are shown in 
Table 1 of Ref. 5. The myosin heavy chain family is particularly useful because it encompasses 
a number of long genomic and cDNA sequences for species ranging from yeast to humans. In 



20 JOURNAL DE PHYSIQUE IV 

addition, we analyzed other sequences encoding a variety of other proteins as well as regulatory 
DNA sequences. The results show that long-range correlations ( a  > 112) are characteristic of 
intron-containing genes and non-transcribed genomic regulatory elements (Group A). Thus, the 
average value (f 2SEM) of a for the first 14 entries of Table 1 is 0.61 f 0.03. In contrast, for cDNA 
sequences and genes without introns, a 0.50 f 0.05 indicating no long-range correlation (Group 
B). In keeping with this, the average value of a for the last 10 entries of Table 1 is 0.50 k 0.01. This 
significant difference in the value of a for the two groups of base pair sequences is further shown 
in Fig. 3b, where the actual fluctuations over the two sets of entries in Table 1 are averaged. Thus, 
the calculation of F(1) for the DNA walk representation provides a new, quantitative method to 
distinguish genes with multiple introns from intron-less genes and cDNAs based solely on their 
statistical properties. 

To confirm that the base pair correlations are truly long-range, we now discuss the breakdown 
of linearity that must ultimately occur in graphs such as Figs. 3a and 3b. The reason we do not 
show the graphs for distances larger than 1000 is that the statistical error in F(1) increases. 
Indeed, the L'fall-off" in the straight line behavior is typical of all fractal analysis and is also 
found for artificial sequences of correlated numbers. We found that sequences with more base 
pairs possess still longer regions of linear (power law) behavior than the three decades of linearity 
shown in Figs. 3a and 3b. For example, Fig. 3c is the correlation graph for the human beta globin 
chromosomal region, which has 73,376 base pairs; note that the linearity extends to roughly 
7000 base pairs. For comparison, Fig. 3c also shows the standard Markov chain analysis, which 
corroborates the classical result a = 112. The long-range correlations were found by an NIH team 
[8] to extend over the entire yeast chromosome 111 region (315,357 base pairs). Finite size effects 
on the correlation exponent a are discussed in Ref. 9. 

Thus we have introduced a new method to display correlations in the sequence of base pairs, 
and define a quantitative measure of the degree of correlation which is derived from a random 
walk representation. We found that the base pair sequence in intron-containing genes is highly 
correlated, and that the correlation is remarkably long range-indeed, base pairs thousands of base 
pairs distant are correlated. Moreover, the quantitative scaling of the correlation is of the power 
law form observed in numerous phenomena having a self-similar or "fractal" origin. Independent 
reports of long-range correlations in DNA have supported our findings [8,10,11]. Finally, we note 
that such long-range correlations are generally associated with the existence of a non-equilibrium 
dynamic process [2,12-141. Interestingly, cDNAs do not exhibit this property and appear to exist 
in an equilibrium state. Our finding of long-range correlations in intron-containing genes appears 
to be independent of the particular gene or the encoded protein. It is observed in genes as disparate 
as myosin heavy chain, beta globin and adenovirus (Table 1 of Ref. 5). 

6. Insertion model of genome organization 

Although the correlation is long-range in the non-coding sequences, there seems to be a paradox: 
long uncorrelated regions of up to  thousands of base-pairs can be found i n  such sequences as 
well. For example, consider the human beta-globin intergenomic sequence of length L = 73,326 
(GenBank name: HUMHBB). This long non-coding sequence has 50% purines (no overall strand 
bias) and a = 0.7. However, from base pair #67,089 to #73,228, there occurs the LINE-1 region 
[13]. In this region of length 6139 base pairs, there is a strong strand bias with 59% purines. In 
this non-coding sub-region, we found power-law scaling of F, with F lLY, with a = 0.55, quite 
close to that of a random walk. 

Even more striking is another region of 6378 base pairs, from base pair #23,137 to #29,515, 
which has 59% pyrimidines and is uncorrelated, with remarkably good power-law scaling and cor- 
relation exponent a = 0.49. This region actually consists of three sub-sequences, complementary 
to shorter parts of the LINE-1 sequence. 

These features motivated us to develop an "insertion model" based on the generalized Levy 



walk model for the non-coding regions of DNA sequences [15]. We show in the following paragraphs 
how this model can explain the long-range correlation properties, since there is no characteristic 
scale "built intot' this insertion model. In addition, the model simultaneously accounts for the 
observed large sub-regions of non-correlated sequences within these non-coding DNA chains. 

The classic Lkvy walk model describes a wide variety of diverse phenomena that exhibit long- 
range correlations [3,16-221. The model is defined schematically in Fig. 4a: A random walker takes 
not one but l1 steps in a given direction. Then the walker takes lz steps in a new randomly-chosen 
direction, and so forth. The lengths li of each string are chosen from a probability distribution, 
with 

P(lj) (lllj)', (3) 

N where xi=, li = L, N is the number of sub-strings and L is the total number of steps that the 
random walker takes. 

40 

20 - 
- (c) 

0 - 
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-40 6 sb 160 ido 260 250 360 350 400 450 

nucleotide distance, 

Fig. 4: Displacement y(1) vs. number of-steps for (a) the classical Lkvy walk model 
consisting of 6 strings of lj steps, each taken in alternating directions; (b) the insertion 
model consisting of 6 biased random walks of the same length with a probability of p+ 
that it will go up equal to ( I  f ~ ) / 2  [E = 0.21; and (c) the unbiased uncorrelated random 
walk. Note that the vertical scale in (b) and (c) is twice that in (a). 

We consider a generalization of the LQvy walk [22] to interpret recent findings of long-range 
correlation in non-coding DNA sequences described above. Instead of taking l j  steps in the same 
direction as occurs in a classic Lkvy walk, the walker takes each of lj steps in random directions, 
with a fixed bias probability 

P+ = (1 + ~ j ) / 2  (4a) 
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to go up and 
p- = (1 - y) /2  

to go down, where e j  gets the values +E or -E  randomly. Here 0 < E < 1 is a bias parameter (the 
case E = 1 reduces to the Lkvy walk). Figure 4b shows such a generalized Lkvy walk for the same 
choice of l j  as in Fig. 4a. 

The generalized Lkvy walk-like the pure Lkvy walk-gives rise to a landscape with a fluc- 
tuation exponent a that depends upon the Lkvy walk parameter p [21,22], 

i.e., non-trivial behavior of a corresponds to the case 2 < p < 3 where the fist moment of 
P(lj) converges while the second moment diverges. The long-range correlation property for the 
Lkvy walk, in this case, is a consequence of the broad distribution of Eq. (3) that lacks of a 
characteristic length scale. However, for p 2 3, the distribution of P(lj) decays fast enough that 
an effective characteristic length scale appears. Therefore, the resulting Lkvy walk behaves like a 
normal random walk for p 2 3. 

To be precise, we define our insertion walk model as follows 1151: 

1. Choose a random number u which is uniformly distributed between 0 and 1, and define 

l j  l,u"-' where I, is some lower cutoff characteristic length. The number (Ij) thus generated 
will obey the distribution of Eq. (3). 

2. Produce a biased random walk of length li with p+ and p- given by Eq. (4), where e j  takes 
on the value +e or - E  randomly and E is a fixed value close to 0.2 (corresponding to the 
percentage of purines vs. pyrimidines in real DNA sequences) 

3. Iterate the process, attaching together biased random walk until the total length of the 
sequence reaches a given value L. 

To test the insertion model [15], we have adjusted the two parameters, p and l,, to best 
approximate features of an actual DNA sequence (the human beta-globin DNA sequence). The 
parameter e can be determined from the strand biased regions in the actual DNA sequences, while 
1, can be estimated from the length of the largest strand biased region in an actual DNA sequence 
of length L. 

7. Relation of Long-Range Correlations t o  Genome Organization and  Structure 

Of interest, DNA walks of a variety of genes and intergenomic sequences with well expressed 
scale-invariant correlations reveal regions of "strand bias," i.e., regions with an excess of one kind 
of base pairs over the other [4,21,22]. These sub-regions (when analyzed separately from the rest 
of the sequence) show no long-range correlations and thus resemble coding sequences of cDNA. 

From a biological viewpoint, two questions immediately arise: (a) What is the sagnificance of 
these uncorrelated sub-regions of strand bias? and (b) What is the molecular basis underlying the 
power-law statistics of the insertion model? 

With respect to the first question, we note that these long uncorrelated regions at least some- 
times correspond to well-described but poorly understood sequences termed "repetitive elements," 
such as the LINE-1 region [23-251. There are at least 53 different families of such repetitive ele- 
ments within the human genome 1261. The lengths of these repetitive elements vary from 10 to lo4 
base pairs 1261. At least some of the repetitive elements are believed to be remnants of messenger 
RNA molecules that formerly did code for proteins [25-271. Alternatively, these segments may 
represent retroviral sequences that have inserted themselves into the genome [28]. Our finding 



that these repetitive elements have the statistical properties of biased random walks (e.g., the 
same as that of active coding sequences) is consistent with these hypotheses. 

With respect to the second question, we note that from the point of view of modern polymer 
theory [6,7] the power law distribution of these uncorrelated subregions can be related to the 
known power-law statistics of the loops formed by a long polymer chain in a solvent. The pair of 
monomers from two distant parts of the polymer chain may sometimes approach to each other 
when the chain bends in the solvent forming a loop of a certain length. The probability of such 
an event is known to be approximately inverse-proportional to a square of this loop length [7,29]. 
Any splicing or insertion in the polymer chain can happen-without breaking its connectivity-if 
it is proceeded by formation of a loop that later can be removed or inserted. This underlying 
physical principle may govern the probability distribution of the observed heterogeneous regions 
of DNA that were inserted into genome in the course of evolution [30-381. 

8. General significance 

Our observations suggest that the application of fractal analysis to DNA sequences reveals a 
property that may be responsible for a variety of additional "informational codes" in the DNA 
sequence. Furthermore, discovering the origin of long-range correlations may lead to better un- 
derstanding of the role of introns and intergenomic sequences. Our results may shed some light 
on the following aspects of DNA sequences. 

(i) Dynamical D N A  Processes: 

One possible explanation of the origin of the long range correlations is the evolutionary changes 
in DNA associated with insertion of introns, transpositions, exon shuffling and gene duplication. 
The current stage of genomic sequences is a product of a dynamical process which involves muta- 
tion, deletion, insertion and other rearrangements [30-341. This dynamical process is presumably 
driven by the need for more complex functionality and more efficient utilization of the sequences. 
Our preliminary results suggest that analysis of long-range correlations may provide new under- 
standing of how this dynamical process proceeds. 

(ii) New organization principles for gene/chromosome: 

The long-range correlations may also come from some physical interaction in the DNA chain. 
This interaction could be local in nature and manifest itself in long-range correlations via 3-d 
packaging. In this case, our understanding of long-range correlations may give useful clues to 3-d 
structure of genomic sequences. Power-law behavior reflects a scale-invariant property of DNA 
which might be related to hierarchical order DNAIchromatin structure, DNA bending or looping 
[37,38]. 

(iii) Relationship of coding/non-coding sequences and automated criteria for distinguishing them: 

To date there is little knowledge about the information content of introns and intergenomic 
sequences. However, our analysis shows a systematic statistical difference between coding and 
non-coding sequences. Further investigation may lead to understanding the role of these non- 
coding sequences. As a practical matter, our analysis can contribute to the development of software 
(complementary to other existing programs) and a database for better identification of coding and 
non-coding sequences. Such a database could help to develop a neural network system that will 
learn to identify different sequences in DNA, such as coding and non-coding parts and repetitive 
elements . 
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